Covariant description of inelastic electron-deuteron scattering: predictions of the relativistic impulse approximation

PDF Version Also Available for Download.

Description

Using the covariant spectator theory and the transversity formalism, the unpolarized, coincidence cross section for deuteron electrodisintegration, d(e, e'p)n, is studied. The relativistic kinematics are reviewed, and simple theoretical formulae for the relativistic impulse approximation (RIA) are derived and discussed. Numerical predictions for the scattering in the high Q{sup 2} region obtained from the RIA and five other approximations are presented and compared. We concluded that measurements of the unpolarized coincidence cross section and the asymmetry A{sub phi}, to an accuracy that will distinguish between different theoretical models, is feasible over most of the wide kinematic range accessible at Jefferson ... continued below

Physical Description

2069 Kilobytes pages

Creation Information

J. Adam, Jr.; Gross, Franz; Jeschonnek, Sabine; Ulmer, Paul & Orden, J.W. Van May 1, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Using the covariant spectator theory and the transversity formalism, the unpolarized, coincidence cross section for deuteron electrodisintegration, d(e, e'p)n, is studied. The relativistic kinematics are reviewed, and simple theoretical formulae for the relativistic impulse approximation (RIA) are derived and discussed. Numerical predictions for the scattering in the high Q{sup 2} region obtained from the RIA and five other approximations are presented and compared. We concluded that measurements of the unpolarized coincidence cross section and the asymmetry A{sub phi}, to an accuracy that will distinguish between different theoretical models, is feasible over most of the wide kinematic range accessible at Jefferson Lab.

Physical Description

2069 Kilobytes pages

Source

  • Other Information: No journal information given for this preprint

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: JLAB-THY-02-14
  • Report No.: DOE/ER/40150-2061
  • Grant Number: AC05-84ER40150
  • Office of Scientific & Technical Information Report Number: 793666
  • Archival Resource Key: ark:/67531/metadc741333

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 1, 2002

Added to The UNT Digital Library

  • Oct. 19, 2015, 7:39 p.m.

Description Last Updated

  • Feb. 5, 2016, 8:44 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

J. Adam, Jr.; Gross, Franz; Jeschonnek, Sabine; Ulmer, Paul & Orden, J.W. Van. Covariant description of inelastic electron-deuteron scattering: predictions of the relativistic impulse approximation, article, May 1, 2002; Newport News, Virginia. (digital.library.unt.edu/ark:/67531/metadc741333/: accessed August 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.