EFFECTS OF FLY ASH ON MERCURY OXIDATION DURING POST COMBUSTION CONDITIONS

PDF Version Also Available for Download.

Description

Tests were performed in simulated flue gas streams using fly ash from the electrostatic precipitators of two full-scale utility boilers. One fly ash was from a Powder River Basin (PRB) coal, while the other was from Blacksville coal. Elemental Hg was injected upstream from samples of fly ash loaded onto filters housed in an oven at 120 or 180 C. Concentrations of oxidized and elemental Hg downstream from the filters were determined using the Ontario Hydro method. The gas stream composition and whether or not ash was present in the gas stream were the two most important variables affecting Hg ... continued below

Physical Description

60 pages

Creation Information

Norton, Glenn A.; Yang, Hongqun; Brown, Robert C.; Laudal, Dennis L.; Dunham, Grant E.; Erjavec, John et al. January 31, 2002.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Tests were performed in simulated flue gas streams using fly ash from the electrostatic precipitators of two full-scale utility boilers. One fly ash was from a Powder River Basin (PRB) coal, while the other was from Blacksville coal. Elemental Hg was injected upstream from samples of fly ash loaded onto filters housed in an oven at 120 or 180 C. Concentrations of oxidized and elemental Hg downstream from the filters were determined using the Ontario Hydro method. The gas stream composition and whether or not ash was present in the gas stream were the two most important variables affecting Hg oxidation. The presence of HCl, NO, NO{sub 2}, and SO{sub 2} were all important with respect to Hg oxidation, with NO{sub 2} and HCl being the most important. The presence of NO suppressed Hg oxidation in these tests. Although the two fly ashes were chemically and mineralogically diverse, there were generally no large differences in catalytic potential (for oxidizing Hg) between them. Similarly, no ash fraction appeared to be highly catalytic relative to other ash fractions. This includes fractions enriched in unburned carbon and fractions enriched in iron oxides. Although some differences of lesser magnitude were observed in the amount of oxidized Hg formed, levels of oxidized Hg generally tracked well with the surface areas of the different ashes and ash fractions. Therefore, although the Blacksville fly ash tended to show slightly more catalytic activity than the PRB fly ash, this could be due to the relatively high surface area of that ash. Similarly, for Blacksville fly ash, using nonmagnetic ash resulted in more Hg oxidation than using magnetic ash, but this again tracked well with the relative surface areas of the two ash fractions. Test results suggest that the gas matrix may be more important in Hg oxidation chemistry than the fly ash composition. Combustion tests were performed in which Blacksville and PRB fly ashes were injected into filtered (via a baghouse with Teflon bags) flue gas obtained while firing PRB coal in a 35 kW combustor. The Ontario Hydro method was used to determine the Hg speciation after fly ash injection. Wall effects in the combustor complicated interpretation of testing data, although a number of observations could still be made. The amount of Hg collected in the Ontario Hydro impingers was lower than anticipated, and is probably due to sorption of Hg by the fly ash. While firing PRB coal without any ash injection, the percent oxidized Hg in the gas stream was fairly high (average of 63%). The high levels of vapor phase oxidized Hg in these base line tests may be due to catalytic effects from the refractory materials in the combustor. When PRB fly ash was injected into a filtered PRB flue gas stream, the percentage of oxidized Hg in the gas stream decreased dramatically. Decreases in the percentage of oxidized Hg were also observed while injecting Blacksville fly ash, but to a lesser extent. Injecting whole Blacksville fly ash into the filtered PRB flue gas appeared to result in greater concentrations of oxidized Hg relative to the tests where whole PRB fly ash was injected. However, because the Blacksville fly ash has a relatively high surface area, this may be only a surface area effect.

Physical Description

60 pages

Notes

OSTI as DE00793526

Source

  • Other Information: PBD: 31 Jan 2002

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: FG26-98FT40111--03
  • Grant Number: FG26-98FT40111
  • DOI: 10.2172/793526 | External Link
  • Office of Scientific & Technical Information Report Number: 793526
  • Archival Resource Key: ark:/67531/metadc741154

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • January 31, 2002

Added to The UNT Digital Library

  • Oct. 19, 2015, 7:39 p.m.

Description Last Updated

  • March 21, 2016, 1:04 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Norton, Glenn A.; Yang, Hongqun; Brown, Robert C.; Laudal, Dennis L.; Dunham, Grant E.; Erjavec, John et al. EFFECTS OF FLY ASH ON MERCURY OXIDATION DURING POST COMBUSTION CONDITIONS, report, January 31, 2002; Pittsburgh, Pennsylvania. (digital.library.unt.edu/ark:/67531/metadc741154/: accessed December 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.