Measurement of Low Level Explosives Reaction in the Two-Dimensional Steven Impact Test

PDF Version Also Available for Download.

Description

The two-dimensional Steven impact test has been developed to be reproducible and amenable to computer modeling. This test has a hemispherical projectile traveling at tens of m/s impacting a metal cased explosive target. To assist in the understanding of this safety test, two-dimensional shock wave gauge techniques were used to measure the pressures of a few kilobars and times of reactions less than a millisecond. This work is in accord with a long-term goal to develop two-dimensional shock diagnostic techniques that are more than just time of arrival indicators. Experiments were performed where explosives were impacted at levels below shock ... continued below

Physical Description

444 Kilobytes pages

Creation Information

Forbes, J.W.; Tarver, C.M.; Chidester, S.K.; Garcia, F.; Greenwood, D.W. & Garza, R. October 10, 2000.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 35 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The two-dimensional Steven impact test has been developed to be reproducible and amenable to computer modeling. This test has a hemispherical projectile traveling at tens of m/s impacting a metal cased explosive target. To assist in the understanding of this safety test, two-dimensional shock wave gauge techniques were used to measure the pressures of a few kilobars and times of reactions less than a millisecond. This work is in accord with a long-term goal to develop two-dimensional shock diagnostic techniques that are more than just time of arrival indicators. Experiments were performed where explosives were impacted at levels below shock initiation levels but caused low level reactions. Carbon foil and carbon resistor pressure gauges were used to measure pressures and time of events. The carbon resistor gauges indicate a late time low level reaction at 350 {micro}s after impact of the hemispherical projectile creating 0.5-6 kb peak shocks at the center of PBX 9501 (HMX/Estane/BDNPA-F; 95/2.5/2.5 wt %) explosive discs. The Steven test calculations are based on an ignition and growth criteria and found that the low level reaction occurs at 335 {micro}s, which is in good agreement with the experimental data. Some additional experiments simulating the Steven impact test were done on a gas gun with carbon foil and constantan strain gauges in a PMMA target. Hydrodynamic calculations can be used to evaluate the gauge performance in these experiments and check the lateral strain measurements.

Physical Description

444 Kilobytes pages

Source

  • 37th Joint Army Navy Nasa Air Force Combustion Meeting, Monterey, CA (US), 11/13/2000--11/17/2000

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-JC-132716
  • Grant Number: W-7405-Eng-48
  • Office of Scientific & Technical Information Report Number: 792354
  • Archival Resource Key: ark:/67531/metadc742315

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 10, 2000

Added to The UNT Digital Library

  • Oct. 19, 2015, 7:39 p.m.

Description Last Updated

  • May 6, 2016, 4:01 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 35

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Forbes, J.W.; Tarver, C.M.; Chidester, S.K.; Garcia, F.; Greenwood, D.W. & Garza, R. Measurement of Low Level Explosives Reaction in the Two-Dimensional Steven Impact Test, article, October 10, 2000; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc742315/: accessed November 16, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.