Particle Control in the Sustained Spheromak Physics Experiment

PDF Version Also Available for Download.

Description

In this paper we report on density and impurity measurements in the Sustained Spheromak Physics Experiment (SSPX) which has recently started operation. The SSPX spheromak plasma is sustained by coaxial helicity injection for a duration of 2msec with peak toroidal currents of up to 0.5MA. The plasma-facing components consist of tungsten-coated copper to minimize sputtering. The surfaces are conditioned by a combination of baking at 150 C, glow discharge cleaning, Titanium gettering, and pulse-discharge cleaning with helium plasmas. In this way we can achieve density control so that the plasma density ({approx} 1-4 x 10{sup 20}m{sup -3}) matches the gas ... continued below

Physical Description

231 Kilobytes pages

Creation Information

Wood, R.D.; Hill, D.N.; Hooper, E.B.; Buchenauer, D.; McLean, H.; Wang, Z. et al. May 1, 2000.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 15 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

In this paper we report on density and impurity measurements in the Sustained Spheromak Physics Experiment (SSPX) which has recently started operation. The SSPX spheromak plasma is sustained by coaxial helicity injection for a duration of 2msec with peak toroidal currents of up to 0.5MA. The plasma-facing components consist of tungsten-coated copper to minimize sputtering. The surfaces are conditioned by a combination of baking at 150 C, glow discharge cleaning, Titanium gettering, and pulse-discharge cleaning with helium plasmas. In this way we can achieve density control so that the plasma density ({approx} 1-4 x 10{sup 20}m{sup -3}) matches the gas input. Low-density operation is presently limited by breakdown requirements, but we hope that new gas valves with supersonic nozzles will allow for a further reduction in density. We find that the conditioning reduces the impurity radiation to the point where it is no longer important to the energy balance, and long-lived spheromak plasmas are obtained (decay times of 1.5msec).

Physical Description

231 Kilobytes pages

Source

  • 14th International Conference on Plasma Surface Interactions, Rosenheim (DE), 05/22/2000--05/26/2000

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-JC-139018
  • Grant Number: W-7405-Eng-48
  • Office of Scientific & Technical Information Report Number: 791739
  • Archival Resource Key: ark:/67531/metadc742547

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 1, 2000

Added to The UNT Digital Library

  • Oct. 19, 2015, 7:39 p.m.

Description Last Updated

  • May 6, 2016, 2:50 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 15

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Wood, R.D.; Hill, D.N.; Hooper, E.B.; Buchenauer, D.; McLean, H.; Wang, Z. et al. Particle Control in the Sustained Spheromak Physics Experiment, article, May 1, 2000; California. (digital.library.unt.edu/ark:/67531/metadc742547/: accessed November 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.