PROGRESS TOWARD SUSTAINED
HIGH-PERFORMANCE ADVANCED TOKAMAK
DISCHARGES IN DIII–D

by
J.R. FERRON, D.P. BRENNAN, T.A. CASPER, A.M. GAROFALO, C.M. GREENFIELD,
A.W. HYATT, R.J. JAYAKUMAR, L.C. JOHNSON, J.E. KINSEY, R.J. LA HAYE,
L.L. LAO, E.A. LAZARUS, J. LOHR, T.C. LUCE, M. MURAKAMI, M. OKABAYASHI,
C.C. PETTY, P.A. POLITZER, R. PRATER, H. REIMERDES, E.J. STRAIT, T.S. TAYLOR,
A.D. TURNBULL, J.G. WATKINS, M.R. WADE, and W.P. WEST

JULY 2002
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
PROGRESS TOWARD SUSTAINED HIGH-PERFORMANCE ADVANCED TOKAMAK DISCHARGES IN DIII–D

by

J.R. FERRON, D.P. BRENNAN,† T.A. CASPER,‡ A.M. GAROFALO, ∆
C.M. GREENFIELD, A.W. HYATT, R.J. JAYAKUMAR,† L.C. JOHNSON,◊ J.E. KINSEY,#
R.J. LA HAYE, L.L. LAO, E.A. LAZARUS,£ J. LOHR, T.C. LUCE, M. MURAKAMI,£
M. OKABAYASHI, C.C. PETTY, P.A. POLITZER, R. PRATER, H. REIMERDES,∆
E.J. STRAIT, T.S. TAYLOR, A.D. TURNBULL, J.G. WATKINS,§ M.R. WADE,£
and W.P. WEST

†Oak Ridge Institute for Science Education
‡Lawrence Livermore National Laboratory
∆Columbia University
◊Princeton Plasma Physcis Laboratory
#Lehigh University
£Oak Ridge National Laboratory
§Sandia National Laboratories

This is a preprint of a paper presented at the 29th European Physical Society Conference on Plasma Physics and Controlled Fusion, June 17–21, 2002, in Montreux, Switzerland, and to be published in the Proceedings.

Work supported by
the U.S. Department of Energy
under Contracts DE-AC03-99ER54463, W-7405-ENG-48, DE-AC02-76CH03073,
DE-AC05-000R22725, DE-AC04-94AL85000, Grants DE-AC05-76OR00033,
DE-FG02-89ER53297, and DE-FG02-92ER54141

GA PROJECT 30033
JULY 2002
Progress Toward Sustained High-Performance Advanced Tokamak Discharges in DIII–D

J.R. Ferron, 1 D.P. Brennan, 2 T.A. Casper, 3 A.M. Garofalo, 4 C.M. Greenfield, 1 A.W. Hyatt, 1 R. Jayakumar, 3 L.C. Johnson, 5 J.E. Kinsey, 6 R.J. LaHaye, 1 L.L. Lao, 1 E.A. Lazarus, 7 J. Lohr, 1 T.C. Luce, 1 M. Murakami, 7 M. Okabayashi, 3 C.C. Petty, 1 P.A. Politzer, 1 R. Prater, 1 H. Reimerdes, 4 E.J. Strait, 1 T.S. Taylor, 1 A.D. Turnbull, 1 J.G. Watkins, 8 M.R. Wade, 7 and W.P. West 1

1 General Atomics, P.O. Box 85608, San Diego, California 92186-5608 USA
2 Oak Ridge Institute for Science Education, Oak Ridge, Tennessee 37831 USA
3 Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 USA
4 Columbia University, New York, New York 10027 USA
5 Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 USA
6 Lehigh University, Bethlehem, Pennsylvania 18015 USA
7 Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 USA
8 Sandia National Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87185 USA

Key elements of a sustained advanced tokamak discharge in DIII–D are a large fraction of the total current from bootstrap current (\(f_{BS}\)) and parameters that optimize the capability to use electron cyclotron current drive (ECCD) at \(\rho \approx 0.5\) to maintain the desired current profile [1–4]. Increased \(f_{BS}\) results from increasing both the normalized beta (\(\beta_N\)) and the minimum value of the safety factor (\(q_{\text{min}}\)). Off-axis ECCD is, for the available gyrotron power, optimized at high \(\beta_N\), high electron temperature (\(T_e\)) and low electron density (\(n_e\)). As previously reported [2–4], these required elements have been separately demonstrated: density control at high \(\beta_N\) with \(n_e \leq 5 \times 10^{19} \text{ m}^{-3}\) using divertor-region pumping, stability at high \(\beta\), and off-axis ECCD at the theoretically predicted efficiency. This report summarizes recent work on optimizing and integrating these results through evaluation of the dependence of the beta limit on \(q_{\text{min}}\) and \(q_{95}\), exploration of discharges with relatively high \(q_{\text{min}}\), testing of feedback control of \(T_e\) for control of the \(q\) profile evolution, and modification of the current profile time evolution when ECCD is applied.

Discharges with \(q_{\text{min}}\) just above 1.5 have been the focus of much of the previously reported advanced tokamak work in DIII–D [2–4]. These discharges have many of the desirable parameters, \(\beta_N \approx 4\), and \(H_89 \approx 3\) (ratio of \(\tau_E\) to ITER L–mode scaling), with \(\beta_N H_89 > 10\) sustained for about 0.6 s (\(\approx 5 \tau_E\)). The value of \(f_{BS}\) is about 65% and \(\beta_N\) reaches 6 \(\ell_i\), close to the predicted limit for the ideal n = 1 kink mode with an ideal wall at the DIII–D vessel. The ideal no-wall \(\beta_N\) limit is about 4 \(\ell_i\). Achievement of sustained \(\beta_N\) values well above the no-wall limit has been aided by improved correction of intrinsic nonaxisymmetric fields, allowing toroidal plasma rotation above the level required to stabilize the n = 1 resistive wall mode (RWM) [5]. These discharges were produced with L–mode during the plasma current ramp-up. The value of \(q_{\text{min}}\) plays an important role as the high performance phase in these discharges is normally terminated by the onset of an m = 2/n = 1 tearing mode as \(q_{\text{min}}\) decreases to about 1.5.

The achievable \(\beta_N\) in discharges with \(q_{\text{min}} \approx 1.5\) has been found empirically to depend on the edge safety factor, \(q_{95}\). By increasing \(q_{95}\) from 4.0 to 4.8 (by increasing \(B_T\) at fixed \(I_p\)), reproducible \(\beta_N\) increased from 3.4 to 4.0. This observation contrasts with predictions from ideal MHD modeling from which a 5%–10% reduction in the \(\beta_N\) limit to the \(n = 1\) mode is predicted for the same change in \(q_{95}\). The improved \(\beta_N\) values in the experiment appear to result primarily from improved ability to operate close to the ideal wall \(\beta_N\) limit when \(B_T\) is increased. This is determined from the \(n = 1\) growth rates as a function of the position of the ideal conducting wall calculated by the ideal MHD stability code GATO. The \(q_{95} = 4\), \(\beta_N = 3.4\) case benefited little from wall stabilization, as the prediction is that a wall located at
2.5 times the minor radius would be sufficient for stability. In contrast, the \( q_{95} = 4.8, \beta_N = 4 \) case requires a conducting wall at approximately the position of the DIII–D vessel for a prediction of stability, and so is close to the ideal wall limit.

Recently the ability to reach the high \( \beta_N \) phase of the discharge with \( q_{\text{min}} > 2.5 \) was demonstrated by inducing H–mode early in the plasma current ramp. In H–mode, \( T_e \) is higher so the penetration of the ohmic current to the discharge core is slower, resulting in higher values of \( q_{\text{min}} \). An example of the time evolution of this type of discharge is shown in Fig. 1. At comparable values of \( \beta_N \), discharges with higher values of \( q_{\text{min}} \) would be expected to have a higher fraction of the plasma current resulting from bootstrap current [1], making this discharge attractive for an advanced tokamak scenario.

The \( q_{\text{min}} \approx 2.5 \) discharges have the additional advantage that the 2/1 tearing mode does not terminate the high performance phase as in the \( q_{\text{min}} \approx 1.5 \) cases resulting in an increased duration of high performance. This is probably because the \( q = 1.5 \) and \( q = 2 \) surfaces are not present in the discharge. However, the advantage of increased \( q \) is compromised by an observed reduction in the achievable \( \beta_N \) in these discharges to about 2.8 for \( q_{\text{min}} > 2.5 \) (diamonds in Fig. 2). Thus \( f_{\text{BS}} \) is lower, at approximately 40%, than in the higher beta discharges with \( q_{\text{min}} \approx 1.5 \).

A study was made of the change in the beta limit that accompanied the increased values of \( q_{\text{min}} \). Although, the beta limit is ultimately determined by ideal MHD modes stabilized by the effect of the conducting vacuum vessel wall, it is difficult to determine solely from the experiment how close a discharge is to this ideal-wall limit as many factors affect the achievable beta. So, the focus was placed on the no-wall beta limit. An initial modeling study was performed using equilibria created with the TOQ code with typical H–mode current and pressure profiles and evaluated for stability using the GATO code. The results are shown by the triangles in Fig. 2. There is a general downward trend in the beta limit as \( q_{\text{min}} \) is increased, although there is some increase predicted when the \( q = 2 \) surface is first removed from the equilibrium.

The experimental test made of the dependence of the no-wall beta limit on \( q_{\text{min}} \) depends on the predicted and observed [5] enhancement of the resonant interaction between the intrinsic nonaxisymmetric fields and a rotationally stabilized \( n = 1 \) RWM when beta is above the no-wall limit. This is illustrated in the example pair of discharges in Fig. 3. In the experiment, feedback control of the neutral beam power is used to regulate \( \beta_N \) at a constant value [Fig. 3(a)] and the current in the external field symmetrization coil is reduced to zero [Fig. 3(c)]. If beta is above the no-wall limit, the enhanced drag of the nonaxisymmetric field on the plasma causes a strong decrease in the toroidal rotation [the solid curve in Fig. 3(d)]. The rotation is reduced below the critical value for stabilization of the RWM and an \( n = 1 \) mode grows [Fig. 3(e)]. If \( \beta_N \) is below the no-wall limit when the symmetrization current is reduced, there is a small reduction in the toroidal rotation, but there is no instability.

![Fig. 1. Time evolution of parameters in a high \( q_{\text{min}} \) discharge created with an early H–mode.](image-url)
growth (dashed curves in the figure). The square symbols in Fig. 2 summarize the dependence of the measured $\beta_N$ limit on $q_{\text{min}}$. There is a significant decrease as $q_{\text{min}}$ is increased, similar to the trend predicted by the modeling. The quantitative agreement between the experiment and the theoretical prediction should improve when the current and pressure profiles in the model equilibria are improved to match the profiles from the experimental discharges.

The initial current profile in these advanced tokamak discharges is adjusted by modifying the early time evolution of the heating power, density, or current ramp rate. One of the principle effects of these adjustments is to change the time evolution of $T_e$, strongly affecting the conductivity $\propto T_e^{1.5}$ and the rate of current penetration. Active control of $T_e$ is a more direct method to control the $q$ profile evolution, as has been demonstrated in DIII–D using either ECH or neutral beams as the feedback controlled heating source. Figure 4 shows an example where the $T_e$ evolution was controlled to be the same as was obtained in a high performance discharge in which the neutral beam heating power was preprogrammed. Feedback control of either ECH or neutral beam power duplicated well the $T_e$ time evolution. As a result, the $q$ profile at the end of the plasma current ramp-up was approximately the same in all three cases (Fig. 4). Using $T_e$ control by ECH, the electron density can be significantly reduced during the current ramp-up while the $q$ profile obtained is nearly unchanged, resulting in lower density during the high $\beta_N$ phase and thus conditions that should produce more efficient ECCD.

Modification of the time evolution of the $q$ profile using off-axis ECCD has been demonstrated, as illustrated in Fig. 5. A simulation of the expected effect of adding 2.5 MW of ECCD in a narrow region at $\rho = 0.4$ is shown in Fig. 5(a). The simulation predicts an increase in $q$ at $\rho = 0$, and an initial small decrease in $q_{\text{min}}$ followed by a long phase in which $q_{\text{min}}$ decreases more slowly than would have occurred if the ECCD was not present. The experimental results are shown in Fig. 5(b) where two discharges are compared, with and without ECCD applied. The significant features of the simulation, the rise in $q(0)$ and the initial small drop in $q_{\text{min}}$ followed by a period with only a
Fig. 4. An example of active $T_e$ control using either ECH or neutral beam heating and the resulting $q$ profiles as compared to a case with preprogrammed neutral beam power.

slow decrease, are present also in the experiment.

In summary, then, important progress has been made toward integrating the key elements of an advanced tokamak discharge in DIII–D. Because of the importance of operation at high $\beta$, comparisons of the beta limits to theoretical predictions have been studied. Operation at increased values of $q_{min}$ has been explored in order to find the optimum regime for high $f_{BS}$. Active control of $T_e$ and modification of the time evolution of the $q$ profile using ECCD have been demonstrated.

ACKNOWLEDGMENT

Work supported by U.S. Department of Energy under Contracts DE-AC03-99ER54463, W-7405-ENG-48, DE-AC02-76CH03073, DE-AC05-00OR22725, DE-AC04-94AL85000, and Grants DE-AC05-76OR00033, DE-FG02-89ER53297, and DE-FG02-92ER54141.

REFERENCES