Final Report - Ferrographic Tracking of Bacterial Transport

PDF Version Also Available for Download.

Description

The work performed during the past three years has been extremely productive. Ferrographic capture was utilized in analysis of several thousand field samples collected from arrays of multilevel samplers during three intensive field campaigns conducted at two shallow sandy aquifer sites in Oyster, VA. This work has shown resulted in three important conclusions: (1) Ferrographic capture provides unparalleled low quantitation limits for bacterial cell enumeration (Johnson et al., 2000). (2) The high-resolution analyses provided by ferrographic capture allowed observation of increased bacterial removal rates (from groundwater) that corresponded to increased populations of protozoa in the groundwater (Zhang et al., 2001). ... continued below

Physical Description

vp.

Creation Information

Johnson, William P. October 10, 2002.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The work performed during the past three years has been extremely productive. Ferrographic capture was utilized in analysis of several thousand field samples collected from arrays of multilevel samplers during three intensive field campaigns conducted at two shallow sandy aquifer sites in Oyster, VA. This work has shown resulted in three important conclusions: (1) Ferrographic capture provides unparalleled low quantitation limits for bacterial cell enumeration (Johnson et al., 2000). (2) The high-resolution analyses provided by ferrographic capture allowed observation of increased bacterial removal rates (from groundwater) that corresponded to increased populations of protozoa in the groundwater (Zhang et al., 2001). This novel data allowed determination of bacterial predation rates by protists in the field, a consideration that will be important for successful bioaugmentation strategies. (3) The high-resolution analyses provided by ferrographic capture allowed observation of detachment of indigenous cells in response to breakthrough of injected cells in groundwater (Johnson et al., 2001). The implication of this unique observation is that bacterial transport, specifically bacterial attachment and detachment, may be much more dynamic than has been indicated by short-term laboratory and field studies. Dynamic attachment and detachment of bacteria in groundwater may lead to greatly increased transport distances over long terms relative to what has been indicated by short-term laboratory and field studies.

Physical Description

vp.

Notes

OSTI as DE00802877

Subjects

Source

  • Other Information: PBD: 10 Oct 2002

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: NONE
  • Grant Number: FG03-99ER62820
  • DOI: 10.2172/802877 | External Link
  • Office of Scientific & Technical Information Report Number: 802877
  • Archival Resource Key: ark:/67531/metadc741483

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • October 10, 2002

Added to The UNT Digital Library

  • Oct. 19, 2015, 7:39 p.m.

Description Last Updated

  • Jan. 3, 2017, 2:23 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Johnson, William P. Final Report - Ferrographic Tracking of Bacterial Transport, report, October 10, 2002; United States. (digital.library.unt.edu/ark:/67531/metadc741483/: accessed June 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.