Physics of the nucleon sea quark distributions

PDF Version Also Available for Download.

Description

Sea quark distributions in the nucleon have naively been expected to be generated perturbatively by gluon splitting. In this case, there is no reason for the light quark and anti-quark sea distributions to be different. No asymmetries in the strange or heavy quark sea distributions are predicted in the improved parton model. However,recent experiments have called these naive expectations into question. A violation of the Gottfried sum rule has been measured in several experiments, suggesting that (bar u) < (bar d) in the proton. Additionally, other measurements, while not definitive, show that there may be an asymmetry in the strange ... continued below

Physical Description

vp.

Creation Information

Vogt, R. March 10, 2000.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Sea quark distributions in the nucleon have naively been expected to be generated perturbatively by gluon splitting. In this case, there is no reason for the light quark and anti-quark sea distributions to be different. No asymmetries in the strange or heavy quark sea distributions are predicted in the improved parton model. However,recent experiments have called these naive expectations into question. A violation of the Gottfried sum rule has been measured in several experiments, suggesting that (bar u) < (bar d) in the proton. Additionally, other measurements, while not definitive, show that there may be an asymmetry in the strange and anti-strange quark sea distributions. These effects may require nonperturbative explanations. In this review we first discuss the perturbative aspects of the sea quark distributions. We then describe the experiments that could point to nonperturbative contributions to the nucleon sea. Current phenomenological models that could explain some of these effects are reviewed.

Physical Description

vp.

Source

  • Journal Name: Progress in Particle and Nuclear Physics; Journal Volume: 45; Journal Issue: Suppl. 1; Other Information: Journal Publication Date: 2000

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--45333
  • Grant Number: AC03-76SF00098
  • Office of Scientific & Technical Information Report Number: 799541
  • Archival Resource Key: ark:/67531/metadc741514

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 10, 2000

Added to The UNT Digital Library

  • Oct. 19, 2015, 7:39 p.m.

Description Last Updated

  • Sept. 1, 2016, 7 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Vogt, R. Physics of the nucleon sea quark distributions, article, March 10, 2000; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc741514/: accessed September 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.