Wire Initiation Studies at the University of Nevada-Reno: An LDRD Report

PDF Version Also Available for Download.

Description

Wire explosion experiments have been carried out at the University of Nevada, Reno. These experiments investigated the explosion phase of wires with properties and current-driving conditions comparable to that used in the initial stage of wire array z-pinch implosions on the Z machine at Sandia National Laboratories. Specifically, current pulses similar to and faster than the pre-pulse current on Z (current prior to fast rise in current pulse) were applied to single wire loads to study wire heating and the early development of plasmas in the wire initiation process. Understanding such issues are important to larger pulsed power machines that ... continued below

Physical Description

23 pages

Creation Information

DOUGLAS, MELISSA R. & BAUER, BRUNO November 1, 2001.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM, and Livermore, CA (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Wire explosion experiments have been carried out at the University of Nevada, Reno. These experiments investigated the explosion phase of wires with properties and current-driving conditions comparable to that used in the initial stage of wire array z-pinch implosions on the Z machine at Sandia National Laboratories. Specifically, current pulses similar to and faster than the pre-pulse current on Z (current prior to fast rise in current pulse) were applied to single wire loads to study wire heating and the early development of plasmas in the wire initiation process. Understanding such issues are important to larger pulsed power machines that implode cylindrical wire array loads comprised of many wires. It is thought that the topology of an array prior to its acceleration influences the implosion and final stagnation properties, and therefore may depend on the initiation phase of the wires. Single wires ranging from 4 to 40 pm in diameter and comprised of material ranging from AI to W were investigated. Several diagnostics were employed to determine wire current, voltage, total emitted-light energy and power, along with the wire expansion velocity throughout the explosion. In a number of cases, the explosion process was also observed with x-ray backlighting using x-pinches. The experimental data indicates that the characteristics of a wire explosion depend dramatically on the rate of rise of the current, on the diameter of the wire, and on the heat of vaporization of the wire material. In this report, these characteristics will be described in detail. Of particular interest is the result that a faster current rise produces a higher energy deposition into the wire prior to explosion. This result introduces a different means of increasing the efficiency of wire heating. In this case, the energy deposition along the wire and its subsequent expansion, is uniform compared to a ''slow'' current rise (170 A/ns compared to 22 A /s current rise into a short circuit) and the expansion velocity is larger. The energy deposition and wire expansion is further modified by the wire diameter and material. Investigations of wire diameter indicate that the diameter primarily effects the expansion velocity and energy deposition; thicker wires explode with greater velocities but absorb less energy per atom. The heat of vaporization also categorizes the wire explosion; wires with a low heat of vaporization expand faster and emit less radiation than their high heat of vaporization counterparts.

Physical Description

23 pages

Source

  • Other Information: PBD: 1 Nov 2001

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SAND2001-3361
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/791889 | External Link
  • Office of Scientific & Technical Information Report Number: 791889
  • Archival Resource Key: ark:/67531/metadc742323

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • November 1, 2001

Added to The UNT Digital Library

  • Oct. 19, 2015, 7:39 p.m.

Description Last Updated

  • April 12, 2016, 1:14 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

DOUGLAS, MELISSA R. & BAUER, BRUNO. Wire Initiation Studies at the University of Nevada-Reno: An LDRD Report, report, November 1, 2001; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc742323/: accessed May 25, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.