Scalar mesons and the search for the 0{sup ++} Glueball

PDF Version Also Available for Download.

Description

The possibility that gluonic excitations of hadronic matter or of the QCD vacuum may exist is perhaps one of the most fascinating topics in hadron spectroscopy. Glueballs are predicted by many models; in particular present-day lattice gauge calculations require their existence. All these models agree that the lightest glueball should have scalar quantum numbers and a mass around 1.6 GeV, which corresponds to the mass region where the scalar qq[bar]-mesons are expected. Therefore mixing effects can complicate the search for the glueball. Experiments indeed show an overpopulation of states, for which many different interpretations exist. This reflects the complexity of ... continued below

Physical Description

538 Kilobytes pages

Creation Information

Thoma, Ulrike October 1, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The possibility that gluonic excitations of hadronic matter or of the QCD vacuum may exist is perhaps one of the most fascinating topics in hadron spectroscopy. Glueballs are predicted by many models; in particular present-day lattice gauge calculations require their existence. All these models agree that the lightest glueball should have scalar quantum numbers and a mass around 1.6 GeV, which corresponds to the mass region where the scalar qq[bar]-mesons are expected. Therefore mixing effects can complicate the search for the glueball. Experiments indeed show an overpopulation of states, for which many different interpretations exist. This reflects the complexity of the situation. New data from various experiments on scalar states give hints toward an interpretation of the scalar states. But, still many questions remain.

Physical Description

538 Kilobytes pages

Source

  • Other Information: No journal information given for this preprint

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: JLAB-PHY-02-40
  • Report No.: DOE/ER/40150-2304
  • Grant Number: AC05-84ER40150
  • Office of Scientific & Technical Information Report Number: 803490
  • Archival Resource Key: ark:/67531/metadc741745

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 1, 2002

Added to The UNT Digital Library

  • Oct. 19, 2015, 7:39 p.m.

Description Last Updated

  • Feb. 5, 2016, 9:50 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Thoma, Ulrike. Scalar mesons and the search for the 0{sup ++} Glueball, article, October 1, 2002; Newport News, Virginia. (digital.library.unt.edu/ark:/67531/metadc741745/: accessed November 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.