PROGRESS TOWARD SUSTAINED HIGH-PERFORMANCE ADVANCED TOKAMAK DISCHARGES IN DIII-D

PDF Version Also Available for Download.

Description

Key elements of a sustained advanced tokamak discharge in DIII-D are a large fraction of the total current from bootstrap current (f{sub BS}) and parameters that optimize the capability to use electron cyclotron current drive (ECCD) at {rho} {approx} 0.5 to maintain the desired current profile [1-4]. Increased f{sub BS} results from increasing both the normalized beta ({beta}{sub N}) and the minimum value of the safety factor (q{sub min}). Off-axis ECCD is, for the available gyrotron power, optimized at high {beta}{sub N}, high electron temperature (T{sub e}) and low electron density (n{sub e}). As previously reported [2-4], these required elements ... continued below

Physical Description

Medium: X; Size: 7 pages

Creation Information

FERRON, J.R.; BREEAN, D.P.; CASPER, T.A.; GAROFALO, A.M.; GREENFIELD, C.M.; HYATT, A.W. et al. July 1, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Key elements of a sustained advanced tokamak discharge in DIII-D are a large fraction of the total current from bootstrap current (f{sub BS}) and parameters that optimize the capability to use electron cyclotron current drive (ECCD) at {rho} {approx} 0.5 to maintain the desired current profile [1-4]. Increased f{sub BS} results from increasing both the normalized beta ({beta}{sub N}) and the minimum value of the safety factor (q{sub min}). Off-axis ECCD is, for the available gyrotron power, optimized at high {beta}{sub N}, high electron temperature (T{sub e}) and low electron density (n{sub e}). As previously reported [2-4], these required elements have been separately demonstrated: density control at high {beta}{sub N} with n{sub e} {le} 5 x 10{sup 19} m{sup -3} using divertor-region pumping, stability at high {beta}, and off-axis ECCD at the theoretically predicted efficiency. This report summarizes recent work on optimizing and integrating these results through evaluation of the dependence of the beta limit on q{sub min} and q{sub 95}, exploration of discharges with relatively high q{sub min}, testing of feedback control of T{sub e} for control of the q profile evolution, and modification of the current profile time evolution when ECCD is applied.

Physical Description

Medium: X; Size: 7 pages

Notes

Oakland Operations Office, Oakland, CA (US); INIS

Source

  • 29th European Physical Society Conference on Plasma Physics and Controlled Fusion, Montreux (CH), 06/17/2002--06/21/2002; Other Information: THIS IS A PREPRINT OF A PAPER PRESENTED AT THE 29TH EUROPEAN PHYSICAL SOCIETY CONFERENCE ON PLASMA PHYSICS AND CONTROLLED FUSION, JUNE 17-21,2002, IN MONTREUX, SWITZERLAND, AND TO BE PUBLISHED IN THE ''PROCEEDINGS''

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: NONE
  • Grant Number: AC03-99ER54463
  • Office of Scientific & Technical Information Report Number: 804701
  • Archival Resource Key: ark:/67531/metadc740911

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 1, 2002

Added to The UNT Digital Library

  • Oct. 18, 2015, 6:40 p.m.

Description Last Updated

  • April 19, 2016, 12:49 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

FERRON, J.R.; BREEAN, D.P.; CASPER, T.A.; GAROFALO, A.M.; GREENFIELD, C.M.; HYATT, A.W. et al. PROGRESS TOWARD SUSTAINED HIGH-PERFORMANCE ADVANCED TOKAMAK DISCHARGES IN DIII-D, article, July 1, 2002; United States. (digital.library.unt.edu/ark:/67531/metadc740911/: accessed September 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.