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Abstract

This report documents work supporting the Sandia National Laboratories initiative in
Distributed Energy Resources (DERs) and Supervisory Control and Data Acquisition
(SCADA) systems.  One approach for real-time control of power generation assets using
feedback control, Quantitative feedback theory (QFT), has recently been applied to voltage,
frequency, and phase-control of power systems at Sandia.  QFT provided a simple yet
powerful philosophy for designing the control systemsallowing the designer to optimize
the system by making design tradeoffs without getting lost in complex mathematics.  The
feedback systems were effective in reducing sensitivity to large and sudden changes in the
power grid system. Voltage, frequency, and phase were accurately controlled, even with
large disturbances to the power grid system.
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Introduction
This report documents work supporting the Sandia National Laboratories initiative in Distributed
Energy Resources (DERs) and Supervisory Control and Data Acquisition (SCADA) systems.
SCADA systems are information systems that provide the command and control capability
necessary to manage the nation’s critical infrastructures such as the power grid, and they are also
critical in managing distributed energy resources such as microturbines, solar, and wind farms.  In
understanding the requirements and constraints on future DER SCADA systems, it is necessary to
understand the information needed to effectively and efficiently manage DER assets.  One area in
DER that is evolving is real-time control of DER generators to safely and economically take units
on and off line.  This study looked at one approach, Quantitative Feedback Theory, for real-time
control of power generation assets using feedback control.

Feedback Control Design Techniques
Most feedback control design techniques can be divided into four basic categories:  (1) classical-
empirical, (2) modern-empirical, (3) classical-analytical, and (4) modern-analytical.  Table 1
shows several feedback control design techniques and groups them into one of the four
categories:

Table 1.  Four Categories of Feedback Control Design Techniques

Classical Modern

Empirical Proportional Integral Derivative (PID) and

Bang-Bang

Fuzzy Logic, Neural Networks and

Adaptive

Analytical Bode, Root-Locus, Linear Quadratic Regulator

and Gaussian (LQR & LQG)

H2, H8 , Lyapunov and Quantitative

Feedback Theory (QFT)

Empirical techniques are those that do not rely on accurate models of the plants to be controlled.
For these techniques, it is possible to develop working controllers with minimum knowledge
about the plant—by treating the plant as a “black-box.”  For example, PID control is typically
implemented by manually adjusting the three gains—(1) proportional, (2) integral, and (3)
derivative—until the desired response is achieved.  Bang-Bang control is typically applied to
processes that have very long time-constants relative to the sample rate of the controller.  Under
these conditions, Bang-Bang control produces inherently stable designs (e.g., heating and cooling
systems).

Modern applications of empirical design attempt to bring the sophistication of high-speed
computers into the design process.  Fuzzy Logic extends the Bang-Bang control technique to
allow more than two states (“off” and “on”) by means of various levels of the “on” state.
Essentially, Fuzzy Logic is a digital approximation for analog control.  Neural Networks and
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adaptive techniques are significantly more complicated approaches, which, under the right
conditions, can accurately emulate the dynamic behavior of a plant.  These sophisticated plant
models can then be used to linearize and/or cancel out undesirable behaviors in the plant.

A major limitation of empirical design is that it does not produce analytical data for quantifying
design margins.  That is, acceptable performance of the system over a wide range of plant
uncertainty, time variance, and/or nonlinearity cannot be rigorously proven.  Stability can only be
demonstrated by testing the system over the expected range of plant uncertainty.  Engineers often
spend more time tuning feedback parameters than understanding the process they want to control.
The power of ordinary feedback—even when designed empirically—is so tremendous that
impressive benefits are achieved in the laboratory by such designs once they have been carefully
tuned.  However, empirically designed feedback systems have often caused more uncertainty in
the processes they are trying to control when they are implemented on the factory floor.  As a
result, feedback control has developed a bad reputation throughout the industrial community.

Dr. W. Edwards Deming, the internationally renowned consultant whose work directly led
Japanese industry to revolutionize its quality and productivity, said the following about feedback
control:  “Gadgets and servomechanisms that by mechanical or electronic circuits guarantee zero
defects will destroy the advantage of a beautiful narrow distribution of dimensions.  They slide
the distribution back and forth inside the specification limits, achieving zero defects and at the
same time driving losses and costs to the maximum.”1

In contrast to empirical design are the analytical or theoretical approaches to feedback design,
which use mathematically rigorous theorems to guarantee the performance of the feedback
system to quantifiable performance objectives.  Classical-analytical design theories include Bode,
Root-locus, Linear Quadratic Regulator (LQR), and Linear Quadratic Gaussian (LQG).  These
and other classical theories have one caveat: they assume that the plant to be controlled is linear
and time invariant.  While these techniques are often successfully applied to nonlinear and time-
variant systems, the classical theories do not rigorously apply to these rogue systems.  That is,
these classical theories (as originally formulated) cannot guarantee acceptable performance of the
feedback system over a large range of plant uncertainty.  This is unfortunate because most
industrial processes are highly nonlinear, time-variant systems.

Finally, there are the modern extensions of feedback control theory, such as H2 and H8 .  These
techniques attempt to address the issue of plant uncertainty.  As pointed out by Dr. Isaac
Horowitz, the purpose of feedback control is to handle uncertainty.2  About 1963, Dr. Horowitz

                                                                
1 W. Edwards Deming, Out of the Crisis. Massachusetts Institute of Technology Center for Advanced

Engineering Study, Cambridge, MA, 1982 pp. vii, 141-142.  (In recognition of Dr. Deming’s “contribution to
the economy of Japan,” the Union of Japanese Science and Engineering now gives annual prizes in his
name for contributions to product quality and dependability.  In 1960, the emperor of Japan awarded him
the Second  Order Medal of the Sacred Treasure.  Dr. Deming has also received numerous other awards,
including the Shewhart Medal from the American Society for Quality Control  in 1956 and the Samuel S.
Wilks Award from the American Statistical Association in 1983.

2 Isaac Horowitz, Synthesis of Feedback Systems. Academic Press, New York, 1963.
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called attention to the fact that if a system is perfectly linear and time-invariant with no
uncertainty, then there is no need for feedback, and the desired performance can more easily be
achieved through feed-forward techniques.  While H2 and H8  theory address plant uncertainty,
they also constrain the plant to linear, time-invariant systems.  This is a serious disadvantage for
industrial feedback applications because most real-world systems are nonlinear.  To address
nonlinear plants, the feedback engineer either turns to the complicated Lyapunov technique or
attempts to linearize the plant about some nominal operating point.  While linearization allows
the designer to obtain acceptable performance near the linearization point, there is no rigorous
proof of acceptable performance outside of the region of linearization.

As a result, most industrial engineers find modern control theories too theoretical for their back-
grounds3 and typically resort to empirical methods of feedback design.  This regrettable situation
has led to some strong statements such as, “In developing [process] control, system theory is not
of much help.”4

One explanation for this impression prevalent among industrial engineers has to do with the
complicated dynamics of most industrial processes that are seldom linear and time-invariant with
no uncertainty.  Modern analytical control methods require some form of plant model with a very
generalized uncertainty structure.  Though it is possible to derive such models from experimental
data, the time it takes to derive such meaningful descriptions is usually prohibitive.  In addition,
modern control design methods typically result in overly conservative controllers, which require
the engineer to reevaluate the plant model.  This design-by-iteration process, a fact of life in real-
world applications, must be as short as possible.

Contrasting the prevalent modern control methods in terms of its applicability to industrial pro-
cesses is Quantitative Feedback Theory (or QFT).  QFT is a rigorous engineering design method
for robust performance specifications that is applicable to large classes of nonlinear and/or time-
varying systems, as well as to linear systems.  QFT is a valuable tool for the following reasons:
(1) it does not require identification of plant dynamics with uncertainty modelscan use
input/output data directly without fitting the data to mathematical models; (2) it employs classical
frequency domain concepts with which most engineers are familiar, but it is emphasized that QFT
is nevertheless mathematically precise (no approximations), for large classes of highly uncertain
nonlinear time-varying plants; and (3) the design process is highly transparent so that the “cost of
feedback” in terms of compensator complexity, gain and bandwidth, number of sensors needed,
sensor accuracy, sensor noise effects, and design effort are clearly seen by the engineer,
empowering him or her to make the necessary performance tradeoffs throughout the design cycle.

                                                                
3 Manfred Morari, Control Theory and Process Control Practice, Plenary Session 2, American Control

Conference, Boston, June 28, 1991.
4 B. W. Schumacher, J. C. Cooper, and W. Dilay, Resistance Spot Welding Control That Automatically

Selects the Welding Schedule for Different Types of Steel. Society of Automotive Engineers Technical
Paper Series, 850407 (1985).
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If an accurate model (including uncertainty) does exist of the nonlinear plant, one can design the
closed loop system to meet predefined performance specifications.5,6  Another great advantage of
QFT is that it allows the engineer to apply feedback theory to a wide variety of complex, ill-
behaved systems*, without requiring extensive new design skills.  The same techniques learned in
classical control theory can be reapplied to complicated and challenging systems—thus liberating
the engineer to concentrate on conflicting design requirements and control strategies, rather than
learning new mathematics.  For example, QFT has been successfully applied to various welding
processes at Sandia National Laboratories.  In each case, the “robustness” of the welding process
was tremendously improvedfar above results of any work previously published. 7,8  Essentially,
QFT has all the advantages of the less-complicated classical design techniques such as Bode but
has none of the limitations of classical or other modern control techniques.

QFT Application

QFT has recently been applied to voltage, frequency, and phase-control of power systems at
Sandia.  These systems have been designed and tested on a simulated power grid to achieve

• RMS voltage control to ±6% of nominal with +1000% / -50% load disturbances (Figures 1
and 2).

• Frequency control to ±0.35% of nominal with +1000% / -50% load disturbances (Figures 1
and 2).

A synchronization control algorithm was also designed and tested for synchronizing and connect-
ing multiple power plants onto a grid.  (See Figures 3, 4 and 5.)  To connect a power plant to the
grid, both the voltage and phase of the plant must match what is on the grid at the point of
connection.  Once these are matched, the power plant is connected.  When the plant is first
connected, it is not generating power; it is simply running at synchronous speed.

                                                                
5 Isaac Horowitz and M. Sidi, "Synthesis of Feedback Systems with Large Plant Ignorance of Prescribed

Time Domain Tolerances," International Journal of Control , vol. 16, pp. 187-309, (1972).
6 Isaac Horowitz, Quantitative Feedback Design Theory, vol. 1. QFT Publications, Boulder, CO, 1993,

Chapter 11.
* Such as unstable and/or nonminimum phase plants (time delays), multiple-loop plants with a variety of

available internal sensing points how to divide up the feedback burden between them, multiple-input
multiple-output plants (e.g., in a 3-by-3 plant, the nine closed-loop system response functions to
commands and disturbances can be individually controlled despite large uncertainties).

7  A. E. Bentley, "Quantitative Feedback Theory with Applications in Welding." International Journal of
Robust and Nonlinear Control, vol. 4, issue 1, January 1994.

8  A. E. Bentley, Control of Resistance Plug Welding Using Quantitative Feedback Theory. SAND94-0795A.
Sandia National Laboratories, Albuquerque, NM.
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Figure 1. Three-Phase Power System Simulation Diagram with Load Disturbances.  (The
nominal load consists of 4.2 p.u. Ω  resistance with a series inductance of 6 p.u.
mH.  At t=5 seconds, the resistance is instantly switched to 42 p.u. Ω , the
inductance is switched to 12 p.u. mH, and a series capacitor of 10 p.u. F is also
added.   At t=10 seconds, a parallel load is instantly added with resistance of
2 p.u. Ω   and series inductance of 3 p.u. mH.  Results of this simulation are
shown in Figure 2.)

Figure 2.  Simulation Results from Figure 1.  (Nominal terminal voltage is 1 volt per unit.)
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Figure 3. Power System Simulation for Connecting a Slave Power Plant to a Power Grid.
(The phase shift across the three-phase switch is forced to zero by adjusting
the phase of the slave power plant.  The power plant voltage is also adjusted to
match the line voltage at the switch.  When both the phase and the voltage are
matched, the three-phase switch is closed—connecting the slave power plant
to the grid.)

pha

pha

Ramp

Vset

V1

V1

Gate

Phase Error

Fset

Vset

A

B

C

pha

Slave
Power Plant

+ 

-

Error

Switch

Phase
Difference

A

B

C

A 

B 

C 

PI Line Section 

A

B

C

A 

B 

C  

PI Line Section

Emax

Freq

A 

B 

C 

Master
Power Plant

60

Freq. Set

gate

A  

B  

C  

A

B

C

3-Phase 
Switch

A B C

R
M

S

3-Phase
RMS

C B A

3- Phase RLC
Series Load1

C B A

3- Phase RLC
Series Load

A

B

C

A 

B 

C  

 PI Line Section



11

Figure 4. Simulation Results of Phase Control from Figure 3.  (At t=1.25 seconds the
slave power plant is connected to the grid.)

Figure 5.  Voltage Control from Figure 3.  (At t=1.25 s, the slave power plant is connected
to the grid.)
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Power control (phase control) for a plant connected to a power system grid was also designed and
successfully tested.  Once the power plant has been connected to the grid, the voltage control set
point is increased to 1 volt per unit to keep the grid voltage within specification.  The phase of the
power plant is also increased after it is connected so that the power plant begins to push power
onto the grid—rather than just running at synchronous speed without adding power (Figure 6).

The design of these controllers using QFT is briefly discussed below.  The terminal voltage of the
power supply is given in Laplace format as

.2.18.0  and  175.0      where)( ≤≤≤≤
+

= ak
as

k
sV

The output of V(s) is also limited between 0.7 and 2.0.  The root-mean-square of the voltage is
measured and feedback to the voltage controller.  This feedback sensor is characterized in the
Laplace domain as

second.
60
1

 ere        wh)(1 ==
−

τ
τ

τ

s
e

sH
s

The compensator for the voltage control system was designed using QFT as shown below:

5.0 and  600  ,14  ,450    :   where
)2(
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2

1 ====
++

+
= ζω

ωζω
ω

ak
ssa

ask
sG .

Figure 6. Simulation Results from Figure 3.  Once the slave power plant has been con-
nected to the grid (at t=1.25 seconds), the phase control set point is advanced
somewhat so that the power plant begins to push power onto the grid.
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Because of load uncertainty in the power grid, the gain k is uncertain, as well as the time
constant a.  Thus, a family of plant equations that spans the range of uncertainty in the system is
used to represent the voltage control system rather than using a single equation.  The open-loop
system L(s) = G1(s)·V(s) ·H1(s) is shown in Figure 7 in the format of a Bode plot of compensated
plant equations L(s).  Note that the system has a phase margin of at least 65° and a gain margin of
at least 10 dB for all plants in the set.

Figure 7.  Bode Plots of Open-Loop Voltage Control Plant V(s) with Compensator G1(s) and
Feedback Sensor H(s).  L(s) = G1(s)·V(s) ·H1(s).

The transfer function for the closed-loop or regulated voltage control system is given by

)()()(1
)()(

)(
11

1

sHsVsG
sVsG

sT
+

= .

The closed-loop voltage controller T(s) is plotted in Figure 8.  Note the effect of feedback on the
system uncertainty: for frequencies below the system bandwidth, the uncertainty has essentially
been eliminated.  At higher frequencies, where system uncertainty is less important, the
uncertainty is the same as for the open-loop system.
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Figure 8.  Bode Plots of Closed-Loop Voltage Regulator T(s).

Frequency Control
The frequency control for the system was also designed using QFT.  The system consists of a
mechanical power source F(s), which converts power in (such as fuel) to output torque.   The
torque is then applied to the plant P1(s) that converts torque into frequency.  H2(s) takes the
frequency output of P(s) and converts it to electrical power.  Because of the power source F(s),
the system has a much slower time constant than that of the voltage control system:

s
sP

5.6
60

)(1
π

= ;     24.b16 and  2.4a1.6    where
)1)((

100
)( ≤≤≤≤

++
=

bsas
a

sF

The transfer function H2(s) that converts frequency into “power converted” or power supplied to
the grid is actually a nonlinear, time-variant, multiple-input system.  The inputs to H2(s) include
terminal voltage, current, and frequency.  The output of H2(s) is defined as the instantaneous sum
of the product of voltage and current for each of the three phases in power supply and is
dependent on the load on the grid.  That is,

),(),(  ),(),(),(),(),( 3322112 ftIftvftIftvftIftvfth φφφφφφ ×+×+×= .

In the above equation, f is the frequency of the power system.  Since current depends on the load
and load conditions can also cause disturbances to the frequency, the dynamics of h2(t) depends
on the conditions on the grid—making H2(s) a nonlinear, time-varying system, with large
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uncertainties.  However, these ill-behaved characteristics of our system can easily be accounted
for using QFT.   As with uncertainty, nonlinearity and time variance can be rigorously quantified
using a set of linear, time-invariant equations or plants that fully characterizes the system H2(s)
over its entire range of nonlinearity, time variance, and uncertainty.  The set of equations is
shown in the compensated frequency control Bode plots of Figure 9.  Figure 9 shows the family
of equations that represents the open-loop transfer function of the frequency control system.
(Two different compensators G2(s) and G3(s) were explored for frequency control.  The G3(s)
compensator was used in Figure 9.)  Note that, all the plants in the system have at least 65° of
phase margin and a conditionally stable gain margin of at least +20/-15 dB.  Figure 10 shows the
closed-loop feedback system.  Also note the large decrease in uncertainty at low frequency
because of feedback control (more than 30 dB in the open-loop system at f=0.001 Hz is cancelled
out in the closed-loop system).

)4040)(40(
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)(
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2

2 +++
+++

=
ssss

sss
sG          

)200200)(200(
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+++
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Figure 9.  Bode Plots of Open-Loop Frequency Controller.
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Figure 10.  Bode Plot of Closed-Loop Frequency Control.

The phase controller uses almost the same compensator used for frequency control.  The only
difference is as follows.  Phase is defined as the integral of frequency.  In terms of Laplace, the
phase-control plant P2(s) is equal to the frequency control plant P1(s) multiplied by 1/s; that is,
P2(s) = P1(s)/s.  Because of this extra integrator in the system plant, the integrator in the frequency
control compensator G3(s) is not used for phase control.

The phase controller is used in the slave power plant to match the frequency and phase of the
power grid.  At the same time, the voltage controller servos the slave plant to match the voltage of
the grid.  Once both the voltage and phase are matched, the three-phase switch connects the slave
power plant to the power grid.  At this point, the dynamics of the plant change considerably.
When the plant is first connected, it is not actually generating any power; it is simply spinning at
the right frequency to match the grid.  After being connected, the phase of the slave plant is
advanced to cause the plant to “push” power onto the grid.  Because of the “inertia” of the grid,
its loads, and other generators, the phase control plant becomes a highly underdamped system
with a resonance at about 1.5 Hz.  When considering the nonlinearities and uncertainties of the
system, this becomes a very challenging system to control using conventional feedback control
design techniques.  However, using QFT greatly simplified the design for the phase controller.

The open-loop Bode plots for the phase controller are shown in Figure 11.  Because of the
underdamped resonance at 1.5 Hz together with other plant uncertainty, it is difficult to read the
gain and phase margin from the Bode plots in Figure 12.  A preferable tool is thus employed in
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QFT design, namely, the Nichols plot.  The Nichols plot contains the same information as does a
Bode plot but uses a more useful format (see Figures 12 and 13).  Rather than plotting magnitude
and phase vs frequency, the Nichols plot shows phase vs magnitude as the frequency is varied
from zero to infinity.  When using the Nichols plot to design feedback systems, the Nyquist
criterion is satisfied by ensuring that the system crosses the 0 dB gain threshold “to the right” of
the -180° phase threshold.  Quantitative design margins can be assured by staying away from the
closed-loop magnitude contours that concentrically surround the 0 dB, -180° instability point.
Note that the uncompensated phase control system shown in Figure 12 violates the Nyquist
criterion.

Figure 11.  Bode Plot of Open-Loop Phase Controller.
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Figure 12.  Nichols Plots of Uncompensated Phase Control System.

Figure 13.  Nichols Plot of Compensated Phase Controller.
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Because of the added nonlinearity and uncertainty of the phase control system, the original
frequency control compensator G2(s) design proved to be insufficient (with too little gain) for
adequate phase control.  The phase control compensator G4(s) improved on the frequency
controller and led to the new frequency control compensator G3(s).  Since the new frequency
controller has much higher gain, it has significantly better performance than the original
compensator.  Thus, for phase control, we have G4(s) = sG3(s).  The compensated phase control
system is shown in Figure 13. Note that all the plants in the system have at least 65° of phase
margin and a conditionally stable gain margin of at least +24/-5 dB.  Also note in Figure 13 that
the circular contours that surround the 0 dB, -180° instability point are repeated every 360° on the
Nichols chart.  Thus, the compensator design needs must not only guarantee that the system
avoids the Nyquist instability point, but must also avoid the Nyquist point +360°.  The Bode plots
of the closed-loop phase control system are shown in Figure 14.

Figure 14. Bode Plot of Closed-Loop Phase Controller.
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Conclusions

Quantitative feedback theory provides a simple yet powerful philosophy for designing control
systemsallowing the designer to optimize the system by making design tradeoffs without
getting lost in complex mathematics.  The feedback systems were effective in reducing sensitivity
to large and sudden changes in the power grid system. Voltage, frequency, and phase were
accurately controlled, even with large disturbances to the power grid system.

Future research will apply QFT to distributive control of complex distributed generation scenarios
on the power grid to minimize the effects of power transmission faults.  The system will adjust
power grid parameters to ensure that none of the load limits on the existing power lines are
exceeded when a power line is faulted (opened).  A second important direction based on this
work is to directly address the issue of minimizing or eliminating reliability margins.  The
ultimate objective is to reach system wide coordinated real-time control.
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