Structural and magnetic properties of MnAs nanoclusters formed by Mn ion implantation in GaAs

PDF Version Also Available for Download.

Description

Ferromagnetic (FM) nanostructures embedded in semiconductors are of fundamental interest since their physical properties could be used in new devices such as memories, sensors or spintronics. In this work, we present results obtained on the synthesis and characterization of nanosized MnAs ferromagnets buried in GaAs. These nanocrystals are formed either by single Mn implantation or Mn + As co-implantation at room temperature into GaAs wafers at 141 and 180 keV respectively. Two doses, 1 x 10{sup 16} and 2 x 10{sup 16} ions {center_dot} cm{sup -2} for each impurity, are tested. Pieces of the wafers are then annealed by RTA ... continued below

Physical Description

vp.

Creation Information

Serres, A.; Benassayag, G.; Respaud, M.; Armand, C.; Pesant, J.C.; Mari, A. et al. August 1, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Ferromagnetic (FM) nanostructures embedded in semiconductors are of fundamental interest since their physical properties could be used in new devices such as memories, sensors or spintronics. In this work, we present results obtained on the synthesis and characterization of nanosized MnAs ferromagnets buried in GaAs. These nanocrystals are formed either by single Mn implantation or Mn + As co-implantation at room temperature into GaAs wafers at 141 and 180 keV respectively. Two doses, 1 x 10{sup 16} and 2 x 10{sup 16} ions {center_dot} cm{sup -2} for each impurity, are tested. Pieces of the wafers are then annealed by RTA or classical furnace annealing at various temperatures under N{sub 2} atmosphere for increasing times. HRTEM and diffraction analysis show that under such conditions MnAs precipitates form with a regular hexagonal structure, the 3m orientation-relationship of precipitates with respect to the matrix offers the most energetically stable configuration. Size distributions are systematically extracted from statistical analysis of ''2 beam'' TEM images. The precipitate mean diameters of nanocrystals populations range from 9 to 13 nm depending on the annealing conditions. Magnetization measurements by SQUID magnetometry on the same samples reveal a progressive transition from a superparamagnetic behavior at room temperature to an FM one at 2K, reflecting a distribution of blocking temperature, due to distribution of size and to dipolar interactions. Curie temperatures in the range of 360K were measured.

Physical Description

vp.

Notes

OSTI as DE00803857

Source

  • E-MRS 2002 Spring Meeting, Strasbourg (FR), 06/18/2002--06/21/2002

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--51230
  • Grant Number: AC03-76SF00098
  • Office of Scientific & Technical Information Report Number: 803857
  • Archival Resource Key: ark:/67531/metadc742828

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 1, 2002

Added to The UNT Digital Library

  • Oct. 19, 2015, 7:39 p.m.

Description Last Updated

  • April 4, 2016, 6:28 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Serres, A.; Benassayag, G.; Respaud, M.; Armand, C.; Pesant, J.C.; Mari, A. et al. Structural and magnetic properties of MnAs nanoclusters formed by Mn ion implantation in GaAs, article, August 1, 2002; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc742828/: accessed December 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.