Methods for Addressing Uncertainty and Variability to Characterize Potential Health Risk From Trichloroethylene-Contaminated Ground Water Beale Air Force Base in California: Integration of Uncertainty and Variability in Pharmacokinetics and Dose-Response

PDF Version Also Available for Download.

Description

Traditional estimates of health risk are typically inflated, particularly if cancer is the dominant endpoint and there is fundamental uncertainty as to mechanism(s) of action. Risk is more realistically characterized if it accounts for joint uncertainty and interindividual variability after applying a unified probabilistic approach to the distributed parameters of all (linear as well as nonlinear) risk-extrapolation models involved. Such an approach was applied to characterize risks to potential future residents posed by trichloroethylene (TCE) in ground water at an inactive landfill site on Beale Air Force Base in California. Variability and uncertainty were addressed in exposure-route-specific estimates of applied ... continued below

Physical Description

10,000 Kilobytes pages

Creation Information

Bogen, K.T. September 29, 1999.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Traditional estimates of health risk are typically inflated, particularly if cancer is the dominant endpoint and there is fundamental uncertainty as to mechanism(s) of action. Risk is more realistically characterized if it accounts for joint uncertainty and interindividual variability after applying a unified probabilistic approach to the distributed parameters of all (linear as well as nonlinear) risk-extrapolation models involved. Such an approach was applied to characterize risks to potential future residents posed by trichloroethylene (TCE) in ground water at an inactive landfill site on Beale Air Force Base in California. Variability and uncertainty were addressed in exposure-route-specific estimates of applied dose, in pharmacokinetically based estimates of route-specific metabolized fractions of absorbed TCE, and in corresponding biologically effective doses estimated under a genotoxic/linear (MA{sub g}) vs. a cytotoxic/nonlinear (MA{sub c}) mechanistic assumption for TCE-induced cancer. Increased risk conditional on effective dose was estimated under MA{sub G} based on seven rodent-bioassay data sets, and under MA, based on mouse hepatotoxicity data. Mean and upper-bound estimates of combined risk calculated by the unified approach were <10{sup -6} and <10{sup -4}, respectively, while corresponding estimates based on traditional deterministic methods were >10{sup -5} and >10{sup -4}, respectively. It was estimated that no TCE-related harm is likely occur due any plausible residential exposure scenario involving the site. The unified approach illustrated is particularly suited to characterizing risks that involve uncertain and/or diverse mechanisms of action.

Physical Description

10,000 Kilobytes pages

Source

  • Other Information: PBD: 29 Sep 1999

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: UCRL-ID-135978
  • Grant Number: W-7405-Eng-48
  • DOI: 10.2172/793701 | External Link
  • Office of Scientific & Technical Information Report Number: 793701
  • Archival Resource Key: ark:/67531/metadc742172

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • September 29, 1999

Added to The UNT Digital Library

  • Oct. 19, 2015, 7:39 p.m.

Description Last Updated

  • May 6, 2016, 2:46 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 8

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Bogen, K.T. Methods for Addressing Uncertainty and Variability to Characterize Potential Health Risk From Trichloroethylene-Contaminated Ground Water Beale Air Force Base in California: Integration of Uncertainty and Variability in Pharmacokinetics and Dose-Response, report, September 29, 1999; California. (digital.library.unt.edu/ark:/67531/metadc742172/: accessed November 17, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.