Numerical simulation of premixed turbulent methane combustion

PDF Version Also Available for Download.

Description

In this paper we study the behavior of a premixed turbulent methane flame in three dimensions using numerical simulation. The simulations are performed using an adaptive time-dependent low Mach number combustion algorithm based on a second-order projection formulation that conserves both species mass and total enthalpy. The species and enthalpy equations are treated using an operator-split approach that incorporates stiff integration techniques for modeling detailed chemical kinetics. The methodology also incorporates a mixture model for differential diffusion. For the simulations presented here, methane chemistry and transport are modeled using the DRM-19 (19-species, 84-reaction) mechanism derived from the GRIMech-1.2 mechanism along ... continued below

Physical Description

vp.

Creation Information

Bell, John B.; Day, Marcus S. & Grcar, Joseph F. December 14, 2001.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

In this paper we study the behavior of a premixed turbulent methane flame in three dimensions using numerical simulation. The simulations are performed using an adaptive time-dependent low Mach number combustion algorithm based on a second-order projection formulation that conserves both species mass and total enthalpy. The species and enthalpy equations are treated using an operator-split approach that incorporates stiff integration techniques for modeling detailed chemical kinetics. The methodology also incorporates a mixture model for differential diffusion. For the simulations presented here, methane chemistry and transport are modeled using the DRM-19 (19-species, 84-reaction) mechanism derived from the GRIMech-1.2 mechanism along with its associated thermodynamics and transport databases. We consider a lean flame with equivalence ratio 0.8 for two different levels of turbulent intensity. For each case we examine the basic structure of the flame including turbulent flame speed and flame surface area. The results indicate that flame wrinkling is the dominant factor leading to the increased turbulent flame speed. Joint probability distributions are computed to establish a correlation between heat release and curvature. We also investigate the effect of turbulent flame interaction on the flame chemistry. We identify specific flame intermediates that are sensitive to turbulence and explore various correlations between these species and local flame curvature. We identify different mechanisms by which turbulence modulates the chemistry of the flame.

Physical Description

vp.

Notes

OSTI as DE00791805

Source

  • 29th International Symposium on Combustion, Sapporo (JP), 07/21/2002--07/26/2002

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--49331
  • Grant Number: AC03-76SF00098
  • Office of Scientific & Technical Information Report Number: 791805
  • Archival Resource Key: ark:/67531/metadc741541

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 14, 2001

Added to The UNT Digital Library

  • Oct. 19, 2015, 7:39 p.m.

Description Last Updated

  • April 4, 2016, 6:23 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 6

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Bell, John B.; Day, Marcus S. & Grcar, Joseph F. Numerical simulation of premixed turbulent methane combustion, article, December 14, 2001; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc741541/: accessed October 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.