POWER LEVEL EFFECT IN A PWR ROD EJECTION ACCIDENT.

PDF Version Also Available for Download.

Description

The purpose of this study is to determine the effect of the initial power level during a rod ejection accident (REA) on the ejected rod worth and the resulting energy deposition in the fuel. The model used is for the hot zero power (HZP) conditions at the end of a typical fuel cycle for the Three Mile Island Unit 1 pressurized water reactor. PARCS, a transient, three-dimensional, two-group neutron nodal diffusion code, coupled with its own thermal-hydraulics model, is used to perform both steady-state and transient simulations. The worth of an ejected control rod is affected by both power level, ... continued below

Physical Description

8 pages

Creation Information

DIAMOND,D.J.; BROMLEY,B.P. & ARONSON,A.L. October 7, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The purpose of this study is to determine the effect of the initial power level during a rod ejection accident (REA) on the ejected rod worth and the resulting energy deposition in the fuel. The model used is for the hot zero power (HZP) conditions at the end of a typical fuel cycle for the Three Mile Island Unit 1 pressurized water reactor. PARCS, a transient, three-dimensional, two-group neutron nodal diffusion code, coupled with its own thermal-hydraulics model, is used to perform both steady-state and transient simulations. The worth of an ejected control rod is affected by both power level, and the positions of control banks. As the power level is increased, the worth of a single central control rod tends to drop due to thermal-hydraulic feedback and control bank removal, both of which flatten the radial neutron flux and power distributions. Although the peak fuel pellet enthalpy rise during an REA will be greater for a given ejected rod worth at elevated initial power levels, it is more likely the HZP condition will cause a greater net energy deposition because an ejected rod will have the highest worth at HZP. Thus, the HZP condition can be considered the most conservative in a safety evaluation.

Physical Description

8 pages

Source

  • PHYSOR 2002 INTERNATIONAL CONFERENCE ON THE NEW FRONTIERS OF NUCLEAR TECHNOLOGY, SEOUL (KR), 10/07/2002--10/10/2002

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: BNL--NUREG-69285
  • Grant Number: AC02-98CH10886
  • Office of Scientific & Technical Information Report Number: 799476
  • Archival Resource Key: ark:/67531/metadc741707

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 7, 2002

Added to The UNT Digital Library

  • Oct. 19, 2015, 7:39 p.m.

Description Last Updated

  • Nov. 9, 2015, 1:47 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

DIAMOND,D.J.; BROMLEY,B.P. & ARONSON,A.L. POWER LEVEL EFFECT IN A PWR ROD EJECTION ACCIDENT., article, October 7, 2002; Upton, New York. (digital.library.unt.edu/ark:/67531/metadc741707/: accessed October 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.