Development of comprehensive and integrated models for inertial fusion cavity dynamics.

PDF Version Also Available for Download.

Description

The chamber walls in inertial fusion energy (IFE) reactors are exposed to harsh conditions following each target implosion. Key issues of the cyclic IFE operation include intense photon and ion deposition, wall thermal and hydrodynamic evolution, wall erosion and fatigue lifetime, and chamber clearing and evacuation to ensure chamber conditions prior to target implosion. Several methods for wall protection have been proposed in the past, each having its own advantages and disadvantages. These methods include bare walls, gas-filled cavities, and liquid walls/jets. We have developed detailed models for reflected laser light, emitted photon, and target debris deposition and interaction with ... continued below

Physical Description

48 pages

Creation Information

Hassanein, A. & Morozov, V. May 17, 2002.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The chamber walls in inertial fusion energy (IFE) reactors are exposed to harsh conditions following each target implosion. Key issues of the cyclic IFE operation include intense photon and ion deposition, wall thermal and hydrodynamic evolution, wall erosion and fatigue lifetime, and chamber clearing and evacuation to ensure chamber conditions prior to target implosion. Several methods for wall protection have been proposed in the past, each having its own advantages and disadvantages. These methods include bare walls, gas-filled cavities, and liquid walls/jets. We have developed detailed models for reflected laser light, emitted photon, and target debris deposition and interaction with chamber components and implemented them in the comprehensive HEIGHTS software package. The hydrodynamic response of gas-filled cavities and photon radiation transport of the deposited energy has been calculated using new and advanced numerical techniques. Fragmentation models of liquid jets as a result of the deposited energy have also been developed, and the impact on chamber clearing dynamics has been evaluated. The focus of this study is to critically assess the reliability and the dynamic response of chamber walls in various proposed protection methods in IFE systems. Of particular concern is the effect on wall erosion lifetime of various erosion mechanisms, such as vaporization, chemical and physical sputtering, melt/liquid splashing and explosive erosion, and fragmentation of liquid walls. Mass loss and fragmentation in the form of macroscopic particles can be much larger than mass loss due to surface vaporization and sputtering and have not been properly considered in past studies as part of the overall cavity response and reestablishment. This effect may significantly alter cavity dynamics and power requirements.

Physical Description

48 pages

Source

  • Other Information: PBD: 17 May 2002

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: ANL-ET/02-04
  • Grant Number: W-31-109-ENG-38
  • DOI: 10.2172/795895 | External Link
  • Office of Scientific & Technical Information Report Number: 795895
  • Archival Resource Key: ark:/67531/metadc742280

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • May 17, 2002

Added to The UNT Digital Library

  • Oct. 19, 2015, 7:39 p.m.

Description Last Updated

  • March 29, 2016, 4:37 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Hassanein, A. & Morozov, V. Development of comprehensive and integrated models for inertial fusion cavity dynamics., report, May 17, 2002; Illinois. (digital.library.unt.edu/ark:/67531/metadc742280/: accessed August 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.