The Distinct Element Method - Application to Structures in Jointed Rock

PDF Version Also Available for Download.

Description

The Distinct Element Method (DEM) is a meshfree method with applications to rock mechanics, mining sciences, simulations of nuclear repositories, and the stability of underground structures. Continuum mesh-based methods have been applied successfully to many problems in geophysics. Even if the geology includes fractures and faults, when sufficiently large length scales are considered a continuum approximation may be sufficient. However, a large class of problems exist where individual rock joints must be taken into account. This includes problems where the structures of interest have sizes comparable with the block size. In addition, it is possible that while the structure may ... continued below

Physical Description

1,470 Kilobytes pages

Creation Information

Morris, J.P.; Glen, L.; Blair, S. & Heuze, F. November 30, 2001.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 18 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The Distinct Element Method (DEM) is a meshfree method with applications to rock mechanics, mining sciences, simulations of nuclear repositories, and the stability of underground structures. Continuum mesh-based methods have been applied successfully to many problems in geophysics. Even if the geology includes fractures and faults, when sufficiently large length scales are considered a continuum approximation may be sufficient. However, a large class of problems exist where individual rock joints must be taken into account. This includes problems where the structures of interest have sizes comparable with the block size. In addition, it is possible that while the structure may experience loads which do no measurable damage to individual blocks, some joints may fail. This may launch smaller blocks as dangerous projectiles or even cause total failure of a tunnel. Traditional grid-based continuum approaches are wholly unsuited to this class of problem. It is possible to introduce discontinuities or slide lines into existing grid-based methods, however, such limited approaches can break down when new contacts form between blocks. The distinct element method (DEM) is an alternative, meshfree approach. The DEM can directly approximate the block structure of the jointed rock using arbitrary polyhedra. Using this approach, preexisting joints are readily incorporated into the DEM model. In addition, the method detects all new contacts between blocks resulting from relative block motion. We will describe the background of the DEM and review previous application of the DEM to geophysical problems. Finally we present preliminary results from a investigation into the stability of underground structures subjected to dynamic loading.

Physical Description

1,470 Kilobytes pages

Source

  • International Workshop Meshfree Methods for Partial Differential Equations, Bonn (DE), 09/11/2001--09/14/2001

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-JC-146404
  • Grant Number: W-7405-Eng-48
  • Office of Scientific & Technical Information Report Number: 802879
  • Archival Resource Key: ark:/67531/metadc742833

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 30, 2001

Added to The UNT Digital Library

  • Oct. 19, 2015, 7:39 p.m.

Description Last Updated

  • May 6, 2016, 2:23 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 18

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Morris, J.P.; Glen, L.; Blair, S. & Heuze, F. The Distinct Element Method - Application to Structures in Jointed Rock, article, November 30, 2001; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc742833/: accessed June 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.