DENSE MEDIA CYCLONE OPTIMIZATION

Report Type: Quarterly Technical Progress Report
Reporting Period: July 1, 2001 - September 30, 2001
Principal Author: Gerald H. Luttrell
Submission Date: January 14, 2002 (Revised September 14, 2002)
DOE Number: DE-FC26-01NT41061
NETL Manager: David M. Hyman

Submitting Organization:
Department of Mining & Minerals Engineering
100 Holden Hall
Virginia Polytechnic Institute & State University
Blacksburg, VA 24061

Other Participants:
Massey Coal Services
Partition Enterprises
Precision Testing Laboratories
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
ABSTRACT

All work associated with Task 1 (Baseline Assessment) was successfully completed and preliminary corrections/recommendations were provided back to the management at each test site. Detailed float-sink tests were completed for Site #1 and are currently underway for Sites #2–#4. Unfortunately, the work associated with sample analyses (Task 4 – Sample Analysis) has been delayed because of a backlog of coal samples at the commercial laboratory participating in this project. As a result, a no-cost project time extension may be necessary in order to complete the project. A decision will be made at the end of the next reporting period. Some of the work completed this quarter included (i) development of mass balance routines for data analysis, (ii) formulation of an expert system rule base, (iii) completion of statistical computations and mathematical curve fits for the density tracer test data. In addition, an “O&M Checklist” was prepared to provide plant operators with simple operating and maintenance guidelines that must be followed to obtain good HMC performance.
Dense Medium Cyclone Optimization
(Proposal #60)

- Principal Investigator: Gerald Luttrell (Virginia Tech)
- NETL Project Manager: David M. Hyman
- Partners: Massey Coal Services
 Partition Enterprises (Australia)
 Precision Testing Laboratory
- Total Project Cost: $320K
 – DOE Share: $154K
 – Participant Share: $166K
- Project Period: 12 months
- Project Start Date: 14 Dec. 2000
Background

• **Heavy Media Cyclones (HMCs)**
 – Serves as the “workhorse” in the coal industry for removing waste rock from valuable coal
 • In the U.S., HMCs represent an installed capacity of >85,000 ton/hr
 – Problem - Improper operation can result in large losses of recoverable coal to the waste product
 • losses estimated to be more than $45 million annually
Background

Principle of Operation

Rotating suspension of media forces lighter particles to the center and upward through the vortex finder, while heavier particles spiral outward and down through the apex.
Background

Typical HMC Circuit

Feed
Raw Coal or Deslime Screens

To Fine Coal Circuit

Magnetite Storage Bin

Reject Refuse

Drain & Rinse Screen

HMC

Clean Coal

Drain & Rinse Screen

Bleed

Bleed

Magnetic Separator

Raw Coal or Fine Coal Circuit

Water

Heavy Media Sump

Density Gauge

Level Gauge

Water

Dilute Media Sump
Background

• Given adequate operating pressure and low wear, the two common causes of major yield loss for HMCs are:
 – floats overload
 – surging

• Both conditions lead to:
 – lowering of the SG cutpoint
 – misplacement of relatively low density material to reject (i.e., a reduction in clean product yield)
Background

- Malfunctions or design flaws that give different cutpoints for a multi-unit HMC circuit adversely impacts performance.
- This problem is very severe when low-ash coals are produced.
- Problems may include poor feed distribution, media contamination, overloaded circuits, worn apexes, etc.
Project Objectives

- To develop a set of three basic engineering tools to improve the efficiency of heavy medium cyclone (HMC) circuits:
 - low cost tracers to rapidly assess HMC performance
 - mathematical process models to predict the influence of changes in operating and design variables on HMC performance
 - model-based expert system to provide operators with a user-friendly interface for evaluating, optimizing, and trouble-shooting HMC circuits
Shane Bomar (graduate student) and Chris Wood (Partition Enterprises) preparing for plant sampling and density tracer testing.

Density tracers (32 mm cubes) sorted into groups of 20 each (1.32 to 2.50 SG) just prior to being introduced into the cyclone feed stream.
A bank of parallel coarse coal heavy media cyclones that were sampled in detail and evaluated using the density tracers.

An installation of twin parallel coarse coal heavy media cyclones that were sampled in detail and evaluated using the density tracers.
Project Cost Summary

<table>
<thead>
<tr>
<th>Source</th>
<th>First Year</th>
<th>Second Year</th>
<th>Third Year</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Plan</td>
<td>Actual</td>
<td>Plan</td>
<td>Actual</td>
</tr>
<tr>
<td>Participant</td>
<td>$166K</td>
<td>$96*</td>
<td>0</td>
<td>---</td>
</tr>
<tr>
<td>DOE</td>
<td>$154K</td>
<td>$82</td>
<td>0</td>
<td>---</td>
</tr>
<tr>
<td>Total</td>
<td>$320K</td>
<td>$180</td>
<td>0</td>
<td>---</td>
</tr>
</tbody>
</table>

*Includes Encumbered Costs (Sample Analysis)

KEY:
- Plan = Planned costs for the full year.
- Actual = Actual costs through the reporting period.
Milestones and Status

<table>
<thead>
<tr>
<th>Major Milestone</th>
<th>Description of Planned Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - Baseline Assessment</td>
<td>Initial inspection and testing to establish existing performance of DMC circuits at four selected plant sites.</td>
</tr>
<tr>
<td>2 - Circuit Modification</td>
<td>Modification of plant circuits and/or operating practices based on information from the Baseline Assessment.</td>
</tr>
<tr>
<td>3 - Follow-Up Assessment</td>
<td>Secondary inspection and testing to establish technical and economic benefits of recommended modifications.</td>
</tr>
<tr>
<td>4 - Sample Analysis</td>
<td>Detailed float-sink testing of representative samples from the DMC circuits at the four selected plant sites.</td>
</tr>
<tr>
<td>5 - Data Analysis/Simulation</td>
<td>Detailed analysis of density tracer and float-sink test data (including mass balancing and simulation studies).</td>
</tr>
<tr>
<td>6 - Expert System Development</td>
<td>Development of mathematical routines and expert rules that can be used by operators for DMC optimization.</td>
</tr>
<tr>
<td>7 - Concept Assessment</td>
<td>Technical and economic evaluations of the project work (including preparation of technical reports).</td>
</tr>
</tbody>
</table>
Milestones and Status

<table>
<thead>
<tr>
<th>TASK DESCRIPTION</th>
<th>Duration (Month)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Baseline Assessment</td>
<td></td>
</tr>
<tr>
<td>Project Planning</td>
<td></td>
</tr>
<tr>
<td>Evaluate Site 1</td>
<td></td>
</tr>
<tr>
<td>Evaluate Site 2</td>
<td></td>
</tr>
<tr>
<td>Evaluate Site 3</td>
<td></td>
</tr>
<tr>
<td>Evaluate Site 4</td>
<td></td>
</tr>
<tr>
<td>2. Circuit Modification</td>
<td></td>
</tr>
<tr>
<td>Modifications Sites 1-4</td>
<td></td>
</tr>
<tr>
<td>3. Follow-Up Assessment</td>
<td></td>
</tr>
<tr>
<td>Re-evaluate Sites 1-4</td>
<td></td>
</tr>
<tr>
<td>4. Sample Analysis</td>
<td></td>
</tr>
<tr>
<td>Analyze Site #1</td>
<td></td>
</tr>
<tr>
<td>Analyze Site #2</td>
<td></td>
</tr>
<tr>
<td>Analyze Site #3</td>
<td></td>
</tr>
<tr>
<td>Analyze Site #4</td>
<td></td>
</tr>
<tr>
<td>Analyze Sites 1-4</td>
<td></td>
</tr>
<tr>
<td>5. Data Analysis/Simulation</td>
<td></td>
</tr>
<tr>
<td>Experimental Data Analysis</td>
<td></td>
</tr>
<tr>
<td>Mass Balancing</td>
<td></td>
</tr>
<tr>
<td>Model/Simulator Development</td>
<td></td>
</tr>
<tr>
<td>6. Expert System Development</td>
<td></td>
</tr>
<tr>
<td>Formulation of ES Rules</td>
<td></td>
</tr>
<tr>
<td>Development of ES Software</td>
<td></td>
</tr>
<tr>
<td>7. Concept Assessment</td>
<td></td>
</tr>
<tr>
<td>Q1</td>
<td>Q2</td>
</tr>
<tr>
<td>Q3</td>
<td></td>
</tr>
</tbody>
</table>

Teaching/Economic Evaluation & Final Report

July-September 2001 Quarterly Report

Heavy Media Cyclone Optimization - Virginia Tech
Milestones and Status

<table>
<thead>
<tr>
<th>Planned Milestone</th>
<th>Scheduled</th>
<th>Completed</th>
<th>Current Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - Baseline Assessment</td>
<td>July ‘01</td>
<td>July ‘01</td>
<td>Completed All Baseline Tests (5 Plant Sites and 7 Circuits)</td>
</tr>
<tr>
<td>2 - Circuit Modification</td>
<td>Sept. ‘01</td>
<td>---</td>
<td>Provided Draft Recommendation Report (Detailed Report Pending)</td>
</tr>
<tr>
<td>3 - Follow-Up Assessment</td>
<td>Oct. ‘01</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>4 - Sample Analysis</td>
<td>Nov. ‘01</td>
<td>---</td>
<td>Completed Analysis for Site #1 (Site #2 Underway & Sites 3-4 Delayed)</td>
</tr>
<tr>
<td>5 - Data Analysis/Simulation</td>
<td>Nov. ‘01</td>
<td>---</td>
<td>Completed Mass Balancing & Site 1 Data Analysis (Developing Simulation Routines)</td>
</tr>
<tr>
<td>6 - Expert System Development</td>
<td>Nov. ‘01</td>
<td>---</td>
<td>Formulating ES Rule Base (Operators Checklist Now Available)</td>
</tr>
<tr>
<td>7 - Concept Assessment</td>
<td>Dec. ‘01</td>
<td>---</td>
<td></td>
</tr>
</tbody>
</table>
Milestones and Status

• Key Decision Points

<table>
<thead>
<tr>
<th>Decision Points</th>
<th>Scheduled Date</th>
<th>Go / No-Go Decision?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Can the density tracers be successfully recovered in quantities that permit a statistically significant result? (YES)</td>
<td>July ‘01</td>
<td>Yes</td>
</tr>
<tr>
<td>Are modifications to operating practices and/or equipment required in light of the Baseline Assessment? (YES)</td>
<td>July ‘01</td>
<td>Yes</td>
</tr>
<tr>
<td>Can the required modifications be successfully completed within the schedule, scope and budget of the project? (???)</td>
<td>Sept. ‘01</td>
<td>Yes</td>
</tr>
<tr>
<td>Do the mass balances indicate that the experimental data are reliable and suitable for engineering computations? (???)</td>
<td>Sept. ‘01</td>
<td>Yes</td>
</tr>
<tr>
<td>Is the proposed optimization approach involving tracers and system software technically and economically attractive?</td>
<td>Dec. ‘01</td>
<td>No</td>
</tr>
</tbody>
</table>
Key Accomplishments

- Density tracers prepared and examined for quality control purposes.

Photograph of 64, 32, 16 and 8 mm density tracers that available for the evaluation of industrial heavy media circuits.
Key Accomplishments

- Custom sampling tools purchased and/or fabricated for each of the selected plant sites.
- More than 20 different types of sampling devices required.

Examples of sampling tools that were purchased or fabricated for the collection of density tracers and samples of clean coal, refuse and circulating media.
Key Accomplishments

- Five different plants evaluated (although only four originally proposed).

Photograph of one of the five coal preparation plants where the field testing of heavy media cyclones was performed.
Key Accomplishments

- Seven cyclone circuits sampled (up to 14 personnel required at some sites).

Photograph showing the collection of a sample of circulating media from the underside of the clean coal sieve.

Photograph showing the collection of density tracers from the clean coal drain-and-rinse screens below a bank heavy media cyclones.
Key Accomplishments

Flowsheet for one of the heavy media circuits evaluated in this project.
Key Accomplishments

- Detailed cyclone inspections completed at all but one plant during maintenance shifts.

Inside view of a ceramic-lined heavy media cyclone obtained during the preliminary site inspections (as viewed through the apex).

Inspection of the apex of a ceramic-lined heavy media cyclone (as viewed after the removal of the underflow discharge hood).
Key Accomplishments

- Density tracer tests and associated statistical computations completed for all seven circuits.

Note: Low SG tail may indicate misplacement of low-ash coal.
Key Accomplishments

- Mathematical data fits conducted for all seven circuits using the tracer data.

Conclusions
Partition curves generally sharp, but misplacement may occur at lower SG values for some plants.
Key Accomplishments

- Mathematical simulations conducted for all seven circuits using the tracer data.
Key Accomplishments

- Density tracers detected that most circuits suffered from poor control of media cutpoint.
 - Problems attributed to poor k-ray calibration and improper manual density measurements.
 - Important for plants that also have heavy media baths (poor control can significantly impact profitability).

<table>
<thead>
<tr>
<th>Plant</th>
<th>K-Ray SG</th>
<th>Darcy SG</th>
<th>Tracer SG</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>1.40</td>
<td>1.47</td>
<td>1.43</td>
</tr>
<tr>
<td>A2</td>
<td>1.38</td>
<td>1.45</td>
<td>1.39</td>
</tr>
<tr>
<td>B1</td>
<td>1.58</td>
<td>1.65</td>
<td>1.75</td>
</tr>
<tr>
<td>B2</td>
<td>1.33</td>
<td>1.40</td>
<td>1.37</td>
</tr>
<tr>
<td>C</td>
<td>1.55</td>
<td>1.62</td>
<td>1.65</td>
</tr>
<tr>
<td>D</td>
<td>1.59</td>
<td>1.66</td>
<td>1.48</td>
</tr>
<tr>
<td>E</td>
<td>1.60</td>
<td>1.67</td>
<td>1.60</td>
</tr>
</tbody>
</table>
Key Accomplishments

• Other problems identified by tracers…
 – **Plant A**: Performance good, but feed distribution problem observed; media readings incorrect.
 – **Plant B**: Evidence of recoverable coal misplaced to refuse due to overload.
 – **Plant C**: Recoverable coal misplaced to refuse at low SG cutpoints (overload or surging); media reading incorrect.
 – **Plant D**: Cyclones suffering from severe overload; media readings incorrect.
 – **Plant E**: Performance good, but cutpoint lower than expected (probably due to overload).
Key Accomplishments

- Baseline reports assessing HMC performance provided to all plant operators.
- Items evaluated:
 - Media Density
 - SG Cutpoint
 - Circuit Ep
 - Potential Coal Losses
 - Potential Rock Recovery
- Recommendations provided for each site.
Key Accomplishments

- Detailed float-sink tests completed for Site #1 and underway for Sites #2-#4.
 - Problem: Analyses delayed because of sample backlog at the commercial laboratory (no-cost project time extension may be requested).

![Increasing Specific Gravity](image)
Key Accomplishments
Good News!

- The density tracers showed that HMC performance was generally good for all plants.
 - Internal inspections showed that cyclone components were well maintained and well matched.
 - Recent changes in operating practices probably helped to improve HMC performance.
Good News!

- An expert system “checklist” has been prepared for plant operators.
 - Provides simple guidelines that must be followed to obtain good HMC performance.
 - Rules have been provided for HMC operation (e.g., cyclone pressure, media-to-coal ratio, overflow media split, media size and quality, K-ray calibration, cutpoint selection, etc.).
 - Rules for HMC maintenance have also been provided.
Good News!

- **Example - Required Media Split**
 - **Rule**: A minimum of 2/3 of the volume flow of media fed to the cyclone should report to overflow.
 - **Method**: Measure SG of feed, overflow and (through clean coal sieve), and underflow (through refuse sieve) and calculate split using:

 \[
 \frac{\text{SG}_{\text{underflow}} - \text{SG}_{\text{feed}}}{\text{SG}_{\text{underflow}} - \text{SG}_{\text{overflow}}} > \frac{2}{3}
 \]

 - **Sample Calculation**: If feed=1.5, O/F=1.4, U/F=1.7, then OK since \((1.7-1.5)/(1.7-1.4) = 2/3\).
 - **Correction**: If calculated split <2/3, use smaller apex to shift more media to overflow.
Project Recognition

• **International Conferences**
 – “Optimization of Heavy Media Cyclone Circuits,” Submitted for publication and presentation at the 19th International Coal Preparation Conference and Exhibition (Coal Prep 2002), April 30-May 2, 2002, Lexington, KY.

• **Short Courses and Workshops**
Commercialization Outlook

• Commercialization ensured by project participants:
 – Tracers blocks and tracer testing services will be made available to industry by Precision Testing (Beckley, WV) as a cooperative effort with Partition Enterprises (Australia).
 – Technical “know-how” will be distributed throughout the industry via written publications and oral presentations by Virginia Tech personnel.
 – Website is currently being prepared that will provide expert system software and simulation routines to interested parties at no cost.
Project Assessment
(Internal DOE Use Only)

• Open Issues and/or Problems
 – Sample analysis delays may require no-cost time extension.
 – Spending to date within budget limits.

• Overall Assessment
 – Off to a good start and work elements progressing well.
 – Findings of significant technical and economic importance.