Interface deformation in low reynolds number multiphase flows: Applications to selected problems in geodynamics

PDF Version Also Available for Download.

Description

Flow in the mantle of terrestrial planets produces stresses and topography on the planet`s surface which may allow us to infer the dynamics and evolution of the planet`s -interior. This project is directed towards understanding the relationship between dynamical processes related to buoyancy-driven flow and the observable expression (e.g. earthquakes, surface topography) of the flow. Problems considered include the ascent of mantle plumes and their interaction with compositional discontinuities, the deformation of subducted slabs, and effects of lateral viscosity variations on post-glacial rebound. We find that plumes rising from the lower mantle into a lower-viscosity upper mantle become extended vertically. ... continued below

Physical Description

4 p.

Creation Information

Gable, C.; Travis, B.J.; O`Connell, R.J. & Stone, H.A. June 1, 1995.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Authors

Sponsor

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Flow in the mantle of terrestrial planets produces stresses and topography on the planet`s surface which may allow us to infer the dynamics and evolution of the planet`s -interior. This project is directed towards understanding the relationship between dynamical processes related to buoyancy-driven flow and the observable expression (e.g. earthquakes, surface topography) of the flow. Problems considered include the ascent of mantle plumes and their interaction with compositional discontinuities, the deformation of subducted slabs, and effects of lateral viscosity variations on post-glacial rebound. We find that plumes rising from the lower mantle into a lower-viscosity upper mantle become extended vertically. As the plume spreads beneath the planet`s surface, the dynamic topography changes from a bell-shape to a plateau shape. The topography and surface stresses associated . with surface features called arachnoids, novae and coronae on Venus are consistent with the surface expression of a rising and spreading buoyant volume of fluid. Short wavelength viscosity variations, or sharp variations of lithosphere thickness, have a large effect on surface stresses. This study also considers the interaction and deformation of buoyancy-driven drops and bubbles in low Reynolds number multiphase systems. Applications include bubbles in magmas, the coalescence of liquid iron drops during core formation, and a wide range of industrial applications. Our methodology involves a combination of numerical boundary integral calculations, experiments and analytical work. For example, we find that for deformable drops the effects of deformation result in the vertical alignment of initially horizontally offset drops, thus enhancing the rate of coalescence.

Physical Description

4 p.

Notes

OSTI as DE95012953

Source

  • Other Information: PBD: [1995]

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE95012953
  • Report No.: LA-SUB--95-55
  • Grant Number: W-7405-ENG-36
  • DOI: 10.2172/80379 | External Link
  • Office of Scientific & Technical Information Report Number: 80379
  • Archival Resource Key: ark:/67531/metadc741170

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 1, 1995

Added to The UNT Digital Library

  • Oct. 19, 2015, 7:39 p.m.

Description Last Updated

  • July 28, 2016, 7:35 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Gable, C.; Travis, B.J.; O`Connell, R.J. & Stone, H.A. Interface deformation in low reynolds number multiphase flows: Applications to selected problems in geodynamics, report, June 1, 1995; New Mexico. (digital.library.unt.edu/ark:/67531/metadc741170/: accessed August 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.