ATTACHED IS A TEST PLAN FOR COMMERCIAL GRADE ITEM DEDICATION FOR LEAK DETECTOR RELAYS WHICH ARE INSTALLED ON THE PUMPING AND INSTRUMENTATION CONTROL (PIC) SKIDS.

DATA TRANSMITTED

<table>
<thead>
<tr>
<th>Item No</th>
<th>Document/Drawing No</th>
<th>Sheet No</th>
<th>Rev No</th>
<th>Title or Description of Data Transmitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HNF-4275</td>
<td>N/A</td>
<td>0</td>
<td>COMMERCIAL GRADE ITEM DEDICATION FOR DETECTION RELAYS</td>
</tr>
</tbody>
</table>

KEY

- **Approval Designator (F)**
 - 1. Approval
 - 2. Release
 - 3. Information
 - 4. Review
 - 5. Post-Review
 - 6. Dist. (Receipt Acknow. Required)

- **Reason for Transmittal (G)**
 - 1. Approved
 - 2. Approved w/comment
 - 3. Disapproved w/comment
 - 4. Reviewed w/no/comment
 - 5. Reviewed w/comment
 - 6. Receipt acknowledged

- **Disposition (H) & (I)**
 - 1. Approved
 - 2. Reviewed w/comment
 - 3. Disapproved w/comment
 - 4. Reviewed w/no/comment
 - 5. Reviewed w/comment
 - 6. Receipt acknowledged

SIGNATURE/DISTRIBUTION

<table>
<thead>
<tr>
<th>Reason</th>
<th>Disp.</th>
<th>Name</th>
<th>Signature</th>
<th>Date</th>
<th>MSIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Design Authority W. F. ZUROFF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Design Agent B. R. JOHNS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Cog. Eng. J. E. LAMPERHE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Cog. Mgr. M. R. KOCH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>QA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Safety O. M. JAKA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Env</td>
<td></td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MAY 05 1999

ENGINEERING DATA TRANSMITTAL

18. B. R. JOHNS

3/31/99

Signature of EDT Originator

BD-7400-172-2 (10/97)

21. DOE APPROVAL

- **Control No:** N/A
 - Approved
 - Approved w/comments
 - Disapproved w/comments
COMMERCIAL GRADE ITEM DEDICATION FOR LEAK DETECTION RELAYS

B. R. JOHNS
LOCKHEED MARTIN HANFORD CORPORATION
Richland, WA 99352
U.S. Department of Energy Contract DE-AC06-96RL13200

Abstract: This Test Plan provides a test method to dedicate the leak detection relays used on the new Pumping and Instrumentation Control (PIC) skids. The new skids are fabricated on-site. The leak detection system is a safety class system per the Authorization Basis.
TABLE OF CONTENTS

1. INTRODUCTION ... 2
2. OBJECTIVE .. 2
3. SCOPE .. 2
4. DESCRIPTION OF TEST .. 2
 4.1. TEST ITEM ... 2
 4.2. TEST ENVIRONMENT ... 2
 4.3. EQUIPMENT AND FACILITIES ... 3
 4.4. DATA ... 3
 4.5. CRITERIA AND CONSTRAINTS .. 3
5. EXPECTED RESULTS .. 3
6. TEST PROCEDURE ... 3
 6.1. BENCH TEST .. 3
 6.2. FUNCTIONAL TEST ... 5
9. SAFETY .. 7
8. QUALITY ASSURANCE ... 8
9. ORGANIZATION AND FUNCTION RESPONSIBILITIES ... 8
10. SCHEDULE .. 8
11. REPORTS .. 8
12. REFERENCES ... 8
13. DATA SHEETS .. 8
APPENDIX ... 9
1. INTRODUCTION

This commercial grade item upgrade dedication test is for the leak detection relays installed on the Pumping and Instrumentation Control (PIC) skids. The PIC skids are used by Interim Stabilization for pumping liquids out of the underground waste tanks. There are two sets of leak detection relay assemblies on each PIC skid. The primary leak detection relay assembly is to monitor the pump pit of the tank being pumped. The second leak detection relay assembly monitors other areas along the transfer line during pumping such as Clean Out Boxes (COB). The leak detection relay assembly is considered Safety Class per the Authorization Basis, chapter 5, table 5.3.2.18-3.

2. OBJECTIVE

The testing outlined in this test procedure will dedicate the two relays used in each leak detector assembly on the PIC skids. These relays are intrinsically safe type relays.

3. SCOPE

This test covers the 5300-S-V-OC and the 2313A relays used in leak detection assemblies. Upon successful completion and passing of the testing outlined in this procedure, the relays are considered dedicated and can be green tagged and installed in the leak detection units.

4. DESCRIPTION OF TEST

4.1. TEST ITEM

The items to be tested are the relays in the leak detection assembly. These leak detection assemblies contain B/W Controls relay part number 5300-S-V-OC and MTL relay part number 2313A.

4.2. TEST ENVIRONMENT

The bench test will be performed in the shop and the functional test will be performed during the Acceptance Test Procedure (ATP) or Operational Test Procedure (OTP) of the leak detection assembly.
4.3. EQUIPMENT AND FACILITIES

Test equipment required is listed below. Calibration is required for the digital voltmeter.

- Digital voltmeter for voltage checks
- Test box to check the B/W Controls relay (Coordinate use with Interim Stabilization maintenance.)
- Bucket of water to test leak detector probe.
- Leak detector probe (Coordinate with Interim Stabilization for probe to use for testing).
- DC power supply for 3.5vdc to 4.0vdc for testing relay.
- A nominal 120vac power source to connect to the leak detection assembly.

4.4. DATA

The test procedure section and data tables identify the parameters to be checked and the acceptable values. The data is primarily voltages and relay contact opening and closing.

4.5. CRITERIA AND CONSTRAINTS

The criteria for acceptance of the relays is based upon proper functioning of the relays during the testing. The relays must function 100% correct to be acceptable. There are no other controlling documents the relays must comply with to be acceptable.

5. EXPECTED RESULTS

The relays must function 100% correct which includes all contacts operations and voltage measurements to meet the acceptance criteria as listed on the data sheets.

6. TEST PROCEDURE

6.1. BENCH TEST

6.1.1. Bench test the Intrinsically Safe 5300-S-V-OC (5300) relay as per the following steps:

6.1.2. Use a calibrated digital voltmeter. Record calibration data on data sheet.
6.1.3. Identify the relays to be tested with a label. Label one as “SALW-LDE-6001*” and the other as “SALW-LDE-6002*”. Document the number in the component ID column of the attached tables, one on each table. Replace the * with the skid identification letter.

6.1.4. Quality Control to verify the correct part number of 5300-S-V-OC of the relay that is being tested. Record on the attached table.

6.1.5. Connect the 5300 relay to the test box as shown in the attached sketch 1. Ensure there is no power to the test box when the wires are being connected.

6.1.6. Energize the test box and energize the 5300 relay by closing switch 1 on the test box.

6.1.7. Verify the output voltage at terminals 14 and 15 on the 5300 is between 9 and 11 vdc. Record voltage on attached table.

6.1.8. Verify the current load on the test box is between 6 to 10 amperes. Record on the attached table.

6.1.9. Verify the “relay OFF” light is ON.

6.1.10. Verify the “relay ON” light is OFF.

6.1.11. Verify the voltage between terminals 5 and 8 on the 5300 relay is 0vac +/- 1vac.

6.1.12. Verify the voltage between terminals 6 and 7 on the 5300 relay is 120vac +/- 5vac/-10vac.

6.1.14. Verify the “relay OFF” light is OFF.

6.1.15. Verify the “relay ON” light is ON.

6.1.16. Verify the voltage between terminals 5 and 8 on the 5300 relay is 120 vac +/- 5vac/-10vac.

6.1.17. Verify the voltage between terminals 6 and 7 on the 5300 relay is 0vac +/- 1vac.

6.1.18. Open switch SW2.

6.1.19. Verify the “relay OFF” light is ON.

6.1.20. Verify the “relay ON” light is OFF.
6.1.21. Verify the voltage between terminals 5 and 8 on the 5300 relay is 0vac +/- 1vac.

6.1.22. Verify the voltage between terminals 6 and 7 on the 5300 relay is 120vac +5vac/-10vac.

6.1.23. Repeat steps 6.1.13 through 6.1.22 a total of 5 times. Pause before performing each switch SW2 operation. Record results on the attached table.

6.1.24. The 5300 relay passes the contact test if the results of all 5 tests are satisfactory. Any failure during any of the 5 tests is considered a failure of the relay.

6.1.25. Quality Control is to sign the attached table and green tag the 5300 relay as acceptable for installation.

6.1.26. Repeat steps 6.1.4 through 6.1.25 for each relay.

6.2. FUNCTIONAL TEST

6.2.1. Perform the functional test after the leak detector relays (5300-S-V-OC and 2313A) are installed and the skid is assembled to the point where 120vac control power can be applied to the leak detector assembly. Test each of the two leak detector sets separately.

6.2.2. Record the calibration of the digital multimeter on data sheet.

6.2.3. Quality Control to verify part number of MTL relay as "2313A" and record on data table.

6.2.4. Apply 120vac power to the leak detector assembly either from the skid distribution panel or form a 120vac power source to the line side of the leak detector fuse block.

6.2.5. Disconnect the wires from terminals 1 and 4 of the MTL 2313A relay.

6.2.6. Apply 3.5 to 4.0 vdc power to the MTL 2313A terminals where positive dc goes to terminal 1 and negative dc goes to terminal 4.

6.2.7. Adjust the MTL 2313A relay to activate (where the red light on the relay is OFF) at 3.5 to 4.0 vdc. Record on the data table.

6.2.8. Disconnect the dc power supply from the MTL 2313A relay.

6.2.9. Reconnect the wires disconnected in step 6.2.5 to the MTL 2313A relay.
6.2.10. Place the selector switch on the front of the panel from the leak detector relays to be tested in the “PROBE TEST” position.

6.2.11. Adjust the 5300 sensitivity unit the MTL relay activates (that is the red light OFF). Then add 0.25 to the 5300 sensitivity setting to ensure a margin for activation. Record on data sheet.

6.2.12. Release the selector switch on the front of the panel.

6.2.13. Verify the voltage across terminals 14 and 15 of the 5300 relay and terminals 1 and 4 of the MTL 2313A relay is 9 to 11 vdc.

6.2.14. Remove the 120vac power from the leak detector assembly.

6.2.15. Connect a leak detector probe to the leak detector terminal block as shown in the attached sketch 2.

6.2.16. Return 120vac power to the leak detector assembly.

6.2.17. Place the selector switch on the front of the panel to the “OPERATE” position for the leak detector assembly to be tested.

6.2.18. Verify the contacts between terminals 4 and 5 are CLOSED on the 5300 relay.

6.2.19. Verify the contacts between terminals 9 and 10 are OPENED, the contacts between terminals 13 and 14 are CLOSED and the red light is ON at the MTL 2313A relay.

6.2.20. Place the selector switch to the “TEST PROBE” position.

6.2.21. Verify the contacts between terminals 4 and 5 are OPENED on the 5300 relay.

6.2.22. Verify the contacts between terminals 9 and 10 are CLOSED, the contacts between terminals 13 and 14 are OPENED and the red light is OFF at the MTL 2313A relay.

6.2.23. Return the selector switch to the “OPERATE” position.

6.2.24. Verify the contacts between terminals 4 and 5 are CLOSED on the 5300 relay.

6.2.25. Verify the contacts between terminals 9 and 10 are OPENED, the contacts between terminals 13 and 14 are CLOSED and the red light is ON at the MTL 2313A relay.

6.2.26. Place the selector switch to the “FAIL” position.

6.2.27. Verify the contacts between terminals 4 and 5 are OPENED on the 5300 relay.
6.2.28. Verify the contacts between terminals 9 and 10 are CLOSED, the contacts between terminals 13 and 14 are OPENED and the red light is OFF at the MTL 2313A relay.

6.2.29. Return the selector switch to the “OPERATE” position.

6.2.30. Verify the contacts between terminals 4 and 5 are CLOSED on the 5300 relay.

6.2.31. Verify the contacts between terminals 9 and 10 are OPENED, the contacts between terminals 13 and 14 are CLOSED and the red light is ON at the MTL 2313A relay.

6.2.32. Place the leak detector probe into a bucket of water.

6.2.33. Verify the contacts between terminals 4 and 5 are OPENED on the 5300 relay.

6.2.34. Verify the contacts between terminals 9 and 10 are CLOSED, the contacts between terminals 13 and 14 are OPENED and the red light is OFF at the MTL 2313A relay.

6.2.35. Remove the leak detector from the bucket of water.

6.2.36. Verify the contacts between terminals 4 and 5 are CLOSED on the 5300 relay.

6.2.37. Verify the contacts between terminals 9 and 10 are OPENED, the contacts between terminals 13 and 14 are CLOSED and the red light is ON at the MTL 2313A relay.

6.2.38. Remove the power from the leak detector assembly being tested.

6.2.39. Disconnect the leak detector probe from the relay set being tested.

6.2.40. Quality Control to sign the data table upon successful completion of the functional tests.

6.2.41. Quality Control to green tag the MTL 2313A relay upon successful completion of the testing.

6.2.42. Repeat steps 6.2.3 through 6.2.41 for the other leak detector relay set.

9. SAFETY

This test procedure creates no unique safety hazard. Standard electrical practices are to be used for performing voltage checks on low voltage equipment. Voltages encountered in this test are 5 volts dc and 120 volts ac.
8. QUALITY ASSURANCE

Quality Control shall witness the performance of this test procedure. Quality Control shall be responsible to sign the completed data sheets along with engineering and green tag those relays that successfully complete the testing.

9. ORGANIZATION AND FUNCTION RESPONSIBILITIES

Lockheed Martin Hanford Corporation shall provide the engineering support to ensure the proper test procedure is prepared and the Commercial Grade Item (CGI) dedication forms are completed prior to use of the leak detection relays.

Site Fabrication Services shall perform this test procedure for leak detection relays used in the fabrication of new PIC skids.

10. SCHEDULE

The bench test shall be performed prior to the relays being installed in the PIC skids. The functional test shall be performed during the ATP of the PIC skids that are fabricated.

11. REPORTS

The CGI forms and attached data sheets shall be the official test record. A formal test report will not be issued.

12. REFERENCES

HNF-IP-0842, VOLUME IV, SECTION 3.11, REVISION 1, COMMERCIAL GRADE ITEM UPGRADE, March 1998.

13. DATA SHEETS

Typical data sheets are in the appendix. A completed copy of each data sheet shall be part of the completed CGI form.
APPENDIX

TEST DATA SHEETS

1. BENCH TEST DATA SHEET
2. FUNCTIONAL TEST DATA SHEET
5300-S-V-OC RELAY TEST DATA TABLE

<table>
<thead>
<tr>
<th>STEP</th>
<th>RECORDED DATA</th>
<th>EXPECTED DATA</th>
<th>ACCEPT/UNACCEPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1.3</td>
<td>SALW-LDE-6001* OR SALW-LDE-6002*</td>
<td>5300-S-V-OC</td>
<td></td>
</tr>
<tr>
<td>6.1.4</td>
<td>9 TO 11 VDC</td>
<td>5300-S-V-OC</td>
<td></td>
</tr>
<tr>
<td>6.1.7</td>
<td>6 TO 10 AMPERES</td>
<td>5300-S-V-OC</td>
<td></td>
</tr>
<tr>
<td>6.1.8</td>
<td>"RELAY OFF" light ON</td>
<td>5300-S-V-OC</td>
<td></td>
</tr>
<tr>
<td>6.1.9</td>
<td>"RELAY ON" light OFF</td>
<td>5300-S-V-OC</td>
<td></td>
</tr>
<tr>
<td>6.1.10</td>
<td>0vac +/- 1vac</td>
<td>5300-S-V-OC</td>
<td></td>
</tr>
<tr>
<td>6.1.11</td>
<td>120vac + 5vac/-10vac</td>
<td>5300-S-V-OC</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ACTUAL DATA (RECORD 1ST SET OF DATA)</th>
<th>EXPECTED DATA</th>
<th>TEST SERIES [ACCEPT (A)/UNACCEPT (U)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1.14 "RELAY OFF" light OFF</td>
<td>1 2 3 4 5</td>
<td></td>
</tr>
<tr>
<td>6.1.15 "RELAY ON" light ON</td>
<td>1 2 3 4 5</td>
<td></td>
</tr>
<tr>
<td>6.1.16 120Vac +5Vac/-10Vac</td>
<td>1 2 3 4 5</td>
<td></td>
</tr>
<tr>
<td>6.1.17 0VAC +/- 1VAC</td>
<td>1 2 3 4 5</td>
<td></td>
</tr>
<tr>
<td>6.1.19 "RELAY OFF" light ON</td>
<td>1 2 3 4 5</td>
<td></td>
</tr>
<tr>
<td>6.1.20 "RELAY ON" light OFF</td>
<td>1 2 3 4 5</td>
<td></td>
</tr>
<tr>
<td>6.1.21 0VAC +/- 1VAC</td>
<td>1 2 3 4 5</td>
<td></td>
</tr>
<tr>
<td>6.1.22 120Vac +5Vac/-10Vac</td>
<td>1 2 3 4 5</td>
<td></td>
</tr>
</tbody>
</table>

Relay (PASS/FAIL) [ALL TESTS MUST BE ACCEPTABLE]
Quality Control Inspector [Date]
Cognizant Engineer [Date]
RELAY NUMBER: SALW-LDE-__________________________

6.2.2 Voltmeter Standards #
Voltemeter Calibration Due Date:____________________

6.2.3 MTL 2313A part number verified correct. (YES/NO)
Step 6.2.7: MTL 2313A relay adjusted to actuate between 3.5 and 4.0 vdc. (YES/NO)
Step 6.2.11: B/W relay sensitivity adjusted (+0.25) to actuate the MTL 2313A relay. (YES/NO)

<table>
<thead>
<tr>
<th>STEP</th>
<th>SWITCH POSITION</th>
<th>5300-S-V-OC</th>
<th>MTL 2313A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TERMINALS 4 & 5</td>
<td>STEP</td>
<td>ACTUAL</td>
</tr>
<tr>
<td>6.2.17</td>
<td>OPERATE</td>
<td>6.2.18</td>
<td>CLOSED</td>
</tr>
<tr>
<td>6.2.20</td>
<td>TEST PROBE</td>
<td>6.2.21</td>
<td>OPENED</td>
</tr>
<tr>
<td>6.2.23</td>
<td>OPERATE</td>
<td>6.2.24</td>
<td>CLOSED</td>
</tr>
<tr>
<td>6.2.26</td>
<td>FAIL</td>
<td>6.2.27</td>
<td>OPENED</td>
</tr>
<tr>
<td>6.2.29</td>
<td>OPERATE</td>
<td>6.2.30</td>
<td>CLOSED</td>
</tr>
<tr>
<td>6.2.32</td>
<td>OPERATE/IN WATER</td>
<td>6.2.33</td>
<td>OPENED</td>
</tr>
<tr>
<td>6.2.34</td>
<td>OPERATE/OUT OF WATER</td>
<td>6.2.35</td>
<td>CLOSED</td>
</tr>
</tbody>
</table>

Functional test (PASS/FAIL) ________________________ (ALL EXPECTED DATA MUST BE ACHIEVED)

Quality Control Inspector ________________________ Date ________________________

Cognizant Engineer ____________________________ Date __________________________
HNF-4275
REVISION 0

120 VAC

POWER ON

TEST BOX

RELAY OFF

LOAD

RELAY ON

LOAD

RESET

10K OHMS

SW1

SW2

5300-S-V-DC

11 12 13

6 10

5 9

4 8

3 7

14 15 16

SKETCH 1
RELAY CONTACT TEST SETUP

12 OF 13