Multiscale Combination of Physically-Based Registration and Deformation Modeling

PDF Version Also Available for Download.

Description

In this paper the authors present a novel multiscale approach to recovery of nonrigid motion from sequences of registered intensity and range images. The main idea of the approach is that a finite element (FEM) model can naturally handle both registration and deformation modeling using a single model-driving strategy. The method includes a multiscale iterative algorithm based on analysis of the undirected Hausdorff distance to recover correspondences. The method is evaluated with respect to speed, accuracy, and noise sensitivity. Advantages of the proposed approach are demonstrated using man-made elastic materials and human skin motion. Experiments with regular grid features are ... continued below

Physical Description

4,400 Kilobytes pages

Creation Information

Tsap, L.; Goldgof, D.B. & Sarkar, S. November 8, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

In this paper the authors present a novel multiscale approach to recovery of nonrigid motion from sequences of registered intensity and range images. The main idea of the approach is that a finite element (FEM) model can naturally handle both registration and deformation modeling using a single model-driving strategy. The method includes a multiscale iterative algorithm based on analysis of the undirected Hausdorff distance to recover correspondences. The method is evaluated with respect to speed, accuracy, and noise sensitivity. Advantages of the proposed approach are demonstrated using man-made elastic materials and human skin motion. Experiments with regular grid features are used for performance comparison with a conventional approach (separate snakes and FEM models). It is shown that the new method does not require a grid and can adapt the model to available object features.

Physical Description

4,400 Kilobytes pages

Source

  • Institute for Electronical and Electronics Engineers Conference on Computer Vision and Pattern Recognition, Hilton Head, SC (US), 06/13/2000--06/15/2000

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-JC-136349
  • Grant Number: W-7405-Eng-48
  • Office of Scientific & Technical Information Report Number: 791524
  • Archival Resource Key: ark:/67531/metadc741801

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 8, 1999

Added to The UNT Digital Library

  • Oct. 19, 2015, 7:39 p.m.

Description Last Updated

  • May 6, 2016, 3:36 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Tsap, L.; Goldgof, D.B. & Sarkar, S. Multiscale Combination of Physically-Based Registration and Deformation Modeling, article, November 8, 1999; California. (digital.library.unt.edu/ark:/67531/metadc741801/: accessed November 25, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.