Assessment of a Particle Bed Based Beam Stop

PDF Version Also Available for Download.

Description

Accelerator target/beam stop concepts able to withstand the thermal shock induced by intense, undiluted beams are being assessed in this study. Such conditions normally push target materials beyond their limits leading to limited useful life. A number of ingenious options have been attempted to help reduce the level of stress generated. Attention is paid to a very promising option that calls for a target consisting of a cooled particle bed. In such configuration the ability of the particle bed structure to diffuse and attenuate the generated thermal shock waves is being explored by performing comprehensive dynamic analyses that incorporate anticipated … continued below

Physical Description

3 pages

Creation Information

Simos, N.; Ludewig, H.; Montanez, P. & Todosow, M. June 3, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 15 times. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Accelerator target/beam stop concepts able to withstand the thermal shock induced by intense, undiluted beams are being assessed in this study. Such conditions normally push target materials beyond their limits leading to limited useful life. A number of ingenious options have been attempted to help reduce the level of stress generated. Attention is paid to a very promising option that calls for a target consisting of a cooled particle bed. In such configuration the ability of the particle bed structure to diffuse and attenuate the generated thermal shock waves is being explored by performing comprehensive dynamic analyses that incorporate anticipated energy depositions, thermal diffusion, and wave propagation and attenuation. Further, options of coolant liquid filling the porous structure of the particle bed, including concerns of pressure drop and heat transfer, are evaluated for maximizing particle yield.

Physical Description

3 pages

Source

  • 8TH EUROPEAN PARTICLE ACCELERATOR CONFERENCE, PARIS (FR), 06/03/2002--06/07/2002

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: BNL--69055
  • Grant Number: AC02-98CH10886
  • Office of Scientific & Technical Information Report Number: 797135
  • Archival Resource Key: ark:/67531/metadc741739

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 3, 2002

Added to The UNT Digital Library

  • Oct. 19, 2015, 7:39 p.m.

Description Last Updated

  • July 22, 2020, 11:49 a.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 15

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Simos, N.; Ludewig, H.; Montanez, P. & Todosow, M. Assessment of a Particle Bed Based Beam Stop, article, June 3, 2002; Upton, New York. (https://digital.library.unt.edu/ark:/67531/metadc741739/: accessed April 20, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen