Subcooled Boiling Near a Heated Wall

PDF Version Also Available for Download.

Description

Experimental measurements of void fraction, bubble frequency, and velocity are obtained in subcooled R-134a flowing over a heated flat plate near an unheated wall and compared to analytical predictions. The measurements were obtained for a fixed system pressure and mass flow rate (P = 2.4 MPa and w = 106 kg/hr) at various inlet liquid temperatures. During the experiments, electrical power was applied at a constant rate to one side of the test section. The local void fraction data, acquired with a hot-film anemometer probe, showed the existence of a significant peak near the heated wall and a smaller secondary ... continued below

Physical Description

1237 Kilobytes pages

Creation Information

Trabold, T.A.; Maneri, C.C.; Vassallo, P.F. & Considine, D.M. October 27, 2000.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

  • Lockheed Martin
    Publisher Info: Lockheed Martin Corporation, Schenectady, NY 12301 (United States)
    Place of Publication: Schenectady, New York

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Experimental measurements of void fraction, bubble frequency, and velocity are obtained in subcooled R-134a flowing over a heated flat plate near an unheated wall and compared to analytical predictions. The measurements were obtained for a fixed system pressure and mass flow rate (P = 2.4 MPa and w = 106 kg/hr) at various inlet liquid temperatures. During the experiments, electrical power was applied at a constant rate to one side of the test section. The local void fraction data, acquired with a hot-film anemometer probe, showed the existence of a significant peak near the heated wall and a smaller secondary peak near the unheated wall for the larger inlet subcoolings. Local vapor velocity data, taken with the hot-film probe and a laser Doppler velocimeter, showed broad maxima near the centerline between the heated and unheated plates. Significant temperature gradients near the heated wall were observed for large inlet subcooling. Bubble size data, inferred from measurements of void fraction, bubble frequency and vapor velocity, when combined with the measured bubble chord length distributions illustrate the transition from pure three dimensional spherical to two-dimensional planar bubble flow, the latter being initiated when the bubbles fill the gap between the plates. These various two-phase flow measurements were used for development of a multidimensional, four-field calculational method; comparisons of the data to the calculations show reasonable agreement.

Physical Description

1237 Kilobytes pages

Notes

OSTI as DE00821308

Source

  • Other Information: PBD: 27 Oct 2000

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: LM-00K084
  • Grant Number: AC12-00SN39357
  • DOI: 10.2172/821308 | External Link
  • Office of Scientific & Technical Information Report Number: 821308
  • Archival Resource Key: ark:/67531/metadc740945

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • October 27, 2000

Added to The UNT Digital Library

  • Oct. 18, 2015, 6:40 p.m.

Description Last Updated

  • April 28, 2016, 9:44 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Trabold, T.A.; Maneri, C.C.; Vassallo, P.F. & Considine, D.M. Subcooled Boiling Near a Heated Wall, report, October 27, 2000; Schenectady, New York. (digital.library.unt.edu/ark:/67531/metadc740945/: accessed April 25, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.