Thermal Response of Tritiated Co-deposits from JET and TFTR to Transient Heat Pulses

PDF Version Also Available for Download.

Description

High heat flux interactions with plasma-facing components have been studied at microscopic scales. The beam from a continuous wave neodymium laser was scanned at high speed over the surface of graphite and carbon fiber composite tiles that had been retrieved from TFTR (Tokamak Fusion Test Reactor) and JET (Joint European Torus) after D-T plasma operations. The tiles have a surface layer of amorphous hydrogenated carbon that was co-deposited during plasma operations, and laser scanning has released more than 80% of the co-deposited tritium. The temperature rise of the co-deposit was much higher than that of the manufactured material and showed ... continued below

Physical Description

1.6 Megabytes pages

Creation Information

Skinner, C.H.; Bekrisl, N.; Coad, J.P.; Gentile, C.A.; Hassanein, A.; Reiswig, R. et al. May 30, 2002.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

High heat flux interactions with plasma-facing components have been studied at microscopic scales. The beam from a continuous wave neodymium laser was scanned at high speed over the surface of graphite and carbon fiber composite tiles that had been retrieved from TFTR (Tokamak Fusion Test Reactor) and JET (Joint European Torus) after D-T plasma operations. The tiles have a surface layer of amorphous hydrogenated carbon that was co-deposited during plasma operations, and laser scanning has released more than 80% of the co-deposited tritium. The temperature rise of the co-deposit was much higher than that of the manufactured material and showed an extended time history. The peak temperature varied dramatically (e.g., 1,436 C compared to >2,300 C), indicating strong variations in the thermal conductivity to the substrate. A digital microscope imaged the co-deposit before, during, and after the interaction with the laser and revealed 100-micron scale hot spots during the interaction. Heat pulse durations of order 100 ms resulted in brittle destruction and material loss from the surface, whilst a duration of =10 ms showed minimal changes to the co-deposit. These results show that reliable predictions for the response of deposition areas to off-normal events such as ELMs (edge-localized modes) and disruptions in next-step devices need to be based on experiments with tokamak generated co-deposits.

Physical Description

1.6 Megabytes pages

Notes

INIS; OSTI as DE00798185

Source

  • Other Information: PBD: 30 May 2002

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: PPPL-3698.pdf
  • Grant Number: AC02-76CH03073
  • DOI: 10.2172/798185 | External Link
  • Office of Scientific & Technical Information Report Number: 798185
  • Archival Resource Key: ark:/67531/metadc742427

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • May 30, 2002

Added to The UNT Digital Library

  • Oct. 19, 2015, 7:39 p.m.

Description Last Updated

  • April 15, 2016, 9:56 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Skinner, C.H.; Bekrisl, N.; Coad, J.P.; Gentile, C.A.; Hassanein, A.; Reiswig, R. et al. Thermal Response of Tritiated Co-deposits from JET and TFTR to Transient Heat Pulses, report, May 30, 2002; Princeton, New Jersey. (digital.library.unt.edu/ark:/67531/metadc742427/: accessed August 19, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.