VERTICAL MIXING AND CHEMISTRY OVER AN ARID URBAN SITE: FIRST RESULTS FROM AIRCRAFT OBSERVATIONS MADE DURING THE PHOENIX SUNRISE CAMPAIGN.

PDF Version Also Available for Download.

Description

The role of boundary layer mixing is increasingly recognized as an important factor in determining the concentrations of ozone and other trace gases near the surface. While the concentrations at the surface can vary widely due to horizontal transport of chemical plumes, the boundary layer is also characterized by turbulence that follows a diurnal cycle in height and intensity. Surface oxidant concentrations can therefore undergo significant changes even in the absence of photochemistry. A central goal of the Phoenix 2001 Field Campaign was to study vertical mixing with the onset of convection and to quantify the effect of this mixing ... continued below

Physical Description

6 pages

Creation Information

BERKOWITZ,C.M.; SPRINGSTON,S.R.; DORAN,J.C. & FAST,J.D. January 13, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The role of boundary layer mixing is increasingly recognized as an important factor in determining the concentrations of ozone and other trace gases near the surface. While the concentrations at the surface can vary widely due to horizontal transport of chemical plumes, the boundary layer is also characterized by turbulence that follows a diurnal cycle in height and intensity. Surface oxidant concentrations can therefore undergo significant changes even in the absence of photochemistry. A central goal of the Phoenix 2001 Field Campaign was to study vertical mixing with the onset of convection and to quantify the effect of this mixing on chemistry within an urban boundary layer. As part of this study, a series of low altitude aircraft sampling flights were made over the Greater Phoenix area between June 16-30, 2001. The resulting observations, in conjunction with a series of surface measurements and meteorological observations, are being used to study the vertical transport and reactivity of ozone and ozone-precursors shortly after sunrise. Additional details of this campaign are given in Doran, et al. (2002). It was anticipated that turbulence over Phoenix at night would be suppressed as a result of cooling of the boundary layer over the city. By sampling shortly after sunrise, we hoped to collect measurements above the residual nocturnal stable layer and to continue sampling through the developmental period of a convectively active boundary layer. We report here on the first analysis of these observations, made from a Gulstream-1 (G-1) aircraft operated by the U.S. Department of Energy.

Physical Description

6 pages

Source

  • AMERICAN METEOROLOGICAL SOCIETY 82ND ANNUAL MEETING, ORLANDO, FL (US), 01/13/2002--01/17/2002

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: BNL--68894
  • Report No.: KP1202010
  • Grant Number: AC02-98CH10886
  • Office of Scientific & Technical Information Report Number: 791308
  • Archival Resource Key: ark:/67531/metadc742014

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 13, 2002

Added to The UNT Digital Library

  • Oct. 19, 2015, 7:39 p.m.

Description Last Updated

  • Nov. 9, 2015, 4:38 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

BERKOWITZ,C.M.; SPRINGSTON,S.R.; DORAN,J.C. & FAST,J.D. VERTICAL MIXING AND CHEMISTRY OVER AN ARID URBAN SITE: FIRST RESULTS FROM AIRCRAFT OBSERVATIONS MADE DURING THE PHOENIX SUNRISE CAMPAIGN., article, January 13, 2002; Upton, New York. (digital.library.unt.edu/ark:/67531/metadc742014/: accessed June 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.