Proliferation resistance assessment of the Integral Fast Reactor.

PDF Version Also Available for Download.

Description

The Integral Fast Reactor (IFR) concept includes a sodium-cooled fast reactor collocated with an integrated pyroprocess fuel recycling facility. The pyrochemical processes and the inert atmosphere of the heavily shielded fuel cycle facility provide inherent proliferation-resistant features for this advanced technology. The reactor can be designed to operate with a number of different conversion factors, so that it could be used for excess plutonium consumption or as a breeder if needed for rapid expansion of energy supply. The system contains a large quantity of plutonium and minor actinides, which at all times remain in extremely hostile environments and in chemical ... continued below

Physical Description

vp.

Creation Information

McFarlane, H. F. July 1, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The Integral Fast Reactor (IFR) concept includes a sodium-cooled fast reactor collocated with an integrated pyroprocess fuel recycling facility. The pyrochemical processes and the inert atmosphere of the heavily shielded fuel cycle facility provide inherent proliferation-resistant features for this advanced technology. The reactor can be designed to operate with a number of different conversion factors, so that it could be used for excess plutonium consumption or as a breeder if needed for rapid expansion of energy supply. The system contains a large quantity of plutonium and minor actinides, which at all times remain in extremely hostile environments and in chemical and physical forms that would require additional processing to extract weapons-suitable material. The aqueous processing equipment and facilities to accomplish such separation would not be available on site. Transportation would not be required in the reference deployment scenario. Nevertheless, the proliferation-resistance of some parts of the system could be considerably strengthened by advanced safeguards technologies. In spite of its inherent features, international deployment of the system would probably be limited to stable countries with a strong existing nuclear infrastructure.

Physical Description

vp.

Source

  • 43rd Annual INMM Conference, Orlando, FL (US), 06/23/2002--06/27/2002

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ANL/ENT/CP-108107
  • Grant Number: W-31-109-ENG-38
  • Office of Scientific & Technical Information Report Number: 797917
  • Archival Resource Key: ark:/67531/metadc742696

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 1, 2002

Added to The UNT Digital Library

  • Oct. 19, 2015, 7:39 p.m.

Description Last Updated

  • March 29, 2016, 8:49 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 9

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

McFarlane, H. F. Proliferation resistance assessment of the Integral Fast Reactor., article, July 1, 2002; Illinois. (digital.library.unt.edu/ark:/67531/metadc742696/: accessed December 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.