A 1.8 Mev K+ injector for the high current beam transport experiment fusion

PDF Version Also Available for Download.

Description

For the High Current Beam Transport Experiment (HCX) at LBNL, an injector is required to deliver up to 1.8 MV of 0.6 A K{sup +} beam with an emittance of {approx}1 p-mm-mrad. We have successfully operated a 10-cm diameter surface ionization source together with an electrostatic quadrupole (ESQ) accelerator to meet these requirements. The pulse length is {approx}4 {micro}s, firing at once every 10-15 seconds. By optimizing the extraction diode and the ESQ voltages, we have obtained an output beam with good current density uniformity, except for a small increase near the beam edge. Characterization of the beam emerging from ... continued below

Physical Description

vp.

Creation Information

Kwan, J.W.; Bieniosek,F.M.; Henestroza, E.; Prost, L. & Seidl, P. May 20, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 18 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

For the High Current Beam Transport Experiment (HCX) at LBNL, an injector is required to deliver up to 1.8 MV of 0.6 A K{sup +} beam with an emittance of {approx}1 p-mm-mrad. We have successfully operated a 10-cm diameter surface ionization source together with an electrostatic quadrupole (ESQ) accelerator to meet these requirements. The pulse length is {approx}4 {micro}s, firing at once every 10-15 seconds. By optimizing the extraction diode and the ESQ voltages, we have obtained an output beam with good current density uniformity, except for a small increase near the beam edge. Characterization of the beam emerging from the injector included measurements of the intensity profile, beam imaging, and transverse phase space. These data along with comparison to computer simulations provide the knowledge base for designing and understanding future HCX experiments.

Physical Description

vp.

Notes

INIS; OSTI as DE00799598

Source

  • 14th International Symposium on Heavy Ion Inertial Fusion, Moscow (RU), 05/26/2002--05/31/2002

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--50221
  • Grant Number: AC03-76SF00098
  • Office of Scientific & Technical Information Report Number: 799598
  • Archival Resource Key: ark:/67531/metadc742178

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 20, 2002

Added to The UNT Digital Library

  • Oct. 19, 2015, 7:39 p.m.

Description Last Updated

  • April 1, 2016, 8:26 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 18

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Kwan, J.W.; Bieniosek,F.M.; Henestroza, E.; Prost, L. & Seidl, P. A 1.8 Mev K+ injector for the high current beam transport experiment fusion, article, May 20, 2002; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc742178/: accessed August 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.