ENGINEERING DATA TRANSMITTAL

Distribution
- **To:** (Receiving Organization)
- **From:** (Originating Organization)
- **Proj./Prog./Dept./Div.:** Spent Nuclear Fuel Project
- **Design Authority/ Design Agent/Cog. Engr.:** C. Van Katwijk
- **Originator Remarks:** N/A

Receiver Remarks:
- **11A. Design Baseline Document?** [X] No

DATA TRANSMITTED

<table>
<thead>
<tr>
<th>(A) Item No.</th>
<th>(B) Document/Drawing No.</th>
<th>(C) Sheet No.</th>
<th>(D) Rev. No.</th>
<th>(E) Title or Description of Data Transmitted</th>
<th>Approval Designator</th>
<th>Reason for Transmittal</th>
<th>Originator Disposition</th>
<th>Receiver Disposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SNF-3891</td>
<td>0</td>
<td></td>
<td>Fabricated – MCO Inlet/Outlet Valves VPS-V-010 and 019</td>
<td>Q</td>
<td>2</td>
<td>1</td>
<td>N/A</td>
</tr>
</tbody>
</table>

KEY

<table>
<thead>
<tr>
<th>Approval Designator (F)</th>
<th>Reason for Transmittal (G)</th>
<th>Disposition (H) & (I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E, S, Q, D or N/A</td>
<td>1. Approval</td>
<td>1. Approved</td>
</tr>
<tr>
<td>(see WHC-CM-3-5, Sec.12.7)</td>
<td>4. Review</td>
<td>4. Reviewed no/commnt</td>
</tr>
<tr>
<td></td>
<td>2. Release</td>
<td>2. Approved w/comment</td>
</tr>
<tr>
<td></td>
<td>5. Post-Review</td>
<td>5. Reviewed w/comment</td>
</tr>
<tr>
<td></td>
<td>3. Information</td>
<td>3. Disapproved w/comment</td>
</tr>
<tr>
<td></td>
<td>6. Dist. (Receipt Acknow. Required)</td>
<td>6. Receipt acknowledged</td>
</tr>
</tbody>
</table>

SIGNATURE/DISTRIBUTION

- **Designated Engineer C. Van Katwijk**
- **Design Authority J. J. Irwin**
- **QA T. D. Hays**

Signature of EDT Originator

Date

Authorized Representative

Date

Design Authority/ Cognizant Manager

Date

DOE APPROVAL (if required)

Date

Approved

Date

Approved w/comments

Date

Disapproved w/comments
Fabricated – MCO Inlet / Outlet Valves

Carl Van Katwijk
Numatec Hanford Co, Richland, WA 99352
U.S. Department of Energy Contract DE-AC06-96RL13200

EDT/ECN: 626264 UC: 620
Org Code: 2G300 Charge Code: 105559/A000
B&R Code: 39EW40400 Total Pages: 7

Key Words: Isolation Valves - MCO

Abstract: Fabricated – MCO Inlet/Outlet Valves VPS-V-010 and 019
CGI-SNF-D-46-1-P4-016

TRADEMARK DISCLAIMER. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.

Printed in the United States of America. To obtain copies of this document, contact: Document Control Services, P.O. Box 950, Mailstop H6-08, Richland WA 99352, Phone (509) 372-2420; Fax (509) 376-4989.

Approved for Public Release

A-6400-073 (01/97) GEF321
Section 1: Part Information

<table>
<thead>
<tr>
<th>Item No.:</th>
<th>NA</th>
<th>Manufacturer:</th>
<th>Supplier:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mfg. Part/Model No.:</td>
<td></td>
<td>Supplier's P/N:</td>
<td></td>
</tr>
<tr>
<td>Part Description:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>End Use Description:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Section 2a: Component Information

<table>
<thead>
<tr>
<th>Equipment No.:</th>
<th>VPS-V-010 AND VPS-V-019</th>
<th>Specification No.:</th>
<th>W-441-P4, Rev. 2</th>
<th>Manufacturer:</th>
<th>(Fabricated*)</th>
<th>Past P.O. No.:</th>
<th>NA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer's Part/Model No.:</td>
<td>NA</td>
<td>Equipment Supplier (if different from manufacturer):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This is an engineered component manufactured to drawing H-1-82366 and H-1-82368.

Component Description: This is an engineered component valve installed on the MCO to provide isolation/confinement.

Section 2b: Qualified Vendor/Supplier Survey

1. Is the Item available from a catalog from a qualified NOA1 or ISO 9000 supplier (coordinate with project CGI interface Engineer or BTR)?
 - [] YES (go to #2 below)
 - [x] NO (go to procedure step 5.3.2, proceed to dedicate item.)

2. List of Candidate qualified suppliers or ISO suppliers:

 - Cold Vacuum Drying Facility Single Valve Operator
 - Drawing Numbers H-1-82366 And H-1-82368

3. Recommended Procurement Strategy (coordinate with project CGI interface Engineer or BTR). W-441-P4, Rev. 2, Appendix L, pages (TBD), provide a seismic testing plan for these components at a (TBD) seismic spectra.
Commercial Grade Item Upgrade Dedication Form

Title: FABRICATED - MCO INLET/OUTLET VALVES VPS-V-010 AND VPS-V-019

Section 2a: CGI Determination

1. **Question #1:** Is the Item subject to design or specification requirements that are unique to nuclear facilities or activities?
 - [X] YES (the Item is not commercial grade)
 - [] NO (continue)

2. **Question #2:** Is the Item used in applications other than nuclear facilities or activities?
 - [X] NO (the Item is not commercial grade)
 - [] YES (continue)

3. **Question #3:** Is the Item ordered from manufacturer/supplier on the basis or specifications set forth in the manufacturer's catalog?
 - [X] NO (the Item is not commercial grade)
 - [] YES (continue)

Section 2b: Reason for Dedication

The above described Item is being Dedicated for use in the application cited for the following reason(s):

- [] Item is being purchased from a non ESL manufacturer supplier as commercial grade to be used in a Safety Class application.
- [] Item is being purchased from a non ESL manufacturer supplier as commercial grade to be used in a Safety Significant application.
- [] Item was purchased from a non ESL manufacturer supplier as commercial grade to be used in a Safety Class application.
- [] Item was purchased from a non ESL manufacturer supplier as commercial grade to be used in a Safety Significant application.
- [] Other (like-for-like, similar, substitution, replacement evaluation)

Section 3: Failure Effects Evaluation

A. **Part/Component Safety Function:**
 1.
 2.
 3.

B. **Part/Component Functional Mode:**

 Safety Function #1:
 - [] Active - Mechanical or Electrical change of state is required to occur for the component to perform its safety function
 - [] Passive - Change of state is not required for the component to perform its safety function

 Safety Function #2:
 - [] Active - Mechanical or Electrical change of state is required to occur for the component to perform its safety function.
 - [] Passive - Change of state is not required for the component to perform its safety function.

Rev. No. 0

Page 2 of 6

SOF 389

VPS-V-010/019

12/18/98
Safety Function #3:

- [] Active - Mechanical or Electrical change of state is required to occur for the component to perform its safety function.
- [] Passive - Change of state is not required for the component to perform its safety function

C. Host Component Safety Function (if applicable):
1.
2.
3.

D. Failure Mechanisms(s) and the effects on component or system safety function (see worksheet 1):
1.
2.
3.
4.

Environmental Qualification Required:

- [] Yes
- [] No

If yes: Environmental Qualification Requirements

Environmental Qualification Requirements:

Limiting Environmental Conditions:

Required Safety Functions:

Section 5: Component Functional Classification

- [] Safety Class (SC)
- [] General Service
- [] Safety Significant (SS)

If part/component classification is different from host component/system, document basis.

Section 6 [reserved]

Section 7 [reserved]

National Codes/Standards:

Safety Analysis Report (SAR):

Drawings:

Vendor Manuals/Manufacturer/Supplier Information:

Other:
Section 9: Critical Characteristics

<table>
<thead>
<tr>
<th>Critical Characteristics</th>
<th>Acceptance Criteria/Tolerances</th>
<th>Acceptance Method</th>
<th>ID</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Item Identification Critical Characteristics (necessary for reasonable assurance that the item delivered is the item specified)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Physical Critical Characteristics (necessary for reasonable assurance that the item delivered is the item specified)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Performance Critical Characteristics (necessary & sufficient for reasonable assurance that the item will perform its intended safety function(s))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Notes and Legend:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>This item not a catalog component or vendor supplied item. It is a specific use engineered component. It does not require CGI procurement dedication.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Section 10: Initial reviews and Approvals

- **Designated Engineer:** [Signature] 12/21/98
- **Design Authority:** [Signature] 12/21/98
- **QA Engineer:** [Signature] 12/21/98

ECN No.: NA
CGI No.: CGI-SNF-D-07-P4-016
Title: FABRICATED - MCO INLET/OUTLET VALVES VPS-V-*010 AND *019
Page 4 of 6
Typical Failure Mechanisms

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>Definition</th>
<th>Applicable to Component under Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fracture</td>
<td>Separation of a solid accompanied by little or no macroscopic plastic deformation.</td>
<td>Yes [] No []; If Yes, indicate failure Mode.</td>
</tr>
<tr>
<td>Corrosion</td>
<td>The gradual deterioration of a material due to chemical or electrochemical reactions, such as oxidation, between the material and its environment.</td>
<td>Yes [] No []; If Yes, indicate failure Mode.</td>
</tr>
<tr>
<td>Erosion</td>
<td>Destruction of materials by the abrasive action of moving fluids, usually accelerated by the presence of solid particles carried with the fluid.</td>
<td>Yes [] No []; If Yes, indicate failure Mode.</td>
</tr>
<tr>
<td>Open Circuit</td>
<td>An electrical circuit that is unintentionally broken so that there is no complete path for current flow.</td>
<td>Yes [] No []; If Yes, indicate failure Mode.</td>
</tr>
<tr>
<td>Short Circuit</td>
<td>An abnormal connection by which an electrical current is connected to ground, or to some conducting body, resulting in excessive current flow.</td>
<td>Yes [] No []; If Yes, indicate failure Mode.</td>
</tr>
<tr>
<td>Blockage</td>
<td>Clogging of a filtering medium resulting in the inability to perform its purification function or blockage of flow.</td>
<td>Yes [] No []; If Yes, indicate failure Mode.</td>
</tr>
<tr>
<td>Seizure</td>
<td>Binding of a normally moving item through excessive pressure, temperature, friction, jamming.</td>
<td>Yes [] No []; If Yes, indicate failure Mode.</td>
</tr>
<tr>
<td>Unacceptable Vibration</td>
<td>Mechanical oscillations produced are beyond the defined permissible limits due to unbalancing, poor support, or rotation at critical speeds.</td>
<td>Yes [] No []; If Yes, indicate failure Mode.</td>
</tr>
<tr>
<td>Loss of Properties</td>
<td>A loss of mechanical and physical properties of a material due to exposure to high temperatures, radiation exposure.</td>
<td>Yes [] No []; If Yes, indicate failure Mode.</td>
</tr>
<tr>
<td>Excess Strain</td>
<td>Under the action of excessive external forces the material of the part has been deformed or distorted.</td>
<td>Yes [] No []; If Yes, indicate failure Mode.</td>
</tr>
<tr>
<td>Mechanical Creep</td>
<td>From prolonged exposure to high temperature and stress, the object will show a slow change in its physical (shape and dimension) and mechanical characteristics.</td>
<td>Yes [] No []; If Yes, indicate failure Mode.</td>
</tr>
<tr>
<td>Ductile Fracture</td>
<td>Fracture characterized by tearing of metal accompanied by appreciable gross plastic deformation.</td>
<td>Yes [] No []; If Yes, indicate failure Mode.</td>
</tr>
</tbody>
</table>

Section 2: Additional Failure Modes Applicable to the Component Under Evaluation

1.
2.
3.
4.

VPS-V-010/019 12/18/98
1. SUMMARY OF VERIFIED CRITICAL CHARACTERISTICS, THEIR VERIFICATION METHODS, AND RESULTS

ITEM DESCRIPTION:

<table>
<thead>
<tr>
<th>Critical Characteristic</th>
<th>Acceptance Criteria/Tolerances</th>
<th>ID</th>
<th>Function</th>
<th>Method</th>
<th>Procedure or RR#</th>
<th>Checklist ID</th>
<th>Number Tested</th>
<th>Number Failed</th>
<th>Verifying Organization</th>
<th>Printed Name Signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>This item is not a catalog component or vendor supplied item. It is a specific use engineered component. It does not require CGI procurement dedication.</td>
<td></td>
</tr>
</tbody>
</table>

2. DISPOSITION OF UNVERIFIED OR FAILED CRITICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Critical Characteristic</th>
<th>Disposition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. SIGNATURE INDICATES ALL CRITICAL CHARACTERISTICS VERIFIED SATISFACTORY OR ACCEPTABLY DISPOSITIONED AND COMMERCIAL GRADE DEDICATION IS SATISFACTORY AND COMPLETE.

<table>
<thead>
<tr>
<th>Testing Agency Approval:</th>
<th>Date</th>
<th>Design Authority:</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testing Agency QA Engineer:</td>
<td>Date</td>
<td>QA Engineer:</td>
<td>Date</td>
</tr>
</tbody>
</table>

BUYER VERIFICATION

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

12/18/98