The design verification method for SS/SC components is by independent review in accordance with EN-6-027-01. Documentation of this review is accomplished by the independent reviewer approval signature on page 1 of this EDT.

Item No. SNF-6263
Title or Description of Data Transmitted Diesel Generator Control Panel Components: Wiring, Terminals

15. DATA TRANSMITTED

1. Approval
2. Release
3. Information
4. Review
5. Post-Review
6. Dist. (Receipt Acknow. Required)

16. KEY

1. Approved
2. Approved w/comment
3. Disapproved w/comment
4. Reviewed no/comment
5. Reviewed w/comment
6. Receipt acknowledged

17. SIGNATURE/DISTRIBUTION

(See Approval Designator for required signatures)

18. Signature of EDT Originator

T. Nuxall

BD-7400-172-2 (10/97)
Diesel Generator Control
Panel Components: Wiring, Terminals

Prepared for the U.S. Department of Energy
Assistant Secretary for Environmental Management

Project Hanford Management Contractor for the
U.S. Department of Energy under Contract DE-AC06-99RL13200

Fluor Hanford
P.O. Box 1000
Richland, Washington

Approved for public release; further dissemination unlimited
Section 1 Part Information

<table>
<thead>
<tr>
<th>Item No.:</th>
<th>N/A</th>
<th>Manufacturer: N/A</th>
<th>Supplier: N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mfg. Part/Model No.:</td>
<td>N/A</td>
<td>Supplier's P/N: N/A</td>
<td></td>
</tr>
</tbody>
</table>

Part Description: N/A

End Use Description: N/A

Section 2a Component Information

<table>
<thead>
<tr>
<th>Equipment No.: Diesel Generator Control Panel Components: Wiring and cable, Terminals</th>
<th>Specification No.:</th>
<th>Manufacturer: Thermo-O-Link Inc. & Panduit Corp.</th>
<th>Past P.O. No.: N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procurement and/or Model No.: SIS-12-65-T</td>
<td>SNF/CSB spec for Diesel Generator</td>
<td></td>
<td>N/A</td>
</tr>
</tbody>
</table>

Equipment Supplier (if different from manufacturer): N/A

Equip. Supplier's Part No.: N/A

Component Description: Diesel Generator Control Panel - electrical distribution materials

Section 2b Commercial Availability of the Item

1. Is the Item available from a catalogue from a qualified NQA supplier or ISO 9000 supplier (coordinate with project CGI interface Engineer or BTR)?

 [] YES (go to #2 below)

 [X] NO (go to procedure step 6.3.2, proceed to dedicate Item)

 If not available from a qualified NQA supplier, is it available from an ISO 9000 supplier? (coordinate w/ project CGI interface Engineer or BTR):

 [] YES (go to #2 below, dedicate Item)

 [X] NO (dedicate Item)

2. List of Candidate qualified suppliers or ISO 9000 suppliers: N/A

Recommended Procurement Strategy: N/A

Section 2c CGI Determination

CGI Determination Questions:

#1: Is the Item subject to design or specification requirements that are unique to nuclear facilities or activities?

[] YES (the item is not commercial grade)

[X] NO (continue)

#2: Is the Item used in applications other than nuclear facilities or activities?

[] NO (the item is not commercial grade)

[X] YES (continue)

#3: Is the Item ordered from manufacturer-supplier on the basis of specifications set forth in the manufacturer's catalog?

[] NO (the item is not commercial grade)

[X] YES (continue)

[X] All three criteria have been satisfied. The item meets the definition of commercial grade.

Section 2d Reason for Dedication

The above Commercial Grade (CG) described Item is being Dedicated for use in the application cited for the following reason(s):

- Item is being purchased from a non-ESL manufacturer supplier as CG to be used in a Safety Class application.

- Item is being purchased from a non-ESL manufacturer supplier as CG to be used in a Safety Significant application.

- Item was purchased from a non-ESL manufacturer supplier as CG to be used in a Safety Class application.

- Item was purchased from a non-ESL manufacturer supplier as CG to be used in a Safety Significant application.

- X Item was purchased from a non-ESL manufacturer supplier as CG to be used in a Safety Significant application.

- Other ('like-for-like', similar, substitution, replacement evaluation)
Section 3 Failure Effects Evaluation

A. Part/Component Safety Function:

1. Provide power supply to instruments and signal channels from safety related instruments in the control panel that provides and maintains standby electrical power to the Cold Vacuum Drying Facility.

<table>
<thead>
<tr>
<th>Safety Function #1:</th>
<th>Active</th>
<th>Passive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety Function #2:</td>
<td>Active</td>
<td>Passive</td>
</tr>
<tr>
<td>Safety Function #3:</td>
<td>Active</td>
<td>Passive</td>
</tr>
</tbody>
</table>

B. Part/Component Functional Mode:

- Safety Function #1: Active, Passive
- Safety Function #2: Active, Passive
- Safety Function #3: Active, Passive

Active - Mechanical or Electrical change of state is required to occur for the component to perform its safety function

Passive - Change of state is not required for the component to perform its safety function

C. Host Component Safety Function (if applicable): N/A

D. Failure Mode(s) and the effects on component or system safety function (see Worksheet 1):

1. Fracture, material fatigue, insulation breakdown or loose connection leads to wiring short/open circuit and loss of signal channel.

Section 4 Environmental & Natural Phenomena Hazard Design

<table>
<thead>
<tr>
<th>Environmental Qualification Required:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
</tr>
<tr>
<td>No</td>
</tr>
</tbody>
</table>

Natural Phenomena Hazard (NPH) Design Required:

<table>
<thead>
<tr>
<th>Yes</th>
<th>If yes: NPH Design Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>HNF-PRO-97, Rev. 0, W-441-C1</td>
</tr>
</tbody>
</table>

Section 5 Component Functional Classification

<table>
<thead>
<tr>
<th>Safety Class (SC)</th>
<th>General Service</th>
<th>Safety Significant (SS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If part/component classification is different from host component/system, document basis. N/A

Sections 6 and 7 (Reserved)

Section 8 References (for Functional Classification)

- National Codes/Standards: NEC
- Safety Analysis Report (SAR): HNF-3553, Rev. 0/Annex B
- Drawings: H-1-83978, Sht. 2, O/M Manual (Nutherm DWG. 59723)
- Vendor Manual/Manufacturer/Supplier Information: Catalog Cut Sheets – Therm-O-Link Inc. Panduit Corp.

4/26/00
Section 9: Critical Characteristics

Wiring/Cable:

<table>
<thead>
<tr>
<th>Critical Characteristics</th>
<th>Acceptance Criteria/Tolerances</th>
<th>Acc. Method</th>
<th>ID</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Item Identification Critical Characteristics (necessary for reasonable assurance that the item delivered is the item specified)</td>
<td>Therm-O-Link, Inc.</td>
<td>1, IN</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Manufacturer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model Number, Size</td>
<td>SIS-12-65-T</td>
<td>1, IN</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2. Physical Critical Characteristics (for reasonable assurance that the item delivered is the item specified)</td>
<td>UL12 ga. SIS 90°C 600V, Nominal 0.162", 65 strand, tinned conductor</td>
<td>1, IN</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SIS-12-65-T; Markings, O.D., No. of Strands, material</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Terminals:

<table>
<thead>
<tr>
<th>Critical Characteristics</th>
<th>Acceptance Criteria/Tolerances</th>
<th>Acc. Method</th>
<th>ID</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Item Identification Critical Characteristics (necessary for reasonable assurance that the item delivered is the item specified)</td>
<td>Panduit corp.</td>
<td>1, IN</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Manufacturer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model No.</td>
<td>PN10-10R</td>
<td>1, IN</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2. Physical Critical Characteristics (for reasonable assurance that the item delivered is the item specified)</td>
<td>PN10-10R; Terminal Stud size/ Color code/ Nominal dimensions “A” & “W” / rating</td>
<td>1, IN</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>PN10-10R; Terminal Stud size/ Color code/ Nominal dimensions “A” & “W” / rating</td>
<td>10 / Yellow / Nominal 1.08 inch, 0.38inch / 600V, ≥ 90°C</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All Items:

3. Performance Critical Characteristics (for reasonable assurance that the item will perform its intended safety function(s))

<table>
<thead>
<tr>
<th>Environmental</th>
<th>Seismic Condition A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note 1</td>
<td>Note 2</td>
</tr>
</tbody>
</table>

Notes and Legend:

1. These materials are not subject to degradation at 60°F and 40% RH or 75°F and 25% RH and are suitable for Condition A Application.

2. Maintain critical function before and after Seismic event. Seismic certification does not apply to wiring and terminals. Wiring installation has been seismically certified by analysis (Ref. Nutherm Report #7713-SCE submittal W-379-1015))

Section 10: Initial Review and Approval

Approvals:
Designated Engineer: H. K. H. 4/26/00
QA Engineer: H. M. C. 4/26/00
Design Authority: 4/26/00

Acceptance Method:
1. Special Test and Inspection
 1. IN for Inspection
 1. T for Test
2. Commercial Grade Survey
3. Source Verification
4. Vendor/Item History

4/26/00
WORKSHEET 1

DETERMINATION OF FAILURE MECHANISMS

<table>
<thead>
<tr>
<th>Typical Failure Mechanisms</th>
<th>Definition</th>
<th>X = Applicable to Component under Evaluation</th>
<th>X? Indicate Failure Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fracture</td>
<td>Separation of a solid accompanied by little or no macroscopic plastic deformation.</td>
<td>X</td>
<td>Fracture or material fatigue-loss of signal channel provided by the wiring</td>
</tr>
<tr>
<td>Corrosion</td>
<td>The gradual deterioration of a material due to chemical or electrochemical reactions, such as oxidation, between the material and its environment.</td>
<td>X</td>
<td>Deterioration of the insulation resulting in a short and loss of power.</td>
</tr>
<tr>
<td>Erosion</td>
<td>Destruction of materials by the abrasive action of moving fluids, usually accelerated by the presence of solid particles carried with the fluid.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open Circuit</td>
<td>An electrical circuit that is unintentionally broken so that there is no complete path for current flow.</td>
<td>X</td>
<td>An unintentional break of the wire would result in a loss of power.</td>
</tr>
<tr>
<td>Short Circuit</td>
<td>An abnormal connection by which an electrical current is connected to ground, or to some conducting body, resulting in excessive current flow.</td>
<td>X</td>
<td>An unintentional connection to ground would result in a loss of power.</td>
</tr>
<tr>
<td>Blockage</td>
<td>Clogging of a filtering medium resulting in the inability to perform its purification function or blockage of flow.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seizure</td>
<td>Binding of a normally moving item through excessive pressure, temperature, friction, jamming.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unacceptable Vibration</td>
<td>Mechanical oscillations produced are beyond the defined permissible limits due to unbalancing, poor support, or rotation at critical speeds.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loss of Properties</td>
<td>A loss of mechanical and physical properties of a material due to exposure to high temperatures, radiation exposure.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excess Strain</td>
<td>Under the action of excessive external forces the material of the part has been deformed or distorted.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical Creep</td>
<td>From prolonged exposure to high temperature and stress, the object will show a slow change in its physical (shape and dimension) and mechanical characteristics.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ductile Fracture</td>
<td>Fracture characterized by tearing of metal accompanied by appreciable gross plastic deformation.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Section 2 Additional Failure Modes Applicable to the Component Under Evaluation:

1. Structural Failure that affects neighboring SS or SC SSCs.
Checklist 1 – Acceptance Method 1 – Special Test/Inspection Verification

<table>
<thead>
<tr>
<th>Item Description: Diesel Generator Control Panel</th>
<th>Equip #: DG Cntl. Pln. Components: Wiring and cable, Terminal Procurement and/or Model #: SIS-12-65-T, PN10-10R</th>
</tr>
</thead>
<tbody>
<tr>
<td>System #: 20-6</td>
<td>Supplier (Address/Phone): Therm-O-Link Inc. & Panduit</td>
</tr>
</tbody>
</table>

SECTION 2 CRITICAL CHARACTERISTICS TO BE VERIFIED BY METHOD 1.

<table>
<thead>
<tr>
<th>Inspec. Test</th>
<th>Section 2 Critical Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>1. Manufacturer</td>
</tr>
<tr>
<td>X</td>
<td>2. Model Number</td>
</tr>
<tr>
<td>X</td>
<td>3. Markings, O.D., No. of strands, material</td>
</tr>
<tr>
<td>X</td>
<td>4. Terminal Stud size/ Color code/ Nominal dimensions “A” & “W” / rating</td>
</tr>
</tbody>
</table>

SECTION 3 BY INSPECTION * See Attachment H, Table H-1 of Desk Instruction for Sampling Size, References (See Section 7)

<table>
<thead>
<tr>
<th>Wiring/Cable:</th>
<th>Characteristic: Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceptance Criteria: Therm-O-Link Inc.</td>
<td>Receipt inspection Plan / Report #.</td>
</tr>
<tr>
<td>Characteristic: Markings, Model Number, Size, No strands, material</td>
<td>Receipt Inspection Plan / Report #:</td>
</tr>
<tr>
<td>Acceptance Criteria: UL, SIS-12-65-T, 90°C 12 ga, 65 strand, tinned conductor</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Characteristic: Termination:</th>
<th>Acceptance Criteria: Panduit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Size*: 100%</td>
<td>Receipt Inspection Plan / Report #:</td>
</tr>
<tr>
<td>Characteristic: Model Number, Terminal size, Color code, Nominal dimensions “A” & “W”, rating</td>
<td></td>
</tr>
<tr>
<td>Acceptance Criteria: PN10-10R, 10, yellow, 1.08” & 0.38, 600V, ≥ 90°C</td>
<td>Receipt Inspection Plan / Report #:</td>
</tr>
<tr>
<td>Sample Size*: 100%</td>
<td></td>
</tr>
</tbody>
</table>

Section 4 By Special Test: * See Attachment H, Table H-1 of Desk Instruction for Sampling Size, References (See Section 7)

<table>
<thead>
<tr>
<th>Characteristic for Test:</th>
<th>Acceptance Criteria:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Size*:</td>
<td>Normal</td>
</tr>
<tr>
<td>Actual Test Value:</td>
<td>Test Plan and Report #:</td>
</tr>
</tbody>
</table>

If Supplier/Manufacturer or Other, Refer to CGI Checklist-2 for Support Information
Section 5 Test / Inspection Summary (Acceptance Method 1)

1. Summary Of Verified Critical Characteristics, Their Verification Methods, and Results

ITEM DESCRIPTION: Wiring and Cable

<table>
<thead>
<tr>
<th>Critical Characteristics</th>
<th>Critical Characteristic</th>
<th>Acceptance Criteria/Tolerances</th>
<th>ID</th>
<th>Function</th>
<th>Method Type</th>
<th>Procedure or RRF</th>
<th>Checklist ID</th>
<th>Number Tested</th>
<th>Number Failed</th>
<th>Verifying Organization</th>
<th>Printed Name & Signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer</td>
<td>Therm-O-Link, Inc.</td>
<td>X</td>
<td></td>
<td></td>
<td>1, IN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model No., Size, Type</td>
<td>SIS-12-65-T, 12 ga. SIS</td>
<td>X</td>
<td></td>
<td></td>
<td>1, IN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIS-12-65-T: Markings, O.D., No. of Strands, material</td>
<td>UL, SIS, 12ga. 0.162, 65 strand, tinned conductor, 90°C 600V</td>
<td>X</td>
<td></td>
<td></td>
<td>1, IN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Disposition Of Unverified or Failed Critical Characteristics

<table>
<thead>
<tr>
<th>Critical Characteristic</th>
<th>Disposition</th>
</tr>
</thead>
</table>

3. Signature Indicates All Critical Characteristics Verified Satisfactory or Acceptably Dispositioned and Commercial Grade Dedication Is Satisfactory and Complete.

Testing Agency Approval: _______________________________ Date: _________________ Design Authority: _______________________________ Date: _________________

Testing Agency QA Engineer: ____________________________ Date: _________________ QA Engineer: _______________________________ Date: _________________
Section 5 Test/Inspection Summary (Acceptance Method 1)

ITEM DESCRIPTION: Disconnect Switch

<table>
<thead>
<tr>
<th>Critical Characteristics</th>
<th>Acceptance Criteria/Tolerances</th>
<th>ID</th>
<th>Function</th>
<th>Method</th>
<th>T/IN</th>
<th>Procedure or R#</th>
<th>Check-Test ID</th>
<th>Number Tested</th>
<th>Number Failed</th>
<th>Verifying Organization</th>
<th>Printed Name Signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer</td>
<td>Panduit</td>
<td>X</td>
<td>1, IN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model No.</td>
<td>PN10-19R</td>
<td>X</td>
<td>1, IN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PN-10-10R; Terminal</td>
<td>16, yellow, Nominal 1.08</td>
<td>X</td>
<td>1, IN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>stud size, Color code,</td>
<td>inch,</td>
<td></td>
</tr>
<tr>
<td>dimensions "A" & "W"</td>
<td></td>
</tr>
</tbody>
</table>

2. Disposition Of Unverified or Failed Critical Characteristics

<table>
<thead>
<tr>
<th>Critical Characteristic</th>
<th>Disposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verify documentation for terminal rating for 800V ≥ 90°C</td>
<td></td>
</tr>
</tbody>
</table>

3. Signature Indicates All Critical Characteristics Verified Satisfactory or Acceptably Dispositioned and Commercial Grade Dedication is Satisfactory and Complete.

<table>
<thead>
<tr>
<th>Testing Agency Approval:</th>
<th>Date</th>
<th>Design Authority:</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testing Agency QA Engineer:</td>
<td>Date</td>
<td>QA Engineer:</td>
<td>Date</td>
</tr>
</tbody>
</table>
Section 6: Contacts / Phone Numbers

<table>
<thead>
<tr>
<th>Title</th>
<th>Name</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Authority</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cog - Engineer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CGI Engineer</td>
<td>Carl van Katwijk</td>
<td>376-9385</td>
</tr>
<tr>
<td>Procurement Engineer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Section 7: Supporting Documentation for This Checklist

<table>
<thead>
<tr>
<th>Initial Procurement Documents</th>
<th>For Critical Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drawings:</td>
<td></td>
</tr>
<tr>
<td>Manuals (specify type & number):</td>
<td></td>
</tr>
<tr>
<td>Design Calculations</td>
<td></td>
</tr>
<tr>
<td>Installation Instructions</td>
<td></td>
</tr>
<tr>
<td>Operation Instructions</td>
<td></td>
</tr>
<tr>
<td>Calibration Instructions</td>
<td></td>
</tr>
<tr>
<td>Manufacturer's Recommended Spare Parts List</td>
<td></td>
</tr>
<tr>
<td>X Other: Catalog Cut Sheets Therm-O-Link and Panduit</td>
<td>All</td>
</tr>
</tbody>
</table>

Procurement Documents

- Certificate of Conformance/Compliance
- Seismic Qualification Certificate
- Environmental Qualification Certificate
- Test Report(s):
- Inspection Report(s):
- CMTRs for ASME Pressure Retaining Materials
- Valve Seat Leakage Report
- Weld Records
- Material Traceability Record
- Other:
DISTRIBUTION SHEET

To: Distribution
From: SNF-CVD
Page: 1 of 1
Date: 4/25/00
EDT No.: 629023
ECN No.: N/A

Project Title/Work Order:
W-441, CGI Package

<table>
<thead>
<tr>
<th>Name</th>
<th>MSIN</th>
<th>Text With All Attach.</th>
<th>Text Only</th>
<th>Attach/Appendix Only</th>
<th>EDT/ECN Only</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. Whitehurst</td>
<td>R3-86</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G. Singh</td>
<td>R3-86</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. Artzer (CVD Library)</td>
<td>R3-86</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R. Ramsgate</td>
<td>R3-86</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J. Brehm</td>
<td>R3-26</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. Beaudet</td>
<td>S8-07</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. Morrell (AVS)</td>
<td>G1-50</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. Evarts (AI)</td>
<td>N1-29</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. Price</td>
<td>R3-26</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNF Startup</td>
<td>B2-64</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNF Project Files</td>
<td>R3-11</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNF Satellite Library</td>
<td>X3-25</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. Van Katwijk</td>
<td>R3-47</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. Whitworth</td>
<td>R3-11</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T. Nuxall</td>
<td>R3-86</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. Miska</td>
<td>R3-86</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>