Investigation of defects and surface polarity in GaN using hot wet etching together with microscopy and diffraction techniques

PDF Version Also Available for Download.

Description

The availability of reliable and quick methods to determine defect density and polarity in GaN films is of great interest. We have used photo-electrochemical (PEC) and hot wet etching using H{sub 3}PO{sub 4} and molten KOH to estimate the defect density in GaN films grown by hydride vapor phase epitaxy (HVPE) and molecular beam epitaxy (MBE). Free-standing whiskers and hexagonal etch pits are formed by PEC and wet etching respectively. Using Atomic Force Microscopy (AFM), we found the whisker density to be similar to etch pit densities for samples etched under precise conditions. Additionally Transmission Electron Microscopy (TEM) observations confirmed ... continued below

Physical Description

10 pages

Creation Information

Visconti, P.; Huang, D.; Reshchikov, M.A.; Yun, F.; Cingolani, R.; Smith, D.J. et al. April 8, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 32 times , with 13 in the last month . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The availability of reliable and quick methods to determine defect density and polarity in GaN films is of great interest. We have used photo-electrochemical (PEC) and hot wet etching using H{sub 3}PO{sub 4} and molten KOH to estimate the defect density in GaN films grown by hydride vapor phase epitaxy (HVPE) and molecular beam epitaxy (MBE). Free-standing whiskers and hexagonal etch pits are formed by PEC and wet etching respectively. Using Atomic Force Microscopy (AFM), we found the whisker density to be similar to etch pit densities for samples etched under precise conditions. Additionally Transmission Electron Microscopy (TEM) observations confirmed dislocation densities obtained by etching which increased our confidence in the consistency of methods used. Hot wet etching was used also to investigate the polarity of GaN films together with Convergent Beam Electron Diffraction (CBED) and AFM imaging. We found that hot H{sub 3}PO{sub 4} etches N-polarity GaN films very quickly resulting in the complete removal or drastic change of surface morphology as revealed by AFM or optical microscopy. On the contrary, the acid attacks only defect sites in Ga-polarity films producing nanometer-scale pits but leaving the defect-free GaN intact and the morphology unchanged. Additionally, the polarity assignments were related to the as-grown morphology and to the growth conditions of the buffer layer and the subsequent GaN layer.

Physical Description

10 pages

Notes

OSTI as DE00795351

Source

  • E-MRS 2001 SPRING CONFERENCE, Strasbourg (FR), 06/05/2001--06/08/2001

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--49496
  • Grant Number: AC03-76SF00098
  • Office of Scientific & Technical Information Report Number: 795351
  • Archival Resource Key: ark:/67531/metadc741725

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • April 8, 2002

Added to The UNT Digital Library

  • Oct. 19, 2015, 7:39 p.m.

Description Last Updated

  • April 4, 2016, 1:23 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 13
Total Uses: 32

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Visconti, P.; Huang, D.; Reshchikov, M.A.; Yun, F.; Cingolani, R.; Smith, D.J. et al. Investigation of defects and surface polarity in GaN using hot wet etching together with microscopy and diffraction techniques, article, April 8, 2002; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc741725/: accessed November 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.