Release Authorization

<table>
<thead>
<tr>
<th>Document Number:</th>
<th>DOE/RL-97-12, Revision 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document Title:</td>
<td>Return on Investment (ROI) Proposal Preparation Guide</td>
</tr>
</tbody>
</table>

This document, reviewed in accordance with DOE Order 241.1, "Scientific and Technical Information Management," and 241.1-1, "Guide to the Management of Scientific and Technical Information," does not contain classified or sensitive unclassified information and is:

APPROVED FOR PUBLIC RELEASE

[Signature]
J. D. Aardal
Lockheed Martin Services, Inc.
Document Control/Information Clearance

11-3-99

Reviewed for Applied Technology, Business Sensitive, Classified, Copyrighted, Export Controlled, Patent, Personal/Private, Proprietary, Protected CRADA, Trademark, Unclassified Controlled Nuclear Information.

Trademark Disclaimer: Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. This report has been reproduced from the best available copy.

Printed in the United States of America.

Available to the public from the U.S. Department of Commerce National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161; Telephone: 703/487-4650.
LEGAL DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This report has been reproduced from the best available copy. Available in paper copy and microfiche.

Available to the U.S. Department of Energy
and its contractors from
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831
(615) 576-8401

Available to the public from the U.S. Department of Commerce
National Technical Information Services
5285 Port Royal Road
Springfield, VA 22161
(703) 487-4650

Printed in the United States of America

DISCLM-1.CHP (1-91)
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>TOPIC</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Background</td>
<td>1</td>
</tr>
<tr>
<td>II. Project Eligibility Requirements</td>
<td>2</td>
</tr>
<tr>
<td>III. Preparing the ROI Project Proposal</td>
<td>3</td>
</tr>
<tr>
<td>IV. On-Line Help is Available</td>
<td>7</td>
</tr>
<tr>
<td>V. Submittal and Selection</td>
<td>7</td>
</tr>
<tr>
<td>VI. Implementation</td>
<td>9</td>
</tr>
<tr>
<td>Appendix</td>
<td></td>
</tr>
<tr>
<td>A. Standard Calculations</td>
<td></td>
</tr>
<tr>
<td>Costs Information</td>
<td>11</td>
</tr>
<tr>
<td>B. Flow Charts for Avoidable Waste Costs</td>
<td>17</td>
</tr>
<tr>
<td>C. ROI Form</td>
<td>27</td>
</tr>
<tr>
<td>D. Completed ROI Examples</td>
<td>33</td>
</tr>
<tr>
<td>E. Glossary</td>
<td>55</td>
</tr>
</tbody>
</table>
Section I: Background

Return on Investment (ROI) Proposal Preparation Guide

Over $1.9M is available to fund fiscal year (FY) 2000 waste minimization projects on the Hanford Site. This money was allocated by the U.S. Department of Energy Headquarters (DOE-HQ). The U.S. Department of Energy, Richland Operations (RL) and the U.S. Department of Energy, Office of River Protection (ORP) are currently seeking pollution prevention proposals from across the Hanford Site that provide a high return-on-investment (ROI) by reducing waste and associated management costs.

Purpose of ROI Training

The ROI Proposal Preparation Guide is a tool to assist Hanford waste generators in preparing ROI proposal forms for submittal to RL for funding. The guide describes the requirements for submitting an ROI proposal and provides examples of completed ROI forms. The intent is to assist waste generators in identifying projects that meet the criteria, provide information necessary to complete the ROI forms, and submit a proposal that is eligible to receive funding.

This guide accompanies the one-hour training workshop on how to prepare and submit an ROI proposal.
Section II:
Project Eligibility Requirements

Projects must meet certain minimum eligibility requirements to be considered for ROI funding. To obtain a quick determination of the likelihood of obtaining funding, evaluate your project against the following eligibility requirements and ranking criteria.

The ROI Program Funds Waste Reduction Projects

Proposal Submission is an ongoing process, ROI Proposals may be submitted throughout the year.

Preparing a Proposal
- Use the ROI Form/Format, Appendix C
- Use the Standard Calculation Cost Guide to calculate cost data, Appendix A

Types of Projects Considered for Funding
- Source reduction
- Recycling
- Waste recovery
- Volume reduction
- Reduce mixed waste streams
- Projects with supplemental leverage funds
- Projects costing <$500K
- Projects supported by a Pollution Prevention Opportunity Assessment

Types of Projects Excluded
- Projects costing >$500K
- Disposal with no waste recovery or recycling
- Routine maintenance
- Routine equipment replacement
- Evaluation of competing proposed options
- Research and development activities
- Projects that are already funded in current year baseline.

Selection Process
- RL Waste Minimization Team ranks proposals using weighted criteria; selects projects costing <$500K
- The RL Senior Management Board makes final selection of projects costing >$50K

Need Assistance?
- Contact a P2 POC, http://apsq05.rl.gov/polprev/contacts/contacts.htm

Return on Investment (ROI) Project/Eligibility Ranking Criteria

Ranking Criteria
- Return on Investment
 - 3 pts 77% or greater ROI
 - 2 pts 56-76% ROI
 - 1 pt 33-55% ROI
- Annual Cost Savings
 - 3 pts >$100,000
 - 2 pts $50,001-$100,000
 - 1 pt $10,000-$50,000
- Time to Implement with ROI >33%
 - 3 pts 0 - 6 months
 - 2 pts 7 - 12 months
 - 1 pt 13 - 24 months
- Waste and Pollution Reduction, see Pollution Prevention Activity Focal Areas, Appendix D
 - 4 pts Source reduction
 - 3 pts Recycling
 - 2 pts Segregation
 - 1 pt Volume reduction

Hanford employees can sign up for the one-hour ROI Proposal Preparation Workshop by contacting the Waste Management Project, Waste Minimization Group, via e:Mail or on 373-1125.
Section III:
Preparing the ROI Project Proposal

The ROI Proposal electronic form is available on the P2 Homepage (http://apsql05.rl.gov/polprev/default.asp) or contact a Waste Management Project, Waste Minimization point of contact (see the Pollution Prevention Contacts on P2 Homepage [http://apsql05.rl.gov/polprev/contacts/contacts.htm]) to request a fax or e-mail copy of this form.

An outline of the information required for the ROI Proposal form is provided below.

I. Proposal Cover Page, see Appendix C
The proposal cover page is intended to provide summary information regarding the date, revision number, project title, company, facility, ROI author, phone number, fax number, project point of contact, phone number, fax number, project type information e.g., source reduction, recycle/reuse (see Appendix D, P2 Activity Focal Areas), waste type e.g., LLW, MLLW etc., amount prevented per year, project duration (months), useful project life (years), total project funding requirements and projected ROI %.

1. Project Description:
Provide a description of the proposed activity and project. Provide information relative to how the activity and process will work. Limited background information is useful to provide some understanding of how the activity and process currently works. Provide specific information essential in identifying how and why this ROI proposal will enhance the activity and process.

Example:
Corrosion in Hanford’s double-shell tanks is currently managed by strict adherence to a chemistry specification that is believed to provide adequate corrosion protection for the mild carbon steel tanks. Waste that enters the double-shell tanks meets this specification, however, once in the tanks, chemical reactions can consume the beneficial corrosion inhibitors added to reduce corrosion. The corrosion specifications are conservative in some areas and lacking in others. The DST 241-AN-107 has been operated for the past 10 years with insufficient corrosion inhibitor. The ongoing project to add sodium hydroxide inhibitor will over-correct waste composition with excess inhibitor for conservative continued operation of the tank.

This project will install an on-line corrosion probe in 241-AN-107 to determine the required end point for addition of inhibitor to control corrosion. The probe will be monitored during sodium hydroxide addition to determine when corrosion is at acceptable levels. After inhibitor addition is complete, the probe will be used to continuously monitor corrosion. A prototype probe has already been tested, so the performance of the probe system to achieve this benefit is not in question. This project would pay for acquisition and installation of the system.
2. Description of Benefit(s):

Describe benefits of implementing new activity and process e.g., identify amount of waste reduced by comparing chemical procurement savings, reduction of supplies, labor reduction, etc. Quantify the reduction and savings achieved. Explain the tangible and or intangible benefits such as economic, operational, environmental/safety and or social benefits that could be derived from implementing this ROI proposal. Identify which waste minimization method will be achieved, source reduction, volume reduction, recycling etc.

Example:

Installation of a corrosion probe in 241-AN-107 will allow in-tank monitoring of corrosive conditions. This will save money by reducing the number of samples required to be taken and will minimize waste by ensuring that chemistry is corrected only as much as necessary to control corrosion, not just to maintain a specification.

Current corrosion control involves addition of raw chemicals (sodium hydroxide) to DSTs when they are found to be operating outside the current corrosion specification. Direct monitoring of corrosion via on-line corrosion instrumentation will have the following benefits:

1) Reduces worker exposure by eliminating some sample requirements
2) Reduces number of samples required ($50,000/sample savings)
3) Reduces waste immobilization fees ($750,000/metric ton of sodium savings)
4) Reduces procurement of 30,000 gallons of sodium hydroxide ($1.67/gallon of sodium hydroxide)
5) Reduces DST waste volumes
6) Reduces waste volumes processed through future evaporator campaigns
7) Reduces immobilized waste form long term storage mortgage expense
8) Improves DST reliability and availability ($67M DST replacement)

Describe which process was used to evaluate and assess this new activity and process, such as the performance of a pollution prevention opportunity assessment (P20A), value engineering study, etc. Identify the completion date, waste stream information and other ideas that were considered:

A P20A is a systematic approach in identifying cost effective waste reduction opportunities. A P20A is the preferred assessment method. However, other evaluation methods such as value engineering studies are also acceptable.

Example:

A formal Pollution Prevention Opportunity Assessment has not been prepared for this proposal. Other alternatives considered for reducing the amount of sodium added to DSTs for corrosion control include the use of alternate forms of hydroxide solutions such as lithium hydroxide and potassium hydroxide. These alternatives are not as readily available as sodium hydroxide and sodium nitrate and they come with similar waste oxide loading issues as the sodium. Sodium nitrite is an effective alternative corrosion inhibitor to sodium hydroxide, however this alternative does not significantly reduce the volume of alkali metal added to the final waste form. Sodium hydroxide is the only approved inhibitor for use in the DST system.
Direct monitoring of corrosion phenomena to provide a sound technical basis for not adding raw chemicals for corrosion control of double-shell tanks was found to be the most effective source reduction of this waste stream. There currently is no funding for this project, although the monitoring of a prototype corrosion probe installed in 241-AZ-101 in August, 1996, is continuing.

Reduction of sodium additions to DSTs provide astronomical costs benefits for immobilization fee reduction. The two estimates of $750,000 and $1.2 million per metric ton of sodium processed come directly from the Phase I immobilization proposals prepared by BNFL and LMAES. Since inclusion of these future cost reductions completely overwhelms the ROI calculations, a second ROI calculation is provided to show that this project more than pays for itself in the first year of operation, and all subsequent years, even without regard to immobilization fee reductions.

Key Assumptions:

1) Process Chemistry Sample Requirements

Baseline: Multiple waste samples will be taken from 241-AN-107 during and after sodium hydroxide addition. These samples are taken for safety screening, evaporator campaigns, and process chemistry and compatibility. At least two grab samples will be taken just for corrosion chemistry assessment in the year immediately following sodium hydroxide addition, and one sample will be taken annually thereafter. The ROI calculations were performed on the basis of eliminating two of the grab samples in the first year after sodium hydroxide addition and one sample per year in subsequent years. Grab samples are estimated to cost an average of $50,000 each.

Proposal: Eliminate two waste samples in the first year after sodium hydroxide addition and one sample per year thereafter.

2 eliminated grab samples in first year = $100,000 savings
1 eliminated grab sample in subsequent years = $50,000/yr savings
Total savings for elimination of 6 samples = $300,000

2) Source Reduction of Low Level Waste Form

Baseline: The 241-AN-107 low hydroxide remediation project will add approximately 60,000 gallons of 19 molar sodium hydroxide to this tank in fiscal year 1997 or 1998. This volume added is approximately a factor of two greater than required to achieve the compliance with the Operating Safety Document concentration limits for corrosion control. Moreover, the planned addition will provide approximately a factor of four greater concentration than theoretical estimations of concentrations actually required for corrosion control.

Proposal: Direct monitoring of corrosion will allow the volume of inhibitor to be reduced by 30,000 gallons (113 cubic meters, liquid) containing 51 metric tons (51,000 kg) of sodium. Although a significant amount of this volume can be reduced through evaporation, the sodium will remain until immobilized by the privatization contractor. With an estimated 25% waste oxide loading for immobilized sodium, this converts to 204 metric tons (204,000 kg) LLW waste form avoided for future disposal. The lowest estimated immobilization cost for double shell tank waste from the privatization contractor is $750,000 per metric ton of sodium. Reducing sodium additions by 51 metric tons will reduce out year immobilization cost by at least $38 million.

Total Reduction of LLW Glass: 204 metric tons
Total Reduction of Immobilization Costs: $38 million
Annualized Reduction of LLW Glass: 41 metric tons
Annualized Reduction of Immobilization Costs: $7.65 million
(Assume 5 year probe life)

3) Source Reduction of Inhibitor

Baseline: The 241-AN-107 low hydroxide remediation project will add approximately 60,000 gallons of 19 molar sodium hydroxide to this tank in fiscal year 1997 or 1998.

Proposal: Installation of a corrosion probe will allow a reduction of the amount of sodium purchased by 30,000 gallons. Large volumes of sodium hydroxide delivered to the Hanford site cost $1.67 per gallon.

Total Reduction of Procurement Cost: $50,000
4. Project Schedule, Milestones, and Deliverables:

Identify schedule of activities, milestones and deliverables for project implementation (e.g., deadline dates, implementation dates, draft reviews etc.). Identify any testing dates, equipment delivery dates, equipment procurement dates and project completion date.

Example:

- Modify probe design for 241-AN-107 requirements 4/97
- Complete probe and electronic procurement 6/97
- Install probe 8/97
- Continuous monitoring of probe 9/97 through 2002

5. System and Process Flow Diagrams:

Provide a before and after flow diagram of the steps to implement new projects and provide any supplementary information to augment activity and process concepts. The intended purpose of the before and after flow diagram is a graphical representation of the process and activity.

II. Worksheets:

The information contained within the proposal serves as the basis for review of the proposed project and subsequent ranking for funding consideration. In order to ensure a degree of uniformity for review purposes, all proposals must be submitted using the ROI Project Proposal form and use the dollar amounts specified for waste related costs in their calculations. Because overhead, G&A, labor, and MPR rates vary among Hanford contractors it is recommended that you contact your respective financial analyst or the Waste Management Project, Waste Minimization financial analyst on 372-1455.

Worksheet 1:

1. Itemized Operating & Maintenance Annual Recurring Costs:
 This worksheet is intended to identify before and after annual costs comparison.

 The ROI Waste Cost Guide is provided in Appendix A on page 11. It provides detailed cost avoidance information for calculating waste avoidance and savings.

Worksheet 2:

2. Itemized Project Funding Requirements:
 Identify one-time implementation costs to include all adders (G&A/PHMC Fee, MPR, GFS, Overhead, Taxes etc.) also include labor costs, installation and operating expenses and the initial capital investment.
Section IV:
On-Line Help is Available

The Pollution Prevention Information URL is:
http://apsq105.rl.gov/polprev/default.asp

The ROI Proposal form URL is:
http://apsq105.rl.gov/polprev/hroi/wordp/roi_form.doc

The P2 Contacts list URL is:
http://apsq105.rl.gov/polprev/contacts/contacts.htm

Section V:
Submittal and Selection

Call letters requesting ROI proposals are issued by RL to the Hanford prime contractors periodically. Proposals are accepted for review at any time. The proposal preparation process is depicted in Figure 1. Completed proposals are submitted to the RL Waste Minimization Program Manager. Electronic submittals are preferred.

It is recommended that PNNL, BHI, LMHC, and FDH employees contact their respective RL counterpart and communicate their intent to submit a ROI proposal. A listing of the RL Waste Minimization/Pollution Prevention points-of-contact is available on the above URL.

ROI proposals are reviewed by the RL Waste Minimization team, which includes RL members from across the site. The RL Waste Minimization team ranks proposals using weighted criteria and can approve projects costing ≤$50,000. Projects costing >$50,000 are screened by the team and forwarded to the RL Senior Management Board for final evaluation. Following the selection process, individual project managers are notified of the results.
Figure 1:
ROI Proposal Process

1. Conduct P2OA, P2OA Training
2. Generate Idea
3. Evaluate Idea Against Eligibility Ranking Criteria
4. Prepare ROI Form
5. Draft Review, Incorporate Comments

- **Notify RL WMin Team Members**
- **Review Provided by P2/WMin**

6. Submit ROI to RL WMin
7. Project Contact Notified of Disapproval
8. Project Contact Notified of Approval
9. Monthly Project Review
10. Project Close Out/Files

- Contact Applicable Company or WMH P2/WMin for Assistance
- Does Not Meet Eligibility Ranking Criteria
 - Stop
- >$50,000
 - RL Sr. Management Review
ROI Project Guidance

Upon ROI approval, the following two steps will be followed:

1) Resource loaded schedule shall be completed, see Table 1. Contact the respective Financial Analyst for assistance in completing the resource loaded schedule. This schedule will then be used for inputting into the financial system for cost tracking purpose.

2) Specific reporting procedures are required when the project receives ROI funding. These reporting requirements are described in this section. Approximately 1 to 2 hours per month is estimated to fulfill the reporting requirements; be sure to include this cost in Worksheet 2: Itemized Project Funding Requirements, Item #5 - Readiness Reviews/Management Assessment/Administrative Costs, when completing the ROI form. Reporting requirements include:

- Monthly Reviews - generally a 15-minute telecon providing verbal status of project activities
- Monthly Report - an electronic submittal documenting Accomplishments, Upcoming Activities, Milestone Status, Budget/Schedule, and Issues
- Monthly Detailed Cost Reports - detailed costs by cost element for each project managed by PNNL and BHI; detailed costs by element for all other contractors will be obtained from the PHMC financial system by the Waste Management Project, Waste Minimization group financial analyst
- Close-Out: Year-End Reports; Requests for Carryover - specific forms to be completed once the project is complete, at fiscal year end, or when project activities will flow into the next fiscal year, see Worksheet, Section 5.
- Documentation of Deliverables - any written documentation regarding: your project, examples include design reviews, case studies, procurement requisitions, specifications, contracts, etc.
Table 1: Resource Loaded Schedule

<table>
<thead>
<tr>
<th>No. Title</th>
<th>Cost</th>
<th>Week</th>
<th>Activity</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>500</td>
<td>1</td>
<td>Installation</td>
<td>2 weeks</td>
</tr>
<tr>
<td>2</td>
<td>1000</td>
<td>3</td>
<td>Testing</td>
<td>4 weeks</td>
</tr>
</tbody>
</table>

Note: The table continues with more rows and columns, but the screenshot is not fully visible.
Appendix A

Standard Calculations

Costs Information
Return on Investment Waste Cost Guide

This guide was prepared to provide a simplified method to determine waste-related costs used in calculating Return on Investment (ROI) for Pollution Prevention/Waste Minimization projects. Available life-cycle cost information was researched to provide the generators with cost figures that can be used and supported.

The purpose and appropriate use of these cost figures is for ROI calculations for U.S. Department of Energy, Richland Operations (RL) and Office of River Protection (ORP) proposals. These costs represent the life-cycle costs for waste-related activities. These costs are to be used to estimate specific facility or Hanford Site savings for ROI proposals and annual waste reduction savings.

The format for presenting ROI projects is provided in Return on Investment, Proposal Preparation Guide (DOE/RL-97-12, Current Revision). The ROI Proposal Guide will provide figures that will allow the development of the ROI project proposals. The format provided in the ROI Proposal Guide shall be used when preparing an ROI proposal.

For each waste type, a flow chart is provided. Each block has a related cost where available Project Hanford contractor costs are used. These costs and sources are referenced. For other blocks, estimated costs are provided based on costs from other DOE Sites or the breakdown cost of each step involved in the event. Some costs that are highly variable and dependent on the individual generator are not included in these flow charts. Costs have been provided in Fiscal Year (FY) 1999 dollars per cubic meter of waste unless otherwise stated.

If a project prevents the generation of a waste, all avoidable costs related to that waste are eliminated and the sum of all avoidable costs for that type of waste would be used in the calculation. Table 1 provides the sum of avoidable costs for each waste type. There may be other projects that affect the costs related to some processes for a waste type, such as treatment or disposal. If this is the case, refer to the flow charts in Appendix B to determine which costs are eliminated.

The costs for pre-treatment of liquid effluents are variable depending on the facility. No attempt has been made to provide a general estimate of these overall costs. However, the specific costs for liquid wastes processing are listed in Table 1. These costs were obtained from an analyses that was performed to determine processing costs per gallon (Lowe 1999).

Cost for low-level, mixed low-level, hazardous, and transuranic waste were received from generators that handle large amounts of waste. These numbers are considered an appropriate representation of average costs across the Hanford Site and are presented in Table 1. Personnel costs for individuals who handle and ship waste or perform other activities have been addressed in the annual costs and savings calculations. If a facility wishes to calculate their hourly labor rates for bargaining unit, exempt and non-exempt personnel, figures should be obtained from the appropriate contractor project or financial analyst.
Table 1: Sum of Avoidable Costs by Waste Type

<table>
<thead>
<tr>
<th>Waste Type</th>
<th>Average Life Cycle Disposal Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Level</td>
<td></td>
</tr>
<tr>
<td>Non-Compacted Waste</td>
<td>Non-Compacted Waste: $8,100/m³</td>
</tr>
<tr>
<td></td>
<td>Compacted Waste: $7,600/m³</td>
</tr>
<tr>
<td>Mixed Low Level</td>
<td></td>
</tr>
<tr>
<td>w/o treatment</td>
<td>w/o treatment: $11,600/m³</td>
</tr>
<tr>
<td></td>
<td>Thermal Treatment: $19,100/m³</td>
</tr>
<tr>
<td></td>
<td>Non-Thermal Treatment w/debris and w/o debris: $16,600/m³</td>
</tr>
<tr>
<td>Hazardous</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$21,800/metric ton</td>
</tr>
<tr>
<td>TRU</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Retrieved Suspect TRU Waste Direct to LLW Disposal: $11,000/m³</td>
</tr>
<tr>
<td></td>
<td>TRU Waste From Generator Direct to WIPP - Contact Handled: $30,300/m³</td>
</tr>
<tr>
<td></td>
<td>TRU Waste From Generator Direct to WIPP - Remote Handled: $53,500/m³</td>
</tr>
<tr>
<td></td>
<td>TRU Waste Retrieved From Burial Grounds to WRAP Without Repackaging to</td>
</tr>
<tr>
<td></td>
<td>WIPP - Contact Handled: $25,100/m³</td>
</tr>
<tr>
<td></td>
<td>Remote Handled: $48,300/m³</td>
</tr>
<tr>
<td></td>
<td>TRU Waste Retrieved From Burial Grounds to WRAP With Repackaging to</td>
</tr>
<tr>
<td></td>
<td>WIPP - Contact Handled: $46,900/m³</td>
</tr>
<tr>
<td></td>
<td>Remote Handled: $70,100/m³</td>
</tr>
<tr>
<td></td>
<td>TRU Waste Retrieved From Storage to WRAP Without Repackaging to WIPP</td>
</tr>
<tr>
<td></td>
<td>- Contact Handled: $14,100/m³</td>
</tr>
<tr>
<td></td>
<td>Remote Handled: $37,300/m³</td>
</tr>
<tr>
<td></td>
<td>TRU Waste Retrieved From Storage to WRAP With Repackaging to WIPP -</td>
</tr>
<tr>
<td></td>
<td>Contact Handled: $35,900/m³</td>
</tr>
<tr>
<td></td>
<td>Remote Handled: $59,100/m³</td>
</tr>
<tr>
<td>Solid Sanitary</td>
<td>Compactible and Non-Compactible Waste: $832/metric ton</td>
</tr>
<tr>
<td>Liquid Waste</td>
<td>200 Area ETF: $0.10/gallon*</td>
</tr>
<tr>
<td></td>
<td>300 Area TEDF: $0.03/gallon</td>
</tr>
<tr>
<td></td>
<td>200 Area TEDF: $0.04/gallon</td>
</tr>
<tr>
<td></td>
<td>Double-Shell Tank Costs: $12.44/gallon**</td>
</tr>
</tbody>
</table>

* Secondary solid radioactive CERCLA waste shipped to ERDF for disposal (includes sampling, characterization, transportation, and burial) = $550/m³
** Includes costs for transfer, storage, and treatment at the 242-A Evaporator.

Appendix B contains flow charts that represent the life-cycle movement of wastes from generation to disposal. These flow charts are broken down into generation, treatment, storage, and disposal. Boxes that are dotted include planned treatment options that do not take place at this time.
Solid waste costs, for disposal and burial per cubic meter of waste, are determined by the outside dimensions of a container. To assist in determining the cost per cubic meter, Figure 1 identifies related waste conversions for various sizes of drums and containers. If additional volume conversions are required for drums or containers with other external dimensions, additional information can be obtained from, "Hanford's Commonly Used Containers: Treatment, Storage, and Disposal Volumes" (WHC-SD-WM-CSD-005, Rev. 0 (WHC 1996).

Figure 1:
Related Waste Conversions

Drums - Volume Based on External Dimensions

- 8 Gallon Drum = 0.04 Cubic Meters**
- 16 Gallon Drum = 0.08 Cubic Meters**
- 30 Gallon Drum = 0.1136 Cubic Meters**
- 55 Gallon Drum = 0.26 Cubic Meters**
- 85 Gallon Drum = 0.38 Cubic Meters**

Boxes - Volume Based on External Dimensions

- 2' X 2' X 6' = 0.74 Cubic Meters**
- 4' X 4' X 4' = 2.92 Cubic Meters**
- 4' X 4' X 8' = 4.08 Cubic Meters**

The outside dimensions of the container determine the cost for handling and burial. These conversions should be used in determining avoidable costs rather than the internal capacity of the container.
References

Appendix B
Flow Charts for Avoidable Waste Costs
Flow Charts for Avoidable Waste Costs

Non-Compacted Low Level Waste

1. Container Request/ Prep/Delivery $800/m³
2. Container Pick Up/ Document Prep & Review/ Labeling $1,100/m³
3. Sampling and Analysis For Certification $2,000/m³
4. Designate and Characterize $1,600/m³
5. Storage Pad Management $1,600/m³
6. Shipment to TSD $500/m³
7. Disposal ** $500/m³

Total Avoidable Costs:
Non-compacted Waste: 1+2+3+4+5+6+7 = $8,100/m³ (Shehadeh 1999)
Compacted Waste = 1a+2a+3a+4a+5a+6a+7a+7 = $7,600/m³ or $950/m³ pre-compaction
* Assume 8 to 1 compaction ratio (Weston 1999)
** These costs are representative of Low-Level Burial Ground

Compacted Low Level Waste

1a. Container Request/ Prep/Delivery $400/m³
2a. Container Pick Up/ Document Prep & Review/ Labeling $600/m³
3a. Sampling and Analysis For Certification $1,000/m³
4a. Designate and Characterize $800/m³
Comaction *
5a. Transport
6a. Volume Reduction/ Containerize
7a. Transport

After Compaction: 5a+6a+7a = $4,800/m³ or $600/m³ pre-compacted (Weston 1999)
Mixed Low Level Waste

Total Avoidable Costs:
Without Treatment: $11,600/m^3
(Schlesinger 1999)
With Thermal Treatment:
$19,100/m^3
Non-Thermal Treatment With and Without Debris:
Non-Thermal Treatment with Debris: $16,600/m^3
Non-Thermal Treatment without Debris: $11,600/m^3
Hazardous Waste

0. Generator Declares Waste

1. Container Request/
 Prep/Delivery
 $1,700/mt

2. Storage Pad Management
 $3,400/mt

3. Container Pick Up/
 Document Prep & Review/
 Labeling $2,800/mt

4. Sampling and Analysis
 For Certification
 $4,400/mt

5. Designate and Characterize
 $4,100/mt

6. Shipment to TSD
 $1,000/mt

8. Disposal
 $4,400/mt

Total Avoidable Cost: 1 through 8 = $21,800/mt (Shehadeh 1999)
TRU Waste
Newly Generated Waste

Retrieved Waste

10. Suspect TRU Retrieval $8,500 m³ (McDonald 1999)
11. NDA Assay $2,500 m³ (McDonald 1999)
12. Storage
13. LLW Disposal

0. Generator Declares Waste
1. Containerize/Acceptance
 Characterize/Assay/Transport
 $5,700 m³ (Ananda 1999)
2. Acceptance/Receipt
 NDE Verification
 $2,900 m³ (Stone 1999)
3. Storage
 $7,600 m³ (Lang 1999)
4. WRAP NDA/NDE
 $5,100 m³ (Stone 1999)
5. WRAP Repackage
 $21,800 m³ (Stone 1999)
6. Shipment Prep
 $4,300 m³ (Stone 1999)
7. TRUPACT
 (Cost Included in Transport)
8. Transport
 CH - $3,750 m³
 RH - $23,700 m³
 (Dials 1997)
9. WIPP
 CH - $950 m³
 RH - $4,200 m³
 (Dials 1997)

Total Avoidable Cost:

Retrieved Suspect TRU waste direct to LLW Disposal
10+11+12 = $15,500 m³

TRU waste from generator direct to WIPP:
1+2+3+4+5+6+7+8+9 = $35,500 m³ (Contact Handled)
1+2+3+4+5+6+7+8+9 = $35,500 m³ (Remote Handled)

TRU waste retrieved from burial grounds to WRAP (without repackaging) to WIPP:
10+11+12+13+4+6+7+8+9 = $22,100 m³ (Contact Handled)
10+11+12+13+4+6+7+8+9 = $46,500 m³ (Remote Handled)

TRU waste retrieved from burial grounds to WRAP (with repackaging) to WIPP:
10+11+12+13+4+6+7+8+9 = $46,500 m³ (Contact Handled)
10+11+12+13+4+6+7+8+9 = $70,100 m³ (Remote Handled)

TRU waste retrieved from storage to WRAP (without repackaging) to WIPP:
4+6+7+8+9 = $16,100 m³ (Contact Handled)
4+6+7+8+9 = $37,200 m³ (Remote Handled)

TRU waste retrieved from storage to WRAP (with repackaging) to WIPP:
4+6+7+8+9 = $37,200 m³ (Contact Handled)
4+6+7+8+9 = $59,100 m³ (Remote Handled)
Solid Sanitary

Placed in Dumpster

Disposal Off-Site Compactible and Non-Compactible
$ 832/mt (Savage 1999)
Liquid Effluents

200 Area Effluent Treatment Facility (ETF)
300 Area Treated Effluent Disposal Facility (TEDF)

- **GENERATOR DECLARES WASTE**
- **PRE-TREATED**
- **SAMPLED**
- **PUMP/TRUCK**

Treatment

- **STORAGE (if applicable)**
- **SAMPLING**
- **TREATMENT/DISPOSAL**

200 Area ETF 5+6+7=$0.10/gal (Lowe 1999)
300 Area TEDF 6+7=$0.03/gal (Lowe 1999)

* Costs are variable depending on the generator and waste stream.
** Secondary solid radioactive CERCLA waste shipped to ERDF for burial by ETF = $550/m³
200 Area

Treated Effluent Disposal Facility (TEDF)

Generation

- Generator Declares Waste* (1)
- Pre-treated * (2)
- Pumped to TEDF * (3)

Treatment

- Discharged at State Approved Land Disposal Site - $0.04/Gallon (Lowe 1999-2)

* Costs are variable depending on the generator and waste stream
Tank Farms Waste Process
Through Evaporator

Generation

1. Generator Declares Waste * (1)
2. Sample * (2)
3. Chemically Adjusted * (3)
4. Sample * (4)
5. Pump/Transport - $1.98/gal (5)

Treatment

6. Storage - $9.30/gal (6)
7. Evaporation - $1.16/gal (7)
8. Disposal/Storage (8)

Total Avoidable Cost = $12.44/gal (Lowe 1999)

*Costs are variable depending on the generator and waste
References

Appendix C
ROI Form
U.S. DEPARTMENT OF ENERGY, RL

HIGH RETURN ON INVESTMENT (ROI)
POLLUTION PREVENTION
PROJECT PROPOSAL

Date: ___________ Revision #: ________________________________

Project Title: __

Company: __________________ Facility: _______________________

ROI Author: ___________ Phone #: ______ Fax #: ______

Project Point of Contact: _______ Phone #: ______ Fax #: ______

<table>
<thead>
<tr>
<th>Project Type (Check applicable one)</th>
<th>Waste Type/Amount Prevented Per Year: (Specify Volume/Unit of Measurement)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Reduction: ______</td>
<td>LLW: ______ SAN: ______</td>
</tr>
<tr>
<td>Recycle/Reuse: ______</td>
<td>MLLW: ______ State: ______</td>
</tr>
<tr>
<td>Segregation: ______</td>
<td>TRU: ______ RCRA: ______</td>
</tr>
<tr>
<td>Volume Reduction: ______</td>
<td>TRU/M: ______ TSCA: ______</td>
</tr>
<tr>
<td>Environmental Benefits: ______</td>
<td>HLW: ______ MTSCA: ______</td>
</tr>
<tr>
<td>Safety Benefits: ______</td>
<td></td>
</tr>
</tbody>
</table>

Project Duration (months): ___________ Useful Project Life (years): _____
Total Project Funding Requirements: _____ Projected ROI %: ___________
1. **Project Description**
(Describe proposed activity/process)

2. **Description of Benefit(s)**
(Describe benefits of implementing new activity/process, i.e., identifying amount of waste reduced by comparing chemical procurement savings, reduction of supplies, labor reduction, etc.)

3. **Basis of Data Presented**
(Describe process used to evaluate/assess the new activity/process, i.e. pollution prevention opportunity assessment, value engineering study etc.)
4. Project Schedule, Milestones, and Deliverables
(Identify schedule of activities, milestones, and deliverables for project implementation)

5. System/Process Flow Diagrams
(Provide a before and after flow diagram of activities (steps) to implement new project and provide any supplementary information to augment activity/process concepts)
Worksheet 1: Operating & Maintenance Annual Recurring Costs

<table>
<thead>
<tr>
<th>Expense Cost Items*</th>
<th>Before (B) Annual Costs</th>
<th>After (A) Annual Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Equipment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Purchased Raw Materials and Supplies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Process Operation Costs:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utility Costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labor Costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Routine Maintenance Costs for Processes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. PPE and Related Health/Safety/Supply Costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Waste Management Costs:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waste Container Costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment/Storage/Disposal Costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inspection/Compliance Costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Recycling Costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material Collection/Separation/Preparation Costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Material and Supply Costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Operations and Maintenance Labor Costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vendor Costs for Recycling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Administrative/other Costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Annual Cost:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Supporting data and calculations should be retained as an attachment.

**All costs should be fully burdened where applicable.
Worksheet 2: Itemized Project Funding Requirements
(i.e., One Time Implementation Costs)

<table>
<thead>
<tr>
<th>Category</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Capital Investment</td>
<td></td>
</tr>
<tr>
<td>1. Design</td>
<td></td>
</tr>
<tr>
<td>2. Purchase</td>
<td></td>
</tr>
<tr>
<td>3. Installation</td>
<td></td>
</tr>
<tr>
<td>4. Other Capital Investment (explain)</td>
<td></td>
</tr>
<tr>
<td>Subtotal: Capital Investment = (C)</td>
<td></td>
</tr>
</tbody>
</table>

Installation Operating Expenses	
1. Planning/Procedure Development	
2. Training	
3. Miscellaneous Supplies	
4. Startup/Testing	
5. Readiness Reviews/Management Assessment/Administrative Costs (include 1-2 hrs/month for reporting requirements)	
Subtotal: Installation Operating Expenses = (E)	
6. Other Installation Operating Expenses (explain)	
7. All company adders (G&A/PHMC Fee, MPR, GFS, Overhead, taxes, etc.) (if not contained in above items)	
Total Project Funding Requirements = (C + E)	

Useful Project Life = (L) ____ Years
Time to Implement: ____ Months

Estimated Project Termination/Disassembly Cost (if applicable) = (D) ____
(Only for Projects where L < 5 years; D = 0 if L > 5 years)

Return on Investment Calculation

Return on Investment (ROI) % =

$\frac{(B-A) - [(C+E+D)/L]}{[Total Project Funding Requirements + Project Termination]} \times 100$

ROI = $\frac{(B-A) - (C+E+D)/L}{C+E+D} \times 100 = \ldots \ldots \%$

O&M Annual Recurring Costs:*
Project Funding Requirements:

- Annual Costs, Before = ____ (B)
- Capital Investment = ____ (C)
- Annual Costs, After = ____ (A)
- Installation Op. Exp = ____ (E)
- **Net Annual Savings** = ____
- **Total Project Funds** = (C + E) ____

Estimated Project Termination/Disassembly Cost (if applicable) ____ (D)
(only for Projects where L < 5 years; D = 0 if L > 5 years)

Notes: Before (B) and After (A) are Operating & Maintenance Annual Recurring Costs from Worksheet 1.
Appendix D
Completed ROI Examples

Note:
The examples depicted in the ROI Proposal Preparation Guide do not necessarily reflect the current FY 2000 ROI Preparation Form and rates.
Successful ROI Project Proposals

Reference: P2 homepage URL is:
http://apsq105.rl.gov/polprev/default.asp

The format and cost information on some of them may differ slightly from the format and cost information currently used due to the change in guidance from DOE HQ and RL.

Examples of Approved ROI’s

• Selection and Implementation of a Cost-Effective Parts Washer System
 POC: Dennis Poor, DynCorp
 Three parts washers (one microbial and two different petroleum distillate solvent systems) will undergo a 90-day evaluation at DynCorp’s Vehicle Maintenance Shop. Following the evaluation period, three new parts washer were installed.
 Download the Parts Washer submittal

• Sodium Minimization for 241-AN-107 Low Hydroxide Remediation
 POC: Jim Nelson, LHMC
 Double shell tank 241-AN-107 has been operated for the past 10 years with insufficient corrosion inhibitor. The addition of sodium hydroxide inhibitor will over-correct waste composition with excess inhibitor for conservative continued operation of the tank. An on-line corrosion probe will be installed to determine the required end point for the addition of inhibitor and to continuously monitor corrosion thereafter.
 Download the Sodium Minimization submittal

• Portable Radiological Detection Instruments for Surveying of Contaminated Materials
 POC: Conan Wade, BHI
 Procurement of Eberline E-600 Survey Meters will allow Radiation Technicians to survey for both alpha and beta with a greater sensitivity using a 100 square centimeter probe. The accuracy of these meters will allow the release of more materials for reuse or recycling and result in a source reduction of low level waste.
 Download the Rad Detection Instruments submittal
U.S. DEPARTMENT OF ENERGY, RL

HIGH RETURN ON INVESTMENT (ROI)
POLLUTION PREVENTION
PROJECT PROPOSAL

Project Title: Eliminate Solid Waste Stream with Treatment and Recycling

Facility Name: 300 TEDE/Hanford Site

Responsible for Project Implementation: ______________

Operations Office WMin/PP Coordinator: ______________
Project Title: **Eliminate Solid Waste Stream with Treatment and Recycling**

Serial Number: __________________________ (HQ Assigned)

Location/Site: **300 TEDF/Hanford Site** Implementing CSO: **EM**

Site Contact: **Kevin Hagerty, Rust Federal Services Hanford**

Phone/Fax: **372-3133**

Project Summary:

Provide 3-5 bullets to describe the project, including:

1. Statement of existing process/activity condition
2. Statement of proposed change to process/activity
3. Description of resulting waste/pollutant reductions

Oil-contaminated water and oil-water mixtures are not amendable for commercial use in fuel blending operations or other common recycling techniques because high water content (>90%) inhibits combustion. The effluent treatment facilities on the Hanford Site do not have the ability to treat these wastes so they are absorbed and disposed in a sanitary landfill. The current practice is to absorb oil-contaminated waste water in 55-gallon drums.

This proposal is to purchase, test, and install a piece of equipment which will separate the oil component from the water matrix. This equipment will be installed at the 300 Area Treated Effluent Disposal Facility (TEDF) to provide centralized treatment for this waste stream from the entire Hanford Site. The oil-free effluent from the oil separator will be treated at TEDF and discharged to the Columbia River under the existing NPDES permit. The oil recovered will be managed and recycled as used oil. A coalescing oil removal system will be selected to ensure an oil free effluent.

Project Duration (months): **2** Useful Project Life (Years): **20 (L)**
Performance Indicators:

\[
\text{ROI} = \frac{(B-A) - [(C+E+D+L)/L]}{(C+E+D)} \times 100 = 99\%
\]

<table>
<thead>
<tr>
<th>Old&M Annual Recurring Cost (i.e., Total Annual Operating Costs)</th>
<th>Project Funding Requirements (i.e., On-Time Implementation Costs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual Costs, Before = 6546 (B)</td>
<td>Capital Investment = 4135 (C)</td>
</tr>
<tr>
<td>Annual Costs, After = 1200 (A)</td>
<td>Installation Operating Expense = 1000 (E)</td>
</tr>
<tr>
<td>Net Annual Savings = 5089</td>
<td>Total Project Funds = (C + E) = 5135 (E)</td>
</tr>
<tr>
<td>Estimated Project Termination/Disassembly Cost (if applicable)</td>
<td>0 (D)</td>
</tr>
</tbody>
</table>

(only for projects where \(L < 5 \) years; \(D = 0 \) if \(L > 5 \) years)

Waste/Pollutant Quantity Reductions:

Prevented Waste: (List type and amount in kg or m³ per year)

15.6 metric tons sanitary waste (machine oil-water mixture)

Comments:

Use, as necessary, to qualify relevant aspects of the project not included above. Although source reduction would be the preferred method of minimizing this waste stream, most sources of this waste are in facilities which are undergoing deactivation and decommissioning. It is not cost effective to install state-of-the-art oilless equipment in facilities which are being shut down, so treatment and recycling are preferred over disposal.
ROI Project Title

1. Project Description:
This proposal is to purchase, test, and install a piece of equipment which will separate the oil component from the water matrix. This equipment will be installed at the 300 Area Treated Effluent Disposal Facility (TEFD) to provide centralized treatment for this waste stream from the entire Hanford Site. A coalescing oil removal system will be selected to ensure an oil free effluent. The oil-free effluent from the oil separator will be treated at TEF and discharged to the Columbia River under the existing NPDES permit. The oil recovered will be managed and recycled as used oil.

2. Description of Benefit(s):
This project will recover a pollutant (used oil) which is currently being disposed of in the environment and will make it available for reuse through used oil recycling.

This project will decrease the overall volume of sanitary waste from the Hanford Site. Reduction of this waste stream is a Secretary of Energy waste reduction goal.

3. Basis of Data Presented (PPOAs):
To determine how much reduction would occur, it was assumed that a 0.21 m3 drum (55-gallon) of water contaminated with oil contains 1% oil by volume. It is also assumed that absorbing the liquid would generate three volumes, or 0.62 m3 (165 gallons) of solid waste. Absorbing and packaging would require a similar volume of absorbent material and three metal drums.

The 209E Facility annually processes approximately 18 drums of oily waste through an oil skimmer. The processed water still contains oil and is absorbed and sent to the sanitary landfill. A minimum of two other oily waste streams have also been identified. Based on this level of generation, an oil/water separator with variable capacity of 1 to 10 gpm was selected. This project will provide an acceptable treatment rate for the sources identified and will allow capacity for other sources.

4. Project Schedule, Milestones, and Deliverables:
Assume start date of 10/1/97.

<table>
<thead>
<tr>
<th>Task</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purchase oil separator and associated equipment</td>
<td>8/1/97</td>
</tr>
<tr>
<td>Install oil separator</td>
<td>9/1/97</td>
</tr>
<tr>
<td>Begin operation of oil separator</td>
<td>10/1/97</td>
</tr>
</tbody>
</table>
5. System/Process Flow Diagrams:
 1. Oil-water waste accumulated at generator facility
 2. Generator characterizes oily waste
 • process knowledge (MSDSs for oil, etc.)
 • analytical data if necessary
 3. Generator ships containerized oily waste to TEDF
 4. Oily waste containers staged at TEDF
 5. Oily waste pumped into coalescing filter unit
 6. Oil-free effluent collected in verification tank
 • effluent verified oil-free before discharged to TEDF
 7. Recovered oil accumulated at TEDF
 • generator’s data used to characterize recovered oil
 • analytical data if necessary
 8. Recovered oil shipped to off-site recycler
 9. Empty containers returned to generator for reuse
Worksheet 1: Operating & Maintenance Annual Recurring Costs

<table>
<thead>
<tr>
<th>Expense Cost Items</th>
<th>Before (B) Annual Costs</th>
<th>After (A) Annual Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Equipment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Purchased Raw Materials and Supplies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Process Operation Costs:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utility Costs</td>
<td></td>
<td>1200</td>
</tr>
<tr>
<td>Labor Costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Routine Maintenance Costs for Processes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. PPE and Related Health/Safety/Supply Costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Waste Management Costs:</td>
<td></td>
<td>6546</td>
</tr>
<tr>
<td>Waste Container Costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment/Storage/Disposal Costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inspection/Compliance Costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Recycling Costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material Collection/Separation/Preparation Costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Material and Supply Costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Operations and Maintenance Labor Costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vendor Costs for Recycling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Administrative/other Costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Annual Cost:</td>
<td>Before (B) = 6546</td>
<td>After (A) = 1200</td>
</tr>
</tbody>
</table>
Worksheet 2: Itemized Project Funding Requirements
(i.e., One Time Implementation Costs)

<table>
<thead>
<tr>
<th>Category</th>
<th>Cost $</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Capital Investment</td>
<td></td>
</tr>
<tr>
<td>1. Design</td>
<td></td>
</tr>
<tr>
<td>2. Purchase</td>
<td>4135</td>
</tr>
<tr>
<td>3. Installation</td>
<td></td>
</tr>
<tr>
<td>4. Other Capital Investment (explain)</td>
<td></td>
</tr>
<tr>
<td>Subtotal: Capital Investment</td>
<td>4135</td>
</tr>
</tbody>
</table>

Installation Operating Expenses

<table>
<thead>
<tr>
<th>Category</th>
<th>Cost $</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Planning/Procedure Development</td>
<td></td>
</tr>
<tr>
<td>2. Training</td>
<td></td>
</tr>
<tr>
<td>3. Miscellaneous Supplies</td>
<td></td>
</tr>
<tr>
<td>4. Startup/Testing</td>
<td>1000</td>
</tr>
<tr>
<td>5. Readiness Reviews/Management Assessment/ Administrative Costs (include 1-2 hrs/month for reporting requirements) ROI reporting</td>
<td></td>
</tr>
<tr>
<td>6. Other Installation Operating Expenses (explain)</td>
<td></td>
</tr>
<tr>
<td>Subtotal: Installation Operating Expense</td>
<td>1000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category</th>
<th>Cost $</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. All company adders (G&A/PHMC Fee, MPR, GFS, Overhead, taxes, etc.) (if not contained in above items)</td>
<td></td>
</tr>
<tr>
<td>Total Project Funding Requirements</td>
<td>5135</td>
</tr>
</tbody>
</table>

Useful Project Life = (L) 20 Years
Time to Implement = 2 Months
Estimated Project Termination/Disassembly Cost (if applicable) = (D) 0
(Only for Projects where L < 5 years; D = 0 if L > 5 years)

Return on Investment Calculation

Return on Investment (ROI) % =

\[
\text{ROI} = \left(\frac{(B-A) - [(C+E)+D]/L}{(C+E)+D} \right) \times 100
\]

*100 = 99%

O&M Annual Recurring Costs:
Annual Costs, Before = _____ (B)
Annual Costs, After = _____ (A)

Net Annual Savings = _____

Project Funding Requirements:
Capital Investment = _____ (C)
Installation Op. Exp = _____ (E)
Total Project Funds = (C) + (E)

Estimated Project Termination/Disassembly Cost (if applicable) _____ (D)
(only for Projects where L < 5 years; D = 0 if L > 5 years)

Notes: Before (B) and After (A) are Operating & Maintenance Annual Recurring Costs from Worksheet 1.
Project Title: Automated Acid Dilution for ETF Ion Exchange

Location/Site: 200 Area Effluent Treatment Facility (ETF)

Operations Office: Richland Operations Office (RL)

Site Contact: Lilly Lin/Barry Place

Company Name: Waste Management Federal Services of Hanford, Inc. (WMF)

Phone: 372-2759/372-1372 Fax: 372-2089/373-0743

Date: 6/10/98
ROI Project Title: Automated Acid Dilution for ETF Ion Exchange

Project Summary:

This is a proposal to install an automatic acid dilution system in the ETF to supply acid used to regenerate the ion exchange resin. The automatic system will replace operating activities which are currently performed manually. The manual procedure is not self-correcting and requires continuous attendance. It results in excessive chemical use and waste generation.

1. Project Description

 Acid Dilution Problem

 The 200 Area Effluent Treatment Facility (ETF) treats waste water by removing radioactive and hazardous constituents, by removing ammonia, and by destroying organics. The treatment process includes pH adjustment, filtration, ultraviolet oxidation (UV/Ox), reverse osmosis, and ion exchange. Treated effluent is discharged to a state approved land disposal site. The secondary waste is concentrated by evaporation and dried to a powder, then packaged in drums for disposal as solid waste.

 The ion exchange or “Polisher system” uses two mixed-bed ion exchange columns in series to remove any remaining dissolved solids. A third column is provided which is either undergoing regeneration of the resin or in standby. Spent ion exchange resin is regenerated using caustic (sodium hydroxide) and acid (sulfuric acid). Sulfuric acid is also used elsewhere in the ETF for pH adjustment. When the ETF is treating “hard water” (such as UP-1 groundwater) which contains significant amounts of calcium carbonate, the acid must be diluted to 2 wt% before it can be used to regenerate the ion exchange resin. More concentrated acid would cause solid calcium sulfate to form that would irreversibly foul the resin particles. To regenerate the resin, the caustic is first started and allowed to flow to the Secondary Waste Receiving Tank. The acid is then diluted by mixing with water and manually adjusting the flows. The diluted acid is sampled and the specific gravity measured using a hydrometer. This is a trial and error process during which the acid and caustic continue to flow to the Secondary Waste Receiving Tank.

 The ion exchange resin is regenerated an average of 4 times per month. The acid dilution step takes 30 minutes each time; with setup and housekeeping this requires 8 hours/month. Approximately 4,430 gal/month of liquid waste is generated and treated in the ETF, which produces 1,484 lb/month of solid powder waste that is sent to disposal at either the CWC or the ERDF.

Proposed Project

This project will enable the acid to be automatically diluted to the desired concentration from the ETF control room. The automatic dilution system will continuously monitor and control acid addition and avoid the addition of unnecessary quantities of acid associated with the current manual system. The changes to the system are shown in the attached markup of the P&ID for the Polisher system (See “Proposed Upgrade for ETF Polisher System”, page 10).
The acid and water will come together in a new mixing tee. A downstream conductivity analyzer will measure the resulting acid concentration. The flow control valve will adjust the water flow to achieve proper dilution. An air-operated valve will provide on-off control. All operations will be monitored and controlled through the distributed control system. The total cost of the project is $72,845.

2. Description of Benefit(s)

Annual costs savings of $37,240/yr will be achieved by implementing this project. The volume of solid waste will be reduced by 9.8 m³/yr. The volume of liquid waste will be reduced by 201 m³/yr. The detailed calculations are provided below. The unit conversions in the ROI Proposal Preparation Guide were used.

The manual acid dilution procedure is prone to errors which could irreversibly foul the ion exchange resin. Should this occur, the spent resin would have to be replaced. Resin cost alone is $8,000 per column, and the solid waste disposal cost would be $33,200. A minimum of 200 hr labor would be required to change out the resin, costing an additional $10,000. None of these costs are included in the ROI calculation since this type accident has not occurred in the short operating life of the ETF. However, they should be considered in evaluating the overall merits of this project.

Solid Waste Volume Reduction

Manual acid dilution generates 1,484 lb/mo of solid powder waste. Drums of solid powder waste weigh 473 lb/drum. The solid waste volume reduction will be:

\[1,484 \text{ lb/mo} \times 12 \text{ mo/yr} \times 1 \text{ drum/473 lb} \times 0.26 \text{ m}^3/\text{drum} = 9.8 \text{ m}^3/\text{yr}\]

Liquid Waste Volume Reduction

Manual acid dilution generates 4,430 gal/mo of liquid waste. The liquid waste volume reduction will be:

\[4,430 \text{ gal/mo} \times 12 \text{ mo/yr} \times 1 \text{ m}^3/264 \text{ gal} = 201 \text{ m}^3/\text{yr}\]

Labor Cost Reduction

The labor required for manual acid dilution is approximately 8 hr/mo. Operating labor costs $50/hr including adders. The cost savings for labor will be:

\[8 \text{ hr/mo} \times 12 \text{ mo/yr} \times 1 \times $50/\text{hr} = $4,800/\text{yr}\]

Waste Container Cost Reduction

Manual acid dilution generates 1,484 lb/mo of solid powder waste. Drums of solid powder waste weigh 473 lb/drum. Drums costs $70 each. The cost savings for waste containers will be:

\[1,484 \text{ lb/mo} \times 12 \text{ mo/yr} \times 1 \text{ drum/473 lb} \times 70/\text{drum} = $2,635/\text{yr}\]
Solid Waste Disposal Cost Reduction

Manual acid dilution generates 9.8 m³/yr of solid waste. The solid waste is split 25% RCRA and 75% CERCLA. Storage of RCRA mixed waste at the CWC costs $68.32/ft³ and disposal in the Mixed Waste Trench without further treatment costs $13.76/ft³, for a total cost of $82.08/ft³. Disposal of CERCLA waste at the ERDF costs $1.40/ft³. Sampling, characterization, and transportation of solid waste costs $500/m³. The cost savings for solid waste disposal will be:

\[
\begin{align*}
9.8\text{ m}^3/\text{yr} \times 25\% & \times 35.31\text{ ft}^3/\text{m}^3 \times $82.08/\text{ft}^3 = $7,101/\text{yr} \\
9.8\text{ m}^3/\text{yr} \times 75\% & \times 35.31\text{ ft}^3/\text{m}^3 \times $1.40/\text{ft}^3 = $363/\text{yr} \\
9.8\text{ m}^3/\text{yr} & \times $500/\text{m}^3 = $4,900/\text{yr} \\
$7,101/\text{yr} + $363/\text{yr} + $4,900/\text{yr} & = $12,364/\text{yr}
\end{align*}
\]

Liquid Waste Disposal Cost Reduction

Manual acid dilution generates 4,430 gal/mo of liquid waste. Treatment of liquid waste in the ETF costs $0.25/gal. The cost savings for liquid waste disposal will be:

\[
4,430\text{ gal/mo} \times 12\text{ mo/yr} \times $0.25/\text{gal} = $13,290/\text{yr}
\]

Raw Materials and Supplies Cost Reduction

Manual acid dilutions uses an extra 816 lb/mo of sulfuric acid and 668 lb/mo of sodium hydroxide. Sulfuric acid (92 wt%) costs $0.95/gal and has a specific gravity of 1.83. Sodium hydroxide (50 wt%) costs $1.56/gal and has a specific gravity of 1.51. Other supplies cost about $500/yr. The cost savings for raw materials will be:

\[
\begin{align*}
816\text{ lb/mo} & \times 12\text{ mo/yr} / (1.83 \times 8.33\text{ lb/gal} \times 92\%) \times $0.95/\text{gal} = $663/\text{yr} \\
668\text{ lb/mo} & \times 12\text{ mo/yr} / (1.51 \times 8.33\text{ lb/gal} \times 50\%) \times $1.56/\text{gal} = $1,988/\text{yr} \\
$663/\text{yr} + $1,988/\text{yr} + $500/\text{yr} & = $3,151/\text{yr}
\end{align*}
\]

3. Basis of Data Presented (Pollution Prevention Opportunity Assessments)

A Pollution Prevention Opportunity Assessment is not available for this activity.

4. Project Schedule, Milestones, and Deliverables

- Design modifications (1 month)
- Procure components (1 month)
- Install hardware/modify system (1 month)
- Test modifications (1 week)
- Conduct training (1 week)
5. **System/Process Flow Diagrams**

The process flowsheet for the ETF is attached ("ETF Process Flowsheet", page 9). The ETF treatment process is flexible and alternate configurations are possible depending on the characteristics of the waste stream. The liquid waste from regenerating the ion exchange resin is routed from the Polishers to the Secondary Waste Receiving Tanks. A sketch is attached showing the proposed changes to the Polisher system. A detailed cost estimate is also attached.

6. **Project Duration (months):** _3_

 Useful Project Life (years): _10_ (L)

7. **Performance Indicators:**

 ROI = _41_% (from Worksheet 2)

8. **Waste/Pollutant Quantity Reductions:**
 - 9.8 m³/yr of solid low level waste, of which 2.5 m³/yr is RCRA regulated and 7.3 m³/yr is CERCLA regulated.
 - 201 m³/yr of liquid waste.
Worksheet 1: Operating & Maintenance Annual Recurring Costs

<table>
<thead>
<tr>
<th>Expense Cost Items</th>
<th>Before (B) Annual Costs</th>
<th>After (A) Annual Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Equipment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Purchased Raw Materials and Supplies</td>
<td>3,151</td>
<td>0</td>
</tr>
<tr>
<td>3. Process Operation Costs:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utility Costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labor Costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Routine Maintenance Costs for Processes</td>
<td>4,800</td>
<td>0</td>
</tr>
<tr>
<td>4. PPE and Related Health/Safety/Supply Costs</td>
<td>1,000</td>
<td>0</td>
</tr>
<tr>
<td>5. Waste Management Costs:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waste Container Costs</td>
<td>2,635</td>
<td>0</td>
</tr>
<tr>
<td>Treatment/Storage/Disposal Costs</td>
<td>25,654</td>
<td>0</td>
</tr>
<tr>
<td>Inspection/Compliance Costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Recycling Costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material Collection/Separation/Preparation Costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Material and Supply Costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Operations and Maintenance Labor Costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vendor Costs for Recycling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Administrative/other Costs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Annual Cost: $37,240 (B) $0 (A)
Worksheet 2: Itemized Project Funding Requirements
(i.e., One Time Implementation Costs)

<table>
<thead>
<tr>
<th>Category</th>
<th>Cost $</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Capital Investment</td>
<td></td>
</tr>
<tr>
<td>1. Design</td>
<td>14,920</td>
</tr>
<tr>
<td>2. Purchase</td>
<td>10,700</td>
</tr>
<tr>
<td>3. Installation</td>
<td>31,573</td>
</tr>
<tr>
<td>4. Other Capital Investment (explain)</td>
<td>15,652</td>
</tr>
<tr>
<td>Subtotal: Capital Investment = (C)</td>
<td>72,845</td>
</tr>
</tbody>
</table>

Installation Operating Expenses	
1. Planning/Procedure Development	
2. Training	
3. Miscellaneous Supplies	
4. Startup/Testing	
5. Readiness Reviews/Management Assessment / Administrative Costs (include 1-2 hrs/month for reporting requirements) ROI reporting	
6. Other Installation Operating Expenses (explain)	
Subtotal: Installation Operating Expense = (E)	0

| All company adders (G&A/PHMC Fee, MPR, GFS, Overhead, taxes, etc.) (if not contained in above items) | |
| **Total Project Funding Requirements = (C + E)** | 72,845 |

Useful Project Life = (L) **10** Years Time to Implement : __3__ Months

Estimated Project Termination/Disassembly Cost (if applicable) = (D) __0__
(Only for Projects where L < 5 years; D = 0 if L > 5 years)

Return on Investment Calculation
Return on Investment (ROI) % = 41%

\[
ROI = \frac{(B-A) - [(C+E+D)/L]}{(C+E+D)} \times 100 = 41\%
\]

O&M Annual Recurring Costs: Project Funding Requirements:
Annual Costs, Before = 37,240 (B) Capital Investment = 72,845 (C)
Annual Costs, After = 0 (A) Installation Op. Exp = 0 (E)
Net Annual Savings = 37,240 Total Project Funds = (C) + (E) = 72,845

Estimated Project Termination/Disassembly Cost (if applicable) __0__ (D)
(only for Projects where L < 5 years; D = 0 if L > 5 years)

Notes: Before (B) and After (A) are Operating & Maintenance Annual Recurring Costs from Worksheet 1.
PROPOSED UPGRADE FOR ETF POLISHER SYSTEM

Notes For Proposed Upgrade:

Expected flow rate for new water line is 15-20 gpm. The combined flow rate (after new mixing "F") is 35–40 gpm.

Control of new air-operated valve (AV) and new flow control valve (FCV) will be done remotely from Control Room.

Instrument signals from conductivity analyzer are to be transmitted to Control Room via existing BOEs.

Modification of existing piping will be necessary to accommodate new equipment. It may be necessary to relocate FCV-660-146 and FT-665-146.

Material for existing instrument shall be compatible with 4X sulfite acid. The instrument shall provide conductivity readings of 10 and 175 mS/cm with better than 1% accuracy.

New piping shall be 1-1/2 in Schedule 80 PVC, approx 100 ft.

Consider using Centurion diaphragm valve (air open/close) for new AV, Romney flow control valve for new FCV, Romney flow indicator controller (FIC), Badger flow orifice, and Romney conductivity instrument.
Cost Estimate for 200 Area ETF Polisher Upgrade Project

<table>
<thead>
<tr>
<th>Proposed Major Work Activity</th>
<th>Estimated Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>WMH Project Administration: Project mgmt: 40 hr Project engineering: 40 hr Financial admin, safety, contracting, mgmt oversite, admin: 40 hr</td>
<td>$2,050</td>
</tr>
<tr>
<td>WMH Facility Support: Work Control, facility personnel support: 80 hr</td>
<td>$4,100</td>
</tr>
<tr>
<td>Material Procurement: Materials include - Flow limiting orifice, air operated valve, flow control valve, mixing “tee”, conductivity analyzer, associated electronic controllers/transmitters. Approx 100 ft of 1-1/2 in. Sch 80 piping. Material handling fee on Services Contracts/Materials @ 7%</td>
<td>$10,000 +$700</td>
</tr>
<tr>
<td>Material Installation: Labor to install piping and appertances, connect to plant air, electrical and Distributed Control System, program logic changes, etc.: 250 hr x $83/hr FDNW fee @ 5% PHMC equipment adder @ 7%</td>
<td>$20,750 +$1,038 +$1,525</td>
</tr>
<tr>
<td>Acceptance testing, training, procedure mods, etc. 80 hr x $52/hr</td>
<td>$4,160</td>
</tr>
<tr>
<td>FDNW project/construction management, design, safety, financial admin, contracting, mgmt oversite, engineering, admin, etc.: 160 hr x $83/hr FDNW fee @ 5% PHMC equipment adder @ 7%</td>
<td>$13,280 +$664 +$976</td>
</tr>
<tr>
<td>Subtotal</td>
<td>$63,343</td>
</tr>
<tr>
<td>Hanford Site G&A adders @ 15%</td>
<td>$9,502</td>
</tr>
<tr>
<td>Total</td>
<td>$72,845</td>
</tr>
</tbody>
</table>
Pollution Prevention Activity Focal Areas

Pollution Prevention

Source Reduction
- RMMA Reduction/Downposting
- Process/Equipment Modifications
- Material Substitution/Purification
- Procedure/Culture Changes/Good Operating Practices
- Design for Environment/Plan in Design
- Chemical Management and Accountability

Segregation
- Wastewater Sorting/Segregation
- Decontamination for Salvage or Recycling
- Contamination Control/Containment
- Survey for Free-Release
- Loss Prevention/Spill Control
- Establish Authorized Limits for TSD Pathways

Recycle/Reuse
- Beneficial Use/Reuse Onsite
- Beneficial Use/Reuse Offsite
- Material Exchange/Clearinghouse
- PPE Laundering/Reuse
- Solvent/Byproduct Recovery
- Scrap Metal/Equipment Salvage
- Includes Plastics & Computer Software in Recycling Programs

Legend:
- ■ Proven concept with high return; need to continue focus.
- □ Activities with successful results on case-by-case basis; need to investigate opportunities for potential high return.
Appendix E
Glossary
Hazardous Waste:
A solid waste, or combination of wastes, that because of its quantity, concentration, or physical, chemical, or infectious characteristics, may (a) cause or significantly contribute to an increase in mortality or an increase in serious irreversible, or incapacitating reversible illness, or (b) pose a substantial present or potential hazard to human health or the environment when improperly treated, stored, transported, or disposed of, or otherwise managed.

High-Level Radioactive Waste:
Irradiated reactor fuel, liquid wastes resulting from operation of the first cycle solvent extraction system or equivalent, and the concentrated wastes from subsequent extraction cycles or equivalent in a facility for reprocessing irradiated reactor fuel, and solids into which such liquid wastes have been converted. (10 CFR 60.2)

Low-Level Radioactive Waste:
Radioactive waste not classified as high-level waste, transuranic waste, spent nuclear fuel, or byproduct material (specified as uranium or thorium tailings and waste in accordance with DOE Order 5820.2A).

Mixed Waste:
Waste that contains both radioactive and hazardous components, as defined by the Atomic Energy Act, Toxic Substances Control Act, or Resource Conservation and Recovery Act. Mixed waste is further defined here as transuranic mixed, low-level mixed, and Toxic Substances Control Act regulated hazardous mixed.

MTSCA:
Radioactive waste mixed with TSCA waste.

Pollution Prevention:
Preventing or reducing the generation of pollutants, contaminants, hazardous substances, or wastes at the source, or reducing the amount for treatment, storage, and disposal through recycling.

Recycling/Reuse:
The use, reuse, or reclamation of waste materials.

Resource Conservation and Recovery Act (RCRA) regulated:
Solid waste, not specifically excluded from regulation under 40 CFR 261.4, or delisted by petition, that is either a listed hazardous waste (40 CFR 261.30 - 261.33) or exhibits the characteristics of a hazardous waste (40 CFR 261.20 - 261.24).

Return-On-Investment (ROI) Pollution Prevention Projects:
Specific pollution prevention projects that rapidly pay for themselves (preferably in two years or fewer) through reducing future pollutant generation.

Sanitary Waste:
Wastes, such as garbage, that are generated by normal housekeeping activities and are not hazardous or radioactive.
Segregation:
The practice of separating or isolating contaminated materials from non-contaminated materials, or the separation/isolation of one waste type from another in an attempt to minimize the amount of the more noxious (and costly) material for disposal.

Source Reduction:
Equipment or technology selection or modification, process, or procedure modification; reformulation or redesign of products; substitution of raw materials; and improvements in housekeeping, maintenance, training, or inventory control. Increased efficiency in the use of raw materials, energy, water, or other resources, including affirmative procurement. Protection of natural resources by conservation.

State Regulated:
Any other hazardous waste not specifically regulated under RCRA, which may be regulated by State or local authorities, such as used oil.

Toxic Substances Control Act (TSCA) Regulated:
Individual chemical wastes (both liquid and solid), such as polychlorinated biphenyls, which are regulated by the Toxic Substances Control Act.

Transuranic Waste:
Waste that is contaminated with alpha-emitting radionuclides with an atomic number greater than 92 (heavier than uranium), half-lives greater than 20 years, and concentrations greater than 100 nanocuries per gram of waste.

Treatment/Volume Reduction:
Any method, technique, or process, including neutralization, designed to change the physical, chemical, or biological character or composition of any hazardous, radioactive, or sanitary wastes, so as to neutralize, recover energy or material resources from the waste; to render the waste nonhazardous, safer to transport, store, or dispose; to render the waste amenable for recovery or storage; or to reduce its volume.

URL:
Uniform Resource Locator.

Waste Minimization:
An action that economically avoids or reduces the generation of waste by source reduction, reducing the toxicity of hazardous waste, improving energy usage, or recycling. This action will be consistent with the general goal of minimizing present and future threats to human health, safety, and the environment.

Waste Stream:
A waste or group of wastes with similar physical form, radiological properties, Environmental Protection Agency waste codes, or associated Land Disposal Restriction treatment standards. The waste or group of wastes may be the result of one or more processes or operations.

Waste Type:
Definition of waste based on physical properties or characteristics (e.g., high-level, transuranic, low-level radioactive, low-level mixed, hazardous, or sanitary).
Number of Copies

ONSITE

12 U.S. Department of Energy, Richland Operations Office
 A. V. Beard S7-55
 M. A. Barnard K8-50
 V. F. Boston A5-11
 E. M. Bowers S7-55
 M. E. Burandt K8-50
 D. H. Chapin R3-79
 M. S. Collins A5-18
 R. S. Mercado A2-45
 J. H. Zeisloft Jr. H0-12
 Hanford Technical Library P8-55
 Public Reading Room H2-53

3 U.S. Department of Energy, Office of River Protection
 D. W. Bowser H6-60
 R. T. French H6-60
 R. R. McNulty H6-60

2 Bechtel Hanford Inc.
 D. K. Duvon H0-02
 R. J. Landon H0-02

140 Fluor Project Hanford
 B. M Akers G5-54
 D. J. Alexander S3-30
 E. S. Aromi H6-10
 B. A. Austin H8-67
 B. M. Barnes T4-04
 M. D. Betsch H6-06
 J. M. Bishop L6-26
 R. L. Bisping H6-06
 R. J. Boom (100) H6-06
 H. C. Boynton T4-52
 J. E. Bramson T5-54
 J. B. Buckley T3-04
 J. G. Coenenberg T4-04
 B. J. Dixon G3-26
Fluor Project Hanford (cont'd)

<table>
<thead>
<tr>
<th>Name</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>G. E. Entrop</td>
<td>T5-54</td>
</tr>
<tr>
<td>R. G. Gant</td>
<td>X3-79</td>
</tr>
<tr>
<td>C. J. Grando</td>
<td>L6-04</td>
</tr>
<tr>
<td>B. Griffin II</td>
<td>T6-30</td>
</tr>
<tr>
<td>C. R. Haas</td>
<td>T3-28</td>
</tr>
<tr>
<td>A. E. Hill</td>
<td>N2-57</td>
</tr>
<tr>
<td>K. C. Hinkleman</td>
<td>G1-10</td>
</tr>
<tr>
<td>J. E. Hodgson</td>
<td>T3-04</td>
</tr>
<tr>
<td>T. M. Holmes</td>
<td>G3-60</td>
</tr>
<tr>
<td>G. S. Hunacek</td>
<td>X3-79</td>
</tr>
<tr>
<td>R. A. Kaldor</td>
<td>H5-25</td>
</tr>
<tr>
<td>L. D. Kamberg</td>
<td>T3-28</td>
</tr>
<tr>
<td>S. E. Killoy</td>
<td>N2-57</td>
</tr>
<tr>
<td>G. J. LeBaron</td>
<td>S4-49</td>
</tr>
<tr>
<td>C. E. Marple</td>
<td>N1-23</td>
</tr>
<tr>
<td>P. W. Martin</td>
<td>T3-04</td>
</tr>
<tr>
<td>D. H. Nichols</td>
<td>H6-06</td>
</tr>
<tr>
<td>B. G. Place</td>
<td>H6-06</td>
</tr>
<tr>
<td>D. E. Rasmussen</td>
<td>L1-04</td>
</tr>
<tr>
<td>P. Segall</td>
<td>H6-06</td>
</tr>
<tr>
<td>F. M. Simmons</td>
<td>S6-81</td>
</tr>
<tr>
<td>S. M. Steele</td>
<td>X3-67</td>
</tr>
<tr>
<td>R. W. Szelmeczka</td>
<td>S6-72</td>
</tr>
<tr>
<td>J. E. Turnbaugh</td>
<td>X3-79</td>
</tr>
<tr>
<td>L. O. Waggoner</td>
<td>S0-19</td>
</tr>
<tr>
<td>D. J. Watson</td>
<td>X3-79</td>
</tr>
</tbody>
</table>

Fluor Project Hanford Northwest

<table>
<thead>
<tr>
<th>Name</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. L. Newell</td>
<td>B4-68</td>
</tr>
</tbody>
</table>

Hanford Environmental Health Foundation

<table>
<thead>
<tr>
<th>Name</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. M. McInturff</td>
<td>H1-77</td>
</tr>
</tbody>
</table>

Lockheed Martin Services, Inc.

<table>
<thead>
<tr>
<th>Name</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central Files</td>
<td>B1-07</td>
</tr>
<tr>
<td>DPC</td>
<td>H6-08</td>
</tr>
</tbody>
</table>

Pacific Northwest National Laboratory

<table>
<thead>
<tr>
<th>Name</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. V. Alderson</td>
<td>P7-79</td>
</tr>
</tbody>
</table>

River Protection Project

<table>
<thead>
<tr>
<th>Name</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. J. Brown</td>
<td>R1-51</td>
</tr>
<tr>
<td>P. C. Miller</td>
<td>R1-51</td>
</tr>
</tbody>
</table>