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PREFACE 

Research performed under this contract was divided into four tasks under the following 
headings: 

Task I 

Task II 

Characterization of Fly Ash 

Measurements of the Optical Constants of Slags 

Task 111 Calculations of the Radiant Properties of Fly Ash Dispersions 

Task IV Measurements of the Radiant Properties of Fly Ash Dispersions 

Tasks I and IV constituted the Ph.D. research topic of Sarbajit Ghosal, while Tasks I1 
Together their doctoral and III constituted the Ph.D. research topic of Jon Ebert. 

dissertations give a complete account of the work performed. 

This final report, issued in two volumes consists of an Executive Summary of the 
whole program followed by the dissertation of Ghosal (Vol. I) and Ebert (Vol. II). Each 
volume includes a list of publications and conference presentations resulting from the work. 

Sidney A. Self 

Stanford December 1994 
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EXECUTIVE SUMMARY 

The overall goal of this project was to provide a fundamental scientific basis for 
understanding and calculating radiative heat transfer in coal combustion systems, particularly 
as influenced by the presence of inorganic constituents deriving from the mineral matter in 
coal. 

The calculation of radiative heat transfer requires specification of the spectral 
absorption and scattering coefficients (ax and sd and the scattering phase function (Qx) of the 
medium. While the contributions to these properties by the infrared-active gases (C02 and 
H,O) are well-documented, the contribution by the dispersed particulate phase (fly ash) may 
be large and hitherto was poorly understood. In general, the particulates produce two 
opposing tendencies on radiation transfer. Scattering impedes the transfer of gas radiation, 
while particle emission enhances the overall radiation transfer. In addition slag layers on 
combustor walls, deposited from entrained fly ash, provide a significant barrier to heat 
transfer. 

Calculation of the optical properties of a particulate dispersion rests on the Mie theory 
for a single particle. This theory is readily available only for a homogeneous, isotropic 
sphere and requires specification of the size parameter x E (zdh) and the complex refractive 
index m E (n+ik) of the particle material, a function of composition, wavelength and 
temperature. The optical properties of the dispersion is then obtained by convolving the Mie 
theory for a single sphere with the size and refractive index distributions of the 
polydispersion 

In practice. it is not possible to invert measurements of the optical properties of a 
particulate dispersion to infer the size and refractive index distributions of the particulates. 
Even if one knows the size distribution from independent measurements, one can infer, at 
best, only some effective average refractive index. Because of the impracticality of 
obtaining fundamental data on the complex refractive index of particulates from 
measurements on a polydispersion, and in view of the heterogeneity of composition of fly 
ash, an alternative strategy was adopted. 

The basic approach was to measure the optical constants (i.e. the components, n, k of 
the complex refractive index) on bulk samples of synthetic slags, for which reliable 
techniques are available. Such measurements were made over relevant ranges of 
wavelength, composition and temperature, and constitute the fundamental data base for 
computing radiation transfer in fly ash laden combustion gases. To utilize such data on the 
optical constants of slag in calculations of radiation transfer in ash dispersions, it is also 
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necessary that the ash be characterized with respect to its size and composition distributions. 
Characterization of a range of representative ashes constituted a second component of the 
work. It should be recognized that this basic approach rests on the fortunate fact that the vast 
majority of fly ash particles are closely spherical, optically isotropic (because they are 
vitreous) and homogeneous, although the composition varies significantly from particle to 
particle. 

The research program consisted of four tasks, as outlined below. 

TASK 1 - CHARACTERIZATION OF FLY ASH 

Representative samples of fly ashes were characterized with respect to their size and 
composition distributions, including correlation of composition with size over ranges of 
interest for radiation transfer. Ashes from six coals selected for study under the concurrent 
PETC program on "Transformation of Inorganic Coal Constituents in Combustion Systems" 
were obtained from electric power plants or from samples produced earlier in the lO!B"U/hr 
pilot combustor at Foster-Wheeler. 

Size distributions were determined by Coulter counter, while size-composition distributions 
were obtained from computer-controlled SEM-EDX microprobe analyses. 

In addition, techniques were developed for ash separation by both size and density by 
combined wet sieving and centrifuging in liquids of various specific gravity, as well as 
separation of the magnetic component (magnetite from the combustion of pyrite). Analysis 
of the separated fractions yielded further information on the size-composition distributions as 
well as information on the fraction of cenospheric ash (Le. particles containing gas bubbles). 

TASK II - MEASUREMENTS OF THE OPTICAL CONSTANTS OF SLAGS 

Coal slags and fly ash are basically impure calcium-aluminosilicate glasses. The host glass 
is essentially transparent (k I lo4) in the visible and near infrared, with a very strong 
absorption band (k-1) in the range 8-12 pm due to vibration of the Si-0 bond. The principal 
infrared-active impurity is iron (as the ferrous ion) which produces significant absorption 
(k-10-4-10-3) in the range 0.5-5 pm, important for radiation transfer at combustion 
temperatures. 

Synthetic slags of controlled composition were produced by melting appropriate mineral 
oxides in a furnace at -1560°C and cooled slowly to produce homogeneous bulk samples. 
For measurements at low temperatures (to -800°C) thin wafers (50-500 pm) were cut and 
optically polished. The optical constants over the wavelength range 0.5-8 pm were 



determined by measuring the absorption and surface reflectance and use of the Fresnel 
relations. For the range 8-13 pm where the absorption is too strong (k > lo-*) to allow direct 
measurements of absorption on thin wafers, n and k were obtained from surface reflectance 
measurements at normal incidence using the Kramers-Kronig relations. 

At high temperatures (21600°C) when the slag is liquid, an alternative technique was devised 
for measuring the absorption of thin liquid layers, by a double pass using reflection from a 
submerged platinum mirror. The absorption coefficient (and hence k) was determined from 
the change in signal when the liquid film depth was changed a known amount by raising or 
lowering the mirror by a micrometer-controlled increment. 

For the longer wavelengths (A 2 8 pm), where the absorption is too strong (k 2 to allow 
direct absorption measurements on a thin film, n and k were determined solely from surface 
reflectance measurements on the liquid slag using the Kramers-Kronig technique. 

The final outcome of Task II is a set of correlation formulae for the complex refractive index 
of synthetic slags as a function of composition, wavelength and temperature. These formulae 
constitute a fundamental data base for the calculation of radiation transfer in ash-laden 
combustion gases. 

TASK III - CALCULATION OF THE RADIANT PROPERTIES OF FLY ASH 
DISPERSIONS 

Sample calculations were made for typical ash loadings, size distributions and compositions 
for simple geometries, with two main purposes: first, to provide insight and physical 
understanding of the role of fly ash in radiative heat transfer in combustion systems; second, 
to indicate the sensitivity of the results to the characteristics of the input data. Such 
calculations were also used to determine appropriate conditions and to predict the expected 
measured radiative properties for the experiment of Task IV. 

TASK IV - MEASUREMENTS OF THE RADIANT PROPERTIES OF FLY ASH 
DISPERSIONS 

This experiment was intended to validate the overall approach by critically testing our ability 
to predict the measured spectral absorption and scattering coefficient of hot, gaseous fly ash 
dispersions under well-controlled laboratory conditions utilizing the ash characteristics and 
the optical property data developed in Tasks I and II. However, in the event, it proved 
impossible to generate well-deagglomerated aerosols from ash powder samples, so we settled 
for a somewhat less stringent but much easier-to-accomplish test using room-temperature 
dispersions of ash in several infrared transmitting liquids covering the wavelength range 1- 



13 pm. Measurements of spectral extinction (by scattering and absorption) showed good 
agreement with predictions for four ashes when account was taken of the presence of 
cenospheres in the ash. The effect of cenospheres is greatly enhanced in liquid dispersions 
compared with gaseous dispersions, for which it is essentially negligible. 

In summary, the overall goal of the research was accomplished; a new, general method for 
realistically incorporating the effects of fly ash in radiative transfer computations in coal 
combustion systems has been established. With the use of the correlation formulae for the 
dependence of the complex refractive index of fly ash on composition, wavelength and 
temperature, resulting from this work, all that is required to calculate heat transfer in the 
radiant section of a particular coal combustor is specification of the geometry and boundary 
conditions, plus data from standard microanalytical techniques of the size and composition 
distributions of a sample of ash from the particular coal of interest. The correlation formulae 
are also directly applicable for calculating radiation transfer through slag deposits on 
combustor walls. 
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Abstract 

Radiation heat transfer from the hot combustion products of pulverized-coal 
combustion (C02, H20,  soot, char, and fly ash) to the cooled walls is the dominant 
mode of heat transfer in such combustion systems. During this combustion process, 
inorganic minerals (mostly SiOa, A1203, CaO) within the coal melt and coalesce 
to form droplets of molten slag (fly ash) which subsequently cool to form mostly 
glassy solid spheres with large particle to  particle variations in both diameter and 
composition. To predict the effects of fly ash on the radiative heat transfer through 
such a medium, one must know its radiative properties, which depend on the diameter- 
and composition-averaged scattering and absorption properties. 

The approach adopted here recognizes that the optical constants ( n , k )  of a 
homogeneous isotropic material such as glassy slags are only a function of composition, 
temperature, and the wavelength (A). One can measure ( n , k )  of bulk materials 
with compositions similar to those of individual particles and compute the scattering 
and absorption properties of single homogeneous isotropic particles using Mie theory. 
When combined with measurements of the composition and diameter distributions for 
real ashes, the integrated radiative properties of an ash dispersion can be computed, 
allowing one to systematically investigate the factors that influence the average 
radiative properties. 

Measurements of the optical constants ( . , I C )  for bulk molten slags (- 16OO0C) 
are reported here for a range of compositions spanning those of most fly ash particles. 
The measurements were made over the near infrared wavelength range 1 5 X 5 
13pm where most thermal radiation occurs at typical coal combustion temperatures 
(1000 - 2000K). 

Synthetic slags with well controlled compositions were produced having various 
amounts of SiOa, A1203, CaO, and Fe2O3, with the Fez03 and Si02 contents being the 
most important independent variables affecting the optical constants. The synthetic 
slags studied here had Fen03 contents ranging from 0 to 19 wt.% and Si02 contents 
ranging from 10 wt.% to 60 wt.%. 

The near-normal reflectance of a pool of molten slag was measured over the 
wavelength range 1 5 X 5 13pm. From this measurement the real refractive index, 
n ,  was computed over the entire wavelength range from 1 5 X 5 13pm using the 
Kramers-Kronig relations. This procedure also yields the absorption index, I C ,  in 
the range where k > 0.1. In the wavelength range from 1 - 5pm, where k is too 
small to determine from reflectance measurements (IC’ << (n  - 1 ) 2 ) ,  a technique was 
developed to measure the transmittance (exp(-4akh/X)) of a thin layer of molten 
slag. A platinum mirror was submerged below the surface of the molten slag and the 
thickness of the layer of slag above the mirror ( h )  was adjusted to provide a direct 
measurement of k. 

In the wavelength range from 1 - 4pm the absorption index, k, depends on the 
Fez03 content (and OH) in the slag. At longer wavelengths (8 - 13pm) absorption is 
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due to fundamental vibrational absorption by Si02; thus IC is strongly dependent on 
Si02 content. In the intermediate wavelength range (4 < X < 8pm) the absorption 
is due to multiphonon processes associated with the SiOL vibrational absorption 
mechanisms at longer wavelengths. 

Correlations were developed that estimate n and k over the entire wavelength 
range from 1-13 pm from knowledge of the composition. Results from others studies 
(Ghosal, 1993) provided compositions of thousands of individual fly ash particles from 
several representative U.S. coals, along with their size distributions. These composi- 
tion distributions were used to compute the optical constants distributions and Mie 
theory was used to compute the size-averaged scattering and absorption properties. 
Radiative properties for various ash loadings were computed for dispersions of these 
ashes. 

The effects of size and composition distributions and of ash loading on the radia- 
tive properties of a dispersion were studied. Ashes with larger particles (i.e., larger 
volume to area ratio) tend to have smaller extinction coefficients than distributions 
with smaller particles. However, all ashes studied tend to have reasonably similar av- 
erage radiative properties, despite significant composition variations. Also, use of the 
average composition to compute the average radiative properties produces reasonably 
accurate results. 

The effect of Ay ash on radiative transfer through a planar layer of uniformly 
dispersed ash with absorption and emission by C02 and H 2 0  was studied for both 
an isothermal layer and a layer in radiative equilibrium. Generally the ash increases 
the emission of the isothermal layer somewhat, but the most significant effect is the 
strong extinction caused by scattering. A similar effect is seen for a layer in radiative 
equilibrium where addition of ash to a layer of C02 and H 2 0  causes a significant 
decrease in the heat flux across the layer. 

.. 
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Chapter I. 

Introduction 

1.1 Motivation 

Radiation is the dominant mode of heat transfer in many coal combustors and 
gasifiers, and the prediction of heat transfer is a critical factor in combustor design. 
It is common for a coal combustor to have a radiant section where pulverized coal 
particles are injected and burned, followed by a convective section where superheat 
tubes collect thermal power from the hot combustion products. Since the radiant 
section may have peak temperatures exceeding 1700 K, the heat transfer to its cooled 
walls is predominantly by radiation. As the hot gases and particles exit the radiant 
section they enter the convective section in which the flow crosses superheat tubes 
and other heat transfer surfaces. If the fly ash particles in the convective section 
are too hot, they are “sticky” or even molten and will collect on the cooler heat 
transfer surfaces. This “fouling” process reduces the heat transfer by building up an 
insulating layer of ash and slag on the cooler surfaces. Therefore, a primary design 
criterion is the exit temperature from the radiant section of the coal combustor, and 
the radiative properties of the products of coal combustion directly affect this exit 
temperature. Thus, sizing the radiant section is critical. If it is too small the exit 
temperature will be too high and fouling of the convective section will occur. If it is 
too large, then unnecessary cost will be incurred in cooling by radiation transfer at 
low temperatures, for which it is less efficient than convective transfer. 

The radiant section of a pulverized coal combustor contains several constituents 
that participate in the radiant heat transfer. The infrared active gases, chiefly CO;! 
and H 2 0 ,  absorb and emit radiation in selective wavelength bands. Carbonaceous 
particles of char and soot absorb and emit radiation over a broad wavelength range 
but scatter very little radiation. Fly ash, the inert mineral matter in coal, emits, 
absorbs, and scatters radiation. 

The radiative properties of the combustion gases are well enough known to 
permit reasonably accurate estimates of radiative transfer. Many measurements in 
the  last 20 to 30 years have resulted in reasonably accurate (5-1.5%) semi-empirical 



gas band models [l-21 that can be used to predict radiation transfer through C02 
and H 2 0  at temperatures found in coal combustors. Carbon dioxide has strong 
vibrational-rotational absorption bands at wavelengths of 2.7 pm, 4.3 pm, and 15 pm 
in addition to some weaker absorption bands. Water vapor has a broad vibrational 
absorption band near 6.3 pm and narrower absorption bands near 2.7 pm, 1.87 pm, 
and 1.38 pm. Between theses gas absorption bands the hot gases are transparent 
and other constituents, such as soot, char, and fly ash, contribute to emission and 
absorption. 

The radiative properties of carbonaceous particles (soot and char) are also 
reasonably well known [3-41. Such particles have high emittance over a broad 
wavelength range and significantly contribute to emission from the flame region. 
However, to maintain high carbon conversion efficiencies, reactors are generally large 
enough that most soot and char is pyrolized in a relatively small volume of the 
radiant section, leaving C02, H20,  fly ash, and small residual amounts of soot and 
char responsible for radiative transport throughout much of the furnace. 

Several numerical studies [5-101 have shown that fly ash is an important factor 
in the radiation transfer in coal combustors. Coal may contain from 2% to 25% ash 
by weight with typical values of 5-15%. Ash is the primary scattering constituent in 
the furnace environment and can effectively shield the cooler furnace walls from the 
hotter flame regions. Lowe, et. al. [6] modeled a pulverized coal fired furnace and 
concluded that fly ash is a dominant participant in radiation transfer in regions of 
the furnace where combustion is complete. To date, such calculations have lacked 
accurate data for the optical properties of fly ash. 

Accurate measurements of the radiative properties of fly ash were only recently 
obtained by Goodwin [ l l ]  in work at  Stanford, supported by NSF. Earlier measure- 
ments of the optical constants of fly ash [12-16] showed considerable uncertainty. 
Goodwin measured the optical constants of bulk synthetic solid slags from which the 
optical properties of fly ash dispersions can be computed. While most of Goodwin's 
measurements were for slags at room temperature, he also made measurements of the 
absorption index, I C ,  up to temperatures of approximately 1200 K. These measure- 
ments showed that the spectral absorption index, E ,  of high iron slags increases with 
increasing temperature. 

The main purpose of the present study'was to extend the database on optical 
properties of slags to higher temperatures, where slag is molten, and to include a wider 



range of compositions as revealed in a parallel study by Ghosal [17] of the size and 
composition distributions of samples of fly ashes from combustion of representative 
U.S. coals. 

1.2 The Formation of Fly Ash 

Fly ash is formed from the inert minerals that are released when coal particles 
burn. Coal particles contains mineral inclusions that vary in composition and size 
from one coal particle to the next. The mineral inclusions are chiefly kaolinite 
(A1203 . 2Si02 2H20), pyrites (FeS2), and calcite (CaC03) with lesser amounts 
of quartz (SiOn), rutile (TiOz), and many other minerals. During the combustion of 
a coal particle, it typically breaks into fragments and as the carbonaceous materials 
pyrolize, the mineral inclusions in the coal melt and coalesce to form a fly ash particle. 
The composition of the final fiy ash particle reflects the mixture of inclusions from 
which it was formed. There are significant variations in composition from one ash 
particle to another, but because they spend some time in the molten phase, and 
cool quickly, they tend to be closely spherical, of homogeneous composition and 
vitreous (glassy) when solid. Recent work by Ghosal [17] has quantified this variation 
in composition for several ash samples using computer controlled scanning electron 
microscopy. 

The diameter of fly ash particles ranges from sub-micron to 100 pm or more, with 
a median diametert typically in the 10-15 pm range. Generally the size distribution 
is modeled quite accurately by a lognormal curve (Le., Gaussian in logarithm of 
diameter) [ 171. 

t Median diameter based on volume, i.e., half of the ash volume (or mass) is attributable to 
particles with diameter less than the median size. 
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1.3 Relationship of Bulk Slag Properties to Fly Ash Properties 

I t  is observed that the size and composition distributions of fly ash vary from 
coal to  coal [17]. Also, for a specific coal, the ash composition varies from particle 
to particle. Therefore, measuring the radiative properties of one particular ash will 
not yield results that are generally applicable to other fly ash dispersions. Moreover, 
such an approach does not lead to an understanding of the underlying fundamental 
properties that determine the character of the radiative properties of a dispersion, 
or help one understand how variation of the ash characteristics affects its radiative 
properties . 

Mie theory provides a fundamental approach to the problem. For a homogeneous 
and isotropic sphere, Mie theory relates its scattering and absorption characteristics 
to its size and complex refractive index, m = n + ik. If one knows the size and 
complex refractive index for all the particles in a polydispersion, then the average 
radiative properties for the polydispersion (e.g., scattering coefficient, scattering phase 
function, and absorption coefficient) can be computed. 

The complex refractive index, m(X,C,T), is a materia1 property that depends 
only on wavelength, the composition and temperature of the material. It does not 
depend on the size or shape of the particle. The real part of the complex refractive 
index n is commonly referred to as the refractive indez, and is the ratio of the speed 
of light in vacuum to that in the material. The imaginary part of the refractive index, 
I C ,  is commonly called the absorption indez and it describes the attenuation of radiant 
intensity through the medium according to Beer’s Law, I ( s ) / I ( O )  = exp( -4alcs/X). 
Well established techniques can be used to measure n and k for homogeneous bulk 
materials. 

The approach adopted in this study is based on the fact that if correlations 
for m = m(A,C,T)  are available for an appropriate range of wavelengths, A ,  
compositions, C, and temperatures, T ,  then to compute the radiative properties 
for any given dispersion of fly ash, all one needs is data on the size and compostion 
distributions of a sample of the ash. Fortunately, these a.3tribtuions can be obtained 
by straightforward microanalytical techniques, as described by Ghosal [l?]. 

The validity of this approach depends largely on the fly ash particles being 
liomogeneous and isotropic spheres, so that Mie theory is applicable. Fortunately, 
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fly ash particles are typically closely spherical, homogeneous, and isotropic t owing 
to the mechanism of their formation, as described above, at temperatures above the 
melting temperature of most mineral inclusions. 

1.4 Scope of the Present Study 

In the present study measurements of the optical constants (n and I C )  of coal 
slags, i.e. bulk ash material, are extended to higher temperatures at which the slags 
are molten. Measurements are reported for several slag compositions representative 
of fly ashes from U.S. coals, but emphasizing only constituents that effect the optical 
properties. Several slags with compositions similar to those of Goodwin [ll] are 
studied so that the effect of temperature can be isolated. In addition, several slags 
of much lower Si02 content were studied to further extend the optical properties 
database. 

Correlations are developed in Chapter IV that allow one to estimate the optical 
constants of molten slag as a function of composition and wavelength. The compo- 
sition of most naturally occurring ash particles is within the range of application for 
these correlations. 

The correlations developed in Chapter IV are used in Chapter V to estimate 
the radiative properties of ash dispersions using composition and size distribution 
available from Ghosal [17]. Mie theory is used to estimate the scattering properties 
of each particle and integration over the size and composition distributions produces 
the desired average radiative properties. 

Finally, calculations are presented in Chapter VI to illustrate the effect of fly 
ash on radiation heat transfer in coal combustors using a one dimensional model. 
Estimates of the relative importance of fly ash, compared to C02 and H20,  are 
computed for conditions pertinent to coal combustion environments. Variations 
in ash loading (dust burden) are studied for an isothermal planar layer and for a 
layer in radiative equilibrium. Such calculations were useful for sensitivity studies to 
guide the range of wavelengths and component oxides chosen for the optical constant 
measurements as well as guiding the ash characterization studies in closely related 
work [ I i ] .  

t Some fly ash particles are hollow cenospheres or shells. Other ash particles are even 
nonspherical with voids or “bubbles” in them, but these particles are a minority in most 
ashes (i.e., ash from most coals). 
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Chapter 11. 

Theoretical and Experimental Background 

This chapter presents the theoretical basis for the optical constants and experi- 
mental methods adopted in this study for determining them. The first section sum- 
marizes the definition of the optical constants and the theoretical basis for pertinent 
measurable quantities for weakly conducting solids (such as coal slag). The second 
section gives an overview of common experimental techniques for determining the 
optical constants of bulk materials, including the technique adopted in this study. 
The final section in this chapter outlines the theoretical basis for the relationship be- 
tween these bulk optical properties and the scattering and absorption characteristics 
of particulates. 

11.1 Electromagnetic Theory and the Optical Constants 

11.1.1 The Maxwell Equations 

The Maxwell equations t describe the behavior of electromagnetic fields in 
vacuum and in matter. In vector notation (A = Ax& + AYGy + A&), the equations 
are written in SI units as [18-191 

dB V x E = - -  
a t  

dD V x H = J + -  
a t  

( I I . l a )  
( I  I .  1 b)  

( I I . l c )  

( I I . l d )  

where E is the electric field intensity, B is the magnetic induction, D is the electric 
displacement, H is the magnetic field intensity, J is the conduction current density, 
and p is the charge density of unbound electric charges. 

t In 1865 James Clerk Maxwell published the theoretical foundation of modern electromagnetic 
theory in an essay, “A Dynamical Theory of the Electromagnetic Field” in volume CLV of 
Philosophical Transaciions of the Royal Society.  
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In vacuum the two vectors D and H are simply defined by D = EOE and H = 
Bjpo where EO and po are the permittivity and permeability of free space, respectively. 
The speed of light in vacuum, CO, is related to the permittivity and permeability by 
the relation co = d-. 

In a material, the field vectors E and H are the averaged fields and in general 
there exist both bound and free charges. The free charge and current density are 
accounted for through p and J, but the bound charges are capable of creating electric 
and magnetic moments that are allowed for by introducing constituitive relations. For 
sufficiently weak fields, the effects of bound charges in most materials are adequately 
described by the first order moments, the electric and magnetic dipoles; quadrupole 
and higher moments are negligible. For such materials we can write 

D = EOE + P, 
B H = - - M M ,  
PO 

( I I . 2a )  

( I I .2b)  

where P is the electric polarization and M is the magnetization. The two vectors 
P and M are the average electric and magnetic dipole moments per unit volume, 
respectively. 

In addition to the equations above, one assumes constituitive relations of the form 

J = oE, 
B = pH, 

P = eoXE, 

( I  1.24 

( I I . 2 d )  

( I  1.2e) 

where Q is the electrical conductivity, p is the permeability, and X is the electric 
susceptibility of the medium. In general, one should not regard Eqs. (11.2) as universal 
relations, since there are materials for which they are not valid, but as assumptions 
which happen to be valid for many materials including glassy slags. To further restrict 
the scope of this analysis, we assume relatively weak electromagnetic fields so that 
the materials behave linearly and Q, p ,  and X are independent of the fields. Finally, 
we limit the analysis to homogeneous, isotropic materials in which 6, p ,  and X are 
constant scalar quantities. These assumptions and restrictions still allow analysis of 
many practical situations including interaction of radiation with fly ash and slag. 
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11.1.2 Electromagnetic Waves in Non-Conductors 

An electromagnetic wave propagating through a homogeneous, isotropic, non- 
conducting medium ( p  = J = 0) is described by the vector equations 

V . E = O ,  
V - H = O ,  

aH V x E = - p -  
at , 

dE V x H =E-. 
at 

(II.3a) 

(II.3c) 

(II.3b) 

(II.3d) 

Assume that the permeability, p, and permittivity, E E ~ o ( 1  + X ) ,  of the medium 
are constants. By taking the curl (Vx())  of Eq. (11.3~) and Eq. (11.3d) using the 
vector identity V x (V x A) = V(V - A) - (V V)A and utilizing Eq. (II.3a) and 
Eq. (11.3b), the vector wave equations are obtained: 

a2 E 
at 

~ E ~ - ( V * V ) E = O ,  (II.4a) 

a2H PEW - (V 0) H = 0. (II.4b) 

From these two equations one sees that any scalar component, say A;, of either the 
electric field. E. or the magnetic field, H, satisfies the wave equation 

d2Ai - V2Ai = 0 (11.5) 

and t h e  speed of propagation, c, in the medium is c = m. In this case, where 
c is a positive real constant, the solutions are undamped waves and the medium is 
transparent. a result of assuming that the electrical conductivity is identically zero. 

The refractive index, m, is defined as 

(11.6) 

Even though m is defined here in a medium with no absorption, this definition extends 
to absorbing media where E is not a simple real constant, but a complex quantity. 



11.1.3 Electromagnetic Waves in Real Materials 

In any real material there is absorption of an electromagnetic wave as it propagates 
through the material. In electrical insulators, which have very few free charges and 
only modest ionic conduction, the absorption is generally very much less than in 
metals, in which there are many free electrons and the electrical conductivity is high. 
However, even insulators exhibit very strong absorption in certain frequency ranges. 

Consider a complex time-harmonic electric field vector E, of the form 

E, (r, t )  = E, (r) exp (-iwt) (11.7) 

where w is the angular frequency and t is time. The physical electric field, E, is just 
the real part of this complex electric field, that is 

E = Re{E, (r,t)} = Re{E, (r)} cos (at) + Im{E, (r)} sin (ut) (11.8) 

where Re{} and Im{} denote the real and imaginary parts of a complex quantity, 
respectively. This complex embedding is allowed provided all the operations on E, 
are linear operations such as addition, differentiation, or integration. Since all the 
operators in the Maxwell equations are linear, the vector quantities can all be replaced 
by their complex form. 

The charge conservation equation, 

dP 
at 
- + V - J = O ,  (11.9) 

is derived by differentiating Eq. (1I.la) with respect to time, taking the divergence 
of Eq. (11-ld), and combining. Then Eq. (II.la) can be differentiated with respect to 
time and rewritten as 

Replacing D, using Eq. (II.2a) and Eq. (11.2e), with oE and introducing the complex 
fields we obtain 

V (EE~) = 0 ( I  I . loa)  

where E is the complex permittivity of the medium and is defined as 

. d  

W 
E E &o (1  + x) + 2-. 
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The other Maxwell equations can similarly be rewritten, using the complex fields and 
the constituitive relations, as 

V * H , = O  (I I.lOc) 

V x E, = iwpH, (II.lOd) 

V x H, = -iweE, (II.lOe) 

These equations for E, and H, are exactly analogous to the wave equations derived 
for media with no absorption, Eq. (11.3). This analogy indicates that the definition 
of the complez refractive index, rn, in Eq. (11.6) is appropriate, provided that the real 
permittivity is replaced by the complez permittivity, e, defined in Eq. (1I.lOb). 

11.1.4 Propagation of Plane Electromagnetic Waves 

In an infinite homogeneous and isotropic medium electromagnetic waves emitted 
from some point source propagate with spherical wave fronts, similar to ripples on a 
pond radiating away from a point disturbance. At distances very far from the source, 
the spherical wave fronts may be, and often are, approximated locally as planar. 
Therefore, it is instructive to look for plane wave solutions to the Maxwell equations. 

A plane wave is described by the complex, time-harmonic electric and magnetic 
fields 

E, = Eo exp (ik - r - iwt) ( I  I. 1 la) 

H, = Ho exp (ik - r - iwt) ( I I . l lb )  

where Eo and Ho are constant complex vectors, k = k’ + ik” is the complex wave 
vector, and r is the position vector. Substituting Eq. (11.11) into the time-harmonic 
Maxwell equations Eq. (11.10) results in the following conditions that must be satisfied 
for plane wave solutions to the Maxwell equations: 

k*Eo=O k x Eo = ~ p H o  

k x Ho = -UEEO 
( I  I .  12) 

k * H o = O  
From Eqs. (11.12) it is apparent that the Maxwell equations admit plane wave 
solutions when Eo and Ho are both perpendiculart to the complex wave vector, 
k, and that Ho is perpendicular to Eo. Also, by taking the vector product 

k x (k x Ho) = - W E k  x Eo, 

t The geometric property of perpendicularity for real vectors is not the necessarily the same 
for complex vectors, but for mathematical preciseness we can define two non-zero complex 
vectors, e.g.. A and B,  as “perpendicular” when A .  B = 0. 
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using the identity A x (B x C) = B(A - C) - C(A - B), and using k x Eo = opHo 
one obtains the magnitude of the wave vector as k = 0 = o f l .  In terms of 
the complex refractive index, m, k becomes 

wm 27rm 
c A0 

k = - = -  

where A0 is the wavelength in vacuum. If we let m = n+ik,  where IC is the absorption 
index (not the magnitude of the complex wave vector, k; note the difference in 
typeface) then a solution for plane electromagnetic waves is 

27~ ET 2rnr A, = Ao exp [ -T + (7 - ut)] (11.13) 

where A represents either E or H. 

11.1.5 The Poynting Vector 

The power flux (or intensity) associated with an electromagnetic wave is described 
by the Poynting vector, S = E x H (see Jackson [19] for a derivation) where S has 
the units of energy per unit area per unit time. The energy flow is in the direction 
normal to both the electric and magnetic fields and is not a linear function of the 
electromagnetic field amplitude. 

For time harmonic fields, the Poynting vector can be computed from the cross 
product of the physical fields using 

S = Re{E,} x Re{H,}. 

The power flux is a rapidly varying function of time, since both E, and H, are varying 
with frequency w. Since under most circumstances the frequency is so large that no 
detector can respond fast enough, it is more useful to use a time-averaged Poynting 
vector ( S )  defined by 

(11.14) 

where the integration is over a time T much longer that the period (2.rrlw) and much 
smaller than the time for macroscopic change. It is usual to omit the brackets, (), 
and denote the time averaged Poynting vector by S unless otherwise stated. 
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For time harmonic fields, the time-average Poynting vector can be evaluated 
explicitly. The real parts of the time harmonic fields are 

Re{E, (r) e i w t }  = + [E, (r) ,-awt + E: (r) eiwt] 

Re{H, (r) e i U f }  = 3 [H, (r) e-iwt + H,* (r) eiWt] 

where ()* denoted complex conjugate, which gives 

1 1 
Re{% (r, t)} x Re{Hc (r, t)} = 4 [Ec (I) x Hz (r)] + 4 [E; (r) x Hc (r)] 

1 + 4 [E, (r) x H, (r) e-2iwt + E: (r) x H: (r) eaiWi] . 

Using the fact that Re{z} = Re{z*}, the time averaged Poynting vector is simply 

1 
2 S = - Re{E, (r) x HZ (r)} (11.15) 

since the real part of terms involving eftwt vanish when integrated over times long 
compared to 27r/w. 

Using the plane wave solutions, Eq. ( K l l ) ,  the time-averaged Poynting vector 
becomes 

S = f Re{E, (r)} x HE (r)} 

Eo x (k* x E;) exp 
= ;Re{ 

U P  
( I  I .  16) 

For media of interest here, the vectors Eo, Ho, k are perpendicular; therefore by using 
the vector identity 

Eo x (k* x E;) = k' (Eo - E;) - E; (k* * Eo) 

and the relation for homogeneous waves k* Eo = 0, Eq. (11.16) can be written as 

s = Soexp (-7) 4n kr ii 
(11.1'7) 

Here the direction of propagation is the direction of the real unit vector 6 and the 
wave magnitude decreases with increasing distance, r ,  for non-zero absorption index, 
K .  The magnitude of the power flux, S, is usually defined as the irradiance, I = S, 
which is related to the radiance defined in radiation heat transfer. However, the precise 
definition of the radiance is power flux per unit solid angle, or aS/aR, where R is the 
solid angle. There is some subtle inconsistency here, since if the wave were truly a 
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plane wave then a S / i X l  E 0. The explanation is that for purposes of understanding 
the interaction of electromagnetic waves with matter, e.g., reflection at a boundary, 
it is mathematically convenient to consider the theoretical limit where the waves are 
planar, and ignore slight variations in the direction of wave propagation. But when 
one’s principal interested is the power flux (power/area) for finite areas then it is 
important to account for the l/r2 decrease with distance r from the power source. 
Therefore, it is more useful to distinguish between the power flux, S, for the theoretical 
limit of r ---$ 00 and the radiance, I, by defining 

where R is the solid angle about the direction of propagation, i. This definition 
admits the usual Beer’s law, 

(11.18) 

which is exactly analogous to Eq. (11.17), where the spectral absorption coeficient, 
ax, is defined as 

(11.19) 47r k 
A0 

ax -. 

Note that while k is dimensionless, ax has units of length-’. 

Another common definition of the absorption coefficient used in engineering 
applications is a x  = z, which can result in slightly more complicated interpretations 
of the absorption coefficient. Fortunately, for most engineering applications this 
definition is consistent with Eq. (11.19), so the differences will not be discussed (see 
Siege1 and Howell [20]). 

a I  

11.1.6 Normal Reflection at a Plane Boundary 

Consider the reflection and transmission of radiation at normal incidence from 
a planar boundary between two media with complex refractive indices ml and m2, 
respectively. A plane homogeneous wave is incident on medium 1 from medium 2 
with the direction of propagation tG normal to the interface between medium 1 and 
medium 2 (see Fig. 11.1). The electric fields in medium 1 and medium 2 are 

~ ~ e x p  [iu (T m1 x - t ) ]  , 
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Incident Wave I 

Wave 

MEDIUM 2 

Reflected Wave I 

MEDIUM 1 

Figure 11.1: Schematic of incident, reflected, and transmitted waves 
at the  interface between to media. 

and 

E,exp [iw (y - t ) ]  + E,exp [ '  zw (",'" - - t ) ]  (2 < 0) 

respectively. 

In t h e  absence of surface charge or current, the electric field and magnetic field, 
which are both tangential to the interfaceat z = 0, are required to be continuous [19). 
Thus at the interface the electric fields satisfy 

E; + E, = Et (11.20) 

and, using Ho = k x Eo/ (wp) ,  the condition for the magnetic field yields 

( I I . 2 1 )  
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At optical frequencies and for non-magnetic media, it is usually a good assumption 
that p1 = p2 (for discussion, see [21]) t Since for homogeneous waves kl/k2 = 
ml/rnq, Eq. (11.21) can be written as 

ml 
m2 

E; - E, = -Et. (11.22) 

Solving Eq. (11.20) and Eq. (11.22) for the reflection, +, and transmission, i, coefficients 
defined as 

E, = ?E; , Et = iE,, 

we have 
(I I .23) 

Note the introduction of a relative refractive index, m = n + ik. From here on this 
quantity is just referred to as the refractive index, m, of medium 1 relative to medium 
2 when medium 2 is air or vacuum. 

The fraction of the incident power that is reflected is given by the reflectance R, 
where 

(11.24) 

Eq. (11.24) is commonly referred to as the Fresnel relation for normal reflectance. If 
the absorption index, E ,  is small compared to (n - l ) ,  then the reflectance is not 
significantly changed by small changes in k. Also, the reflectance, Eq. (11.24), is not 
significantly changed by re-orienting the incident beam to a near normal position [20]. 

11.2 Frequency Dependence of The Optical Constants 

The optical constants of all materials vary with frequency (or free-space wave- 

length A, = ~ T C , / J ) .  For insulating materials, if one considers a broad range of 
frequencies, it is found that the absorption index, E ,  may vary by several orders of 

magnitude. The real refractive index, n, varies somewhat less, but the variations in n 

t To understand this point, note that the permeability is a measure of the ability of a material 
to set up a magnetic dipole in response to an applied magnetic field. But in isotropic 
materials, this would require “lining up” many tiny current loops in the material (e.g., bound 
electrons) at  rates on the order of the frequency of the magnetic field. A t  optical frequencies 
or higher, the electrons would have to be reacting at  relativistic velocities, and they simply 
cannot in most circumstances. 
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are largest at frequencies where k is also rapidly changing with frequency. As this be- 
havior suggests, the absorption index, I C ,  and refractive index, n, are not independent, 
but are related through the Kramers-Kronig relations [ 181. 

This section summarizes the theoretical background for understanding the fre- 
quency dependence of the optical constants for insulating solids. First a simple oscilla- 
tor model is presented to illustrate the frequency dependence of the optical constants. 
This model is rather specific, since it is restricted to absorption mechanisms which are 
reasonably modeled by damped harmonic oscillators, but it accurately predicts the 
behavior of the optical constants of many insulating materials at infrared frequencies. 
Once the specific model is discussed, the more general Kramers-Kronig relations are 
presented, along with a discussion of how they may be used to determine the optical 
constants of materials from measurements of near-normal reflectance. 

11.2.1 Classical Oscillator Model for the Optical Constants 

The classical harmonic oscillator model, the so-called Lorentz model, provides 
useful insight into the spectral dependence of the optical properties of many materials, 
particularly non-conductors. Although the model is rather simple, compared to more 
complete quantum mechanical models, it gives surprisingly good results in many cases 
and generally provides a good basis for understanding the frequency dependence of 
the optical properties. 

In this classical model, the material is considered to be composed of a collection 
of electrically charged point masses, each bound to its equilibrium position by a linear 
spring (i.e., the displacement from equilibrium is proportional to the force acting on 
the mass). In addition to the restoring force, the model assumes a damping force 
which is proportional to the velocity of the mass. The governing equation is 

d2x dx 
dt2 dt 

m- + b- + K x  = eE. (11.25) 

Here x is the displacement from the equilibrium particle position, m is t he  mass of the 
particle (e.g. electron or atom), b is the damping constant, IC is the spring constant, 
e is the particle charge driven by the local electric field E. 

If the electric field, E, is harmonic with frequency w,  then the solution to 
Eq. (11.25) is 

( 4 4  E 
w i  - w2 - iyw. 

X =  (11.26) 
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Here the natural frequency, wo, is d G  and 7 = b/m. For a single oscillator, the 
polarization is e x ,  and if there are N oscillators per unit volume then the polarization, 
P, is simply N e x .  Defining the plasma frequency, wp,  such that w i  = Ne2/rneo, the 
polarization becomes 

r) 

P =  w; EOE. 
ui - w2 - i7w 

(11.27) 

This equation describes the polarization owing to a single type of oscillator, having a 
single binding potential (spring constant), and a single natural frequency wo. If the 
material consists of a number of different oscillators, we can sum over all oscillators 
to obtain the relation 

(11.28) 

Here the subscript j denotes values for one particular harmonic oscillator with plasma 
frequency a p j ,  natural frequency woj, and damping coefficient rj. 

From Eq. (11.28) the complex permittivity (or dielectric function) can be written 
as 

I -  2 W '  PJ 
iyjw 

E ( w ) = E o ( 1 + X ( W ) ] = E o  (11.29) 

This expression shows that the complex dielectric function, c = € / E O ,  for a collection of 
oscillators is a summation of the dielectric functions for each oscillator. The complex 
refractive index, rn = J;, does not have this property. 

A t  frequencies far from the natural frequency of a particular oscillator ( j ) ?  
where ~ ~ u / ( w ; ,  - w2) << 1, that oscillator does not contribute significantly to the 
imaginary part of the dielectric function. If one is interested primarily in, say, infrared 
frequencies, then the real contribution due to higher frequency oscillators can be 
grouped into a single real constant, n& so that 

(11.30) 

Note here that n 2  is necessarily larger than unity since it is the  sum of unity and 
all the positive high frequency terms (e.g., due to oscillations of electrons about their 
equilibrium positions orbiting an atom). 

As discussed at the beginning of this section, the classical oscillator model provides 
an accurate model for the optical properties of many materials (esp. non-conductors). 
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Before comparing its predictions with actual optical constants for real materials, 
consider the behavior predicted by Eq. (11.30) for a single oscillator. For illustrative 
purposes let wp/wo = 1 .O, y/wo = 0.1, and n, = 1.5. The resulting complex dielectric 
function, refractive index, and normal reflectivity are shown in Fig. 11.2. 

Several important characteristics common to many materials are illustrated in 
Fig. 11.2. First, the imaginary part of the dielectric function (2nlc) is approzimately 
symmetrical about the natural frequency, wo, having a maximum near w = wo. While 
2nk is always positive, the real dielectric function, n2 - k2, is negative for a small 
range of frequencies higher than the natural frequency, gradually increasing to the 
limiting value nL (= 2.25) at the high frequency limit. 

The complex refractive index shown in Fig. 11.2 closely follows the structure 
of the dielectric function, but with several interesting differences. First, the real 
refractive index, n, begins at the high frequency limit n, and decreases gradually 
with decreasing frequency (increasing wavelength) until it reaches a minimum near the 
absorption feature at w = wo, This behavior of decreasing n with decreasing frequency 
is called normal dispersion, and is exhibited by all materials over wavelength ranges 
where they are transparentt . A region of anomalous dispersion, where n decreases 
with increasing frequency, is seen near the region of strong absorption (large I C ) .  It 
is interesting to note that n is less than unity for a range of frequencies higher than 
wo; this is commonly observed near very strong absorption bands in real materials 
(including coal slag). The wavelength where n = 1 and IC is still relatively small is 
called the Christiansen wavelength, and corresponds to a region where the reflectance, 
R, is near a minimum. 

The absorption index, I C ,  shown in Fig. 11.2 is not as symmetric as the imaginary 
dielectric function, 2nk, but does tend to zero on each side of the absorption 
peak. The peak value of IC is shifted to slightly higher frequencies, compared to 
the peak of 2nk. While it would be useful to have optical materials that exhibited 
anomalous dispersion, it is not generally possible, since IC is large in those wavelength 
regions. To demonstrate this fact, consider that for visible light at X = 0.5pm, the 

i The term normal dispersion is due to a dispersion of visible light into its multitude of 
colors when passed through prisms and other simple transmissive optical elements. The 
refractive index, n, of common optical materials decreases with increasing wavelength, thus 
shorter wavelength light is refracted more than longer wavelength light. While this chromatic 
aberration is is of fundamental importance in prism spectrometers, for example, considerable 
effort is expended to reduce it in some other instruments. (e.g. telescopes, cameras, etc.). 
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transmittance of a 1 mm (1000 pm) thick layer with IC = 
or approximately 1.2 x IO-". 

is only exp(-4rkL/X) 

Finally, the normal reflectance, R, resulting from the damped harmonic oscillator 
model is illustrated in Fig. 11.2. At the two frequency limits shown, the absorption 
index, k, is small and the normal reflectance is'approximately (n - 1)2/(n+ 1)'. Near 
the absorption line, where IC is large, the reflectance is increased and the contribution 
by k is significant. The peak in R is shifted to a slightly higher frequency than 
either the peak in 2nk or k, and drops rapidly with increasing frequency on the high 
frequency side of the absorption line. The minimumin R occurs near the Christiansen 
wavelength, where n = 1. Again, such behavior is commonly observed in many 
materials. 

As an example of the optical properties of a real material consider the absorption 
band of liquid water near the wavelength of 3 pm illustrated in Fig. 11.3. The symbols 
(0) show the experimental data from Hale and Querry [43] and the solid lines are for a 
single damped harmonic oscillator fit with noo = 1.31, wo = 3355cm-l, wp = 915cm-', 
and = 305cm-'. The oscillator model clearly predicts the qualitative trends in the 
data. and is also a reasonably accurate quantitative model. The deviations of the fit 
from the  data are due, in part, to the neglect of nearby weaker absorption bands, but 
it is also quite likely that the vibrational mode at 3 pm is not exactly a single damped 
harnionic oscillator. For example, the damping factor y may depend on frequency. 

11.2.2 Kramers-Kronig Relations 

The complex refractive index, m = n + ik, is very frequency dependent when 
considered over a wide range of frequencies. By using the principle of cuusality and the 
linearity of the response of a medium to an externally applied field, along with certain 
physical constraints on the asymptotic behavior of the phenomenological coefficients, 
one can construct relationships between the real and imaginary parts of the complex 
refractive index (or any other similar causal analytic function). These relations are 
the so-called Iirumers-l<ronzg relations. Since the derivation of these relations adds 
little physical insight, they are presented here without proof. Several standard texts 
outline the derivation [18,19,21], leading to the  result that the  frequency dependence 
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of the real and imaginary parts of the complex refractive index (rn = n + zk )  are 
restricted to forms which satisfy the relations 

(11.314 

(II.31b) 

Here w is frequency and P denotes the Cauchy principal valuest of the integrals. 

The Kramers-Kronig relations are quite remarkable and their physical implica- 
tions were not understood prior to their derivation in the 1920’s by Kramers and 
Kronig (independently). From Eq. (11.31) we see that if we know either n or k 
at all frequencies then either k or n, respectively, can be computed. However, we 
do not generally know n or IC at all frequencies, therefore it is useful to formulate 
Kramers-Kronig relations for quantities we can measure directly. 

Reconsider the near normal reflection of radiation from a planar interface. The 
complex reflectance coefficient, +, can be recast as a real reflection coefficient, r ,  and 
a phase shift upon reflection, 0. That is, we can write 

where the normal reflectance, R, is now just R = I  r 1 2 .  In this form, the Kramers- 
Kronig (KK)  relation relating 0 and R is [18] 

Oo In R (w‘)  0 ( w )  - 7r = --p dw’ . “ I  7r *‘2 - ,2 ( I  I .32) 

Using this relation one can measure R then compute O(w).  Having 0 and R. the real 
and imaginary parts of the refractive index are obtained from 

1 - R  n =  
1 + R+2&cos@’ 

- 2 0  sin o 
1 + R + 2 & c o s @  

I C =  

( I  I . 3 3 4  

( I I . 3 3 b )  

t The Cauchy principal value of an  integral is obtained by breaking the integral into two ranges, 
one for each side of the singularity a t  z = I, say, and letting the limits of the integrals approach 
the singularity, such that 
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It is useful to subtract 1nR(w)/(d2 - w 2 )  from the integrand in Eq. (11.32), 
which does not affect the integral since 1 /(at2 - w2)dw' = 0. The result is that 
the modified integrand is finite at w' = w,  and can be more easily integrated using 
standard numerical schemes. The resulting formulation is 

dw' . 
w lw 7r w12 - ,2 

In R ( w ' )  - lnR(w) 0 (w)  - 7r = --P (11.34) 

A t  w' = w the integrand approaches the value 

(11.35) - 1 d R ( w )  - wlnR(w') - lnR(w) 
lim - 

wI+w 7r wl2 - ,2 2nR(w) dw 

In practice the reflectance is only known over a finite spectral range, say wl  5 
w 5 w2. In this case the KK relation for 0, Eq. (11.34), can be divided into an integral 
over three ranges, i.e., 

(11.36) 

I f  the  numerator of the integrand is well behaved, i.e., finite, then the contribution to 
the integral at frequencies far from w decreases as d2 -w2 increases. Therefore, it may 
le possittle to assume that R is constant outside the range of the measured reflectance 
and. as shown by Fig. 11.2 or Fig. 11.3, the assumption is reasonable so long as the 
neighboring absorption features are at frequencies far from the range of measured R. 
For example, assume that the reflectance outside the measured frequency interval is 
given by 

With this assumption Eq. (11.36) can be simplified to 

( I  I . 3 7 )  

( I  I .38) 

This form of the Kramers-Kronig relation, with the assumed constant values of R 
outside of the measured wavelength range (Eq. (11.37)), was used successfully by 
Goodwin [ l l ]  for determining the optical constants of room temperature coal slags. 
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11.2.3 Behavior of the Kramers-Kronig Relation for k << n. 

From Eq. (11.24) it is apparent that if ( n  - 1)2 is much larger than k2, then the 
normal reflectance is not sensitive to changes in k, and one cannot accurately find k 
directly from measurements of R. To see how the Kramers-Kronig relations behave 
in this limit reconsider the normal reflection coefficient formula, Eq. (11.23), written 
as 

(11.39) 

where 
1 - n 2  2k 

X E  and y =  - 
( n  + 1 ) 2  + k2'  ( n  + q2 + k.2' 

(11.40) 

Y 
4 

, x  

X 

Figure 11.4: Schematic showing r' in the complex plane for n > 1 

Figure 11.4 shows the representation of r' in the complex plane. If n - 1 is positive 
then x is negative and since k is always positive y is always negative. If 2k is much 
smaller than ( n  + l ) ( n  - 1)  then the angle 0 is approximately x ,  and to first order 
approximat ion we have 

cos(@) = -1 (11.41) 
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corresponding to 180' phase change on reflection. Using this approximation in 
Eq. (11.33) gives 

or 

(11.42) 

(11.43) 

From this analysis it is evident that if the Kramers-Kronig formulas accurately 
predict 0 31 ?r in regions of small k then they will also predict n accurately. From the 
discussion on damped harmonic oscillators we know that one characteristic of regions 
of small k is that R is approximately constant. Therefore, to the extent that R is a 
constant for frequencies where k is small, we have 

and the Kramers-Kronig relation (Eq. (11.32) or Eq. (11.38) ) produces the desired 
result (0 2: n). At frequencies far from the region of interest R is certainly not 
constant, but the integrand In( R)/(wt2 - w 2 )  becomes vanishingly small and does not 
contribute to the integral. This feature is very important since it allows application 
of the  Kramers-Kronig relations to data obtained over a finite frequency range. 

Finally, the failure of the Kramer-Kronig to predict k accurately in regions of 
small k is not difficult to understand. Consider the effect of k on R by differentiating 
Eq. (11.24) with respect to E .  The resulting equation is 

- =  d R  [ 2 k2 - 2k2 (11.44)  R ( n - 1 ) 2 + k 2  ( r ~ + l ) ~ + J c ~  

The sensitivity coefficient ( d R / R ) / ( d k / k )  is shown in Fig. 11.5 versus k for several 
values of 71 (n=l . l ,  1.5, and 3.0).  If ( d R / R ) / ( d k / k )  is small then large changes in k 
are required to produce measurable changes in R ,  and conversely, small uncertainties 
in R correspond to large uncertainties in k. For example, if n = 1.5 and k 21 

then a one percent uncertainty in R corresponds to a 1000% uncertainty in E .  

Although this sensitivity was derived using the Fresnel relations for normal 
reflectance, it shows a fundamental limit to all normal reflectance measurements. 
It is not possible to use the Kramers-Kronig analysis, or any other technique, to 
accurately determine I ;  when it is small compared to n - 1. However, if IC is larger 
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Figure 11.5: The sensitivity of R to k versus IC for several values of n. 

than approximately 0.1, corresponding to the dashed box in Fig. 11.5, then R is 
sensitive to k (for the values of n considered here). Also, if n - 1 is small compared 
to bl say n = 1, then the normal reflectance is entirely due to I C ,  and the sensitivity 
of R to E is two, independent of the value of k. This latter feature is of practical 
interest, since it allows k to be determined simply at one or two wavelengths (where 
n = 1) near a strong absorption band using only normal reflectance measurements. 

Another interesting feature illustrated in Fig. 11.5 is the downward turn in 
(dR/R)/(dk/IC) for large I C .  If IC is very large compared to unity then the sensitivity 
of R to k is again small. This limit may be of interest for metals, where both n and 
k are large over a broad spectral range. 
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Chapter 111. 

Experimental Apparatus and Procedures 

This chapter describes the apparatus and procedures used to measure the optical 
constants of molten coal slag. An electric furnace was modified to allow preparation 
of melts, and to facilitate near normal reflectance measurements, and transmittance 
measurements on molten slags. Several slags were produced to study the effect of 
composition on the optical constants. Synthetic slags were produced by melting 
mixtures of powdered oxides and “natural” slags were produced by melting fly ash. 

After melts were produced, and a sufficient quantity of slag obtained, the solid 
slag was placed in crucibles (usually of alumina) and reheated in the electric fur- 
nace to approximately 1600OC. The near normal reflectance was measured over the 
wavelength range 1 5 X < 13pm. The Kramers-Kronig (KK) procedure was used 
to compute the real refractive index, n, over the entire wavelength range for which 
reflectance was obtained. This KK analysis also yields the imaginary refractive index, 
IC, but only in wavelength ranges where k > 0.1. 

Transmittance was measured using a procedure similar to that for the reflectance 
measurements, except that a platinum mirror was suspended just below the surface 
of the molten slag. By changing the depth of this platinum mirror and making 
measurements at two mirror depths, the transmittance of the molten slag was 
measured over the wavelength range 1 5 X < 5pm. The transmittance of the molten 
siags is too small to measure at  wavelengths longer than approximately 5 pm, or for 
slags with more than approximately 5 wt.% Fe203. 

The following sections give details of the apparatus and procedures. The first 
section describes the apparatus and procedures for producing synthetic and natural 
slags. along with a detailed description of the electric furnace used throughout 
the experimental work. The second section describes the optical system and the 
procedures used to measure the near normal reflectance of molten slags. The final 
section describes the apparatus and procedures used to measure the transmittance of 
the molten slags. 
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111.1 Slag Production 

Slag is the bulk glassy solid (or liquid) produced by melting either powdered 
metal oxides (synthetic slag) or real fly ash (natural slag). There are three important 
aspects to slag production: 1) slag composition, 2) furnace design, and 3) melt 
procedures. Discussions of slag composition might ordinarily be confined within 
discussions of results; however, the melting characteristics of the slag depend strongly 
on composition and were found to have a critical influence on the experimental 
procedures. Therefore, the criteria used for selecting the slag composition are included 
here. 

111.1.1 Selection of Slag Compositions 

The composition of fly ash varies from particle to particle, but the refractive 
index is not sensitive to small variations of most minor species ill]. The primary 
constituents for most particles are SiOz, Al2O3, FezO3, and CaO. Other constituents 
are either present in small amounts, present in large amounts in just a few particles, 
or do not significantly affect the optical constants in the wavelength range of interest 
for heat transfer analysis. Therefore, synthetic slags were produced from mixtures of 
these four primary constituents. An additional criterion for the choice of synthetic slag 
compositions was the desire to directly compare results with the lower temperature 
measurements of Goodwin (111. Five slags were produced to meet this criterion. 

A range of slag compositions were studied. Ideally one would like to use a 
full range of compositions based exclusively on composition measurements on ash 
particles. To some degree this was done, however there are practical constraints on 
the choice of composition. First, the slag must be of a composition that will melt at 
temperatures below 16OO0C, the maximum temperature limit for the furnace. From 
the phase diagram for Alumino-Calcia-Silicates shown in Fig. 111.1 1221, it is apparent 
that  there are many compositions that meet this criterion and many that do not. All 
of the slags in this study were chosen to meet this criterion. 

The next criterion is that the molten slag must be inviscid enough to allow the 
submerged platinum mirror to move, as was discovered after several failed attempts 
to measure transmittance. This requirement is only critical for transmittance mea- 
surements. arid does not affect reflectance measurements. As discussed in more detail 
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in section 3.0 of this chapter, the transmittance measurements are made by moving 
the crucible of liquid slag vertically relative to the submerged platinum mirror. If the 
slag is too viscous, then this motion causes excessive drag on the mirror, resulting in 
bending of the mirror support rods and/or misalignment of the mirror. Also, if the 
slag is too viscous then the surface deformation caused by the motion of the slag over 
the platinum mirror subsides too slowly. One slag (SAlS) did not meet this criterion, 
probably because its melting point was too near the 1600°C temperature limit. 

A third criterion for slag composition is that the molten slag solution should not 
dissolve the alumina crucible in which it is contained. This criterion is very important, 
and was not met on several occasions with troublesome consequences. Most of the 
slags produced for this study do not strictly meet this criterion, since almost all 
will dissolve the alumina crucible if left at 16OOOC for an extended period of time. 
However, most of the slags were found to meet this criterion if the duration at 1600°C 
was limited to approximately 12 hours. 

The need for this third criterion is most easily understood by considering the 
effects of failing to meet it. When the crucible is dissolved the molten slag runs 
onto the surrounding furnace components (outer furnace tube and support tubes). 
Since the expansion coefficient of the alumina is larger than that of the slag, when 
the furnace is cooled the slag/alumina interface is stressed and, if the slag layer is 
strong enough, the alumina breaks (Note that the cool slag layer is in compression 
while the cool alumina layer is in tension; thus a thin slag layer is generally as strong 
as a thicker alumina layer). Loud cracking sounds occurred at temperatures below 
about 600" C, probably depending on the geometric configuration of the slag/alumina 
interface. Since replacement of the alumina components inside the furnace is both 
expensive and time consuming, this criterion limits the duration of a single experiment 
to approximately 12 hours. Slags that were found to dissolve the alumina crucible in 
less than 12 hours were reproduced in platinum crucibles. 

111.1.2 Preparation of Powdered Oxide Mixtures 

To make a synthetic slag, a mixture of high purity powdered oxides SiOz, A1203,  

CaO, and Fen03 were mixed with sufficient distilled water to allow the mixture to 
be stirred and agitated (ultrasonically) until the slurry was visibly homogeneous. 
The reddish tint  of the mixture, due to FezO3, became uniform when the slurry was 
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well-mixed. This mixture was placed on an aluminum foil platter and baked in a low 
temperature utility furnace at approximately 150-200° C for several hours, until the 
water was evaporated+ . This process produced clumps of powder which were packed 
into a large (100 me) high purity (99.8%, Coors) alumina crucible3 . Approximately 
100 g of powder was packed into a 100 me crucible and placed in the high temperature 
furnace for melting. 

Table 111.1: Compositions (in wt.%) of Oxide Powder Mixtures 

Slag Si02 A1203 CaO Fez03 
SA00 58.00 29.00 13.00 0.00 
SA01 57.42 28.71 12.87 1 .oo 
SA05 55.10 27.55 12.35 5.00 
SA10 52.20 26.10 11.70 10.0 
SA20 46.40 23.30 10.40 20.0 
SA4S 38.83 23.30 34.95 2.90 
SA2S 18.60 43.71 30.69 7.00 
SAlS 9.62 40.38 46.15 3.85 

The mixture compositions for the eight synthetic slags studied here are shown in 
Table 111.1. The naming convention of the eight slags is based in part on a scheme 
devised by Goodwin [I l l .  The first five slags, SAOO, SAOI, SA05, SAIO, and SA20 
are synthetic (S) slags produced in air (A). The last two digits give the nominal 
weight percent of FezO3. The base composition is SAOO, and the next four SAzz 
slags (SAOI. SA05, SAIO, and SA20) are mixtures of SA00 plus zz weight percent 
Fe203. For example, SA05 was produced from 95 g of SA00 and 5 g of Fe203. 

The next three slags (SAlS, SA2S, and SA4S) were not studied by Goodwin. 
Their compositions were chosen to study the effect of lower Si02 content. Again, 
these slags are synthetic (S) and produced in air (A),  but the last two digits (lS, 2S, 
and 45) denote the approximate molar Si02 content. For example, SAlS  contains 
approximately 10 mol% Si02 and SA4S contained approximately 40 mol% Si02. The 

t This drying step is very important. Failure to completely dry the powder mixture can cause 
an explosion when the crucible is heated in the furnace. The build-up of steam pressure in 
the packed crucible can eject hot powder from the top of the furnace. 

Since standard alumina crucibles have rather thin walls, the crucibles used for initial melt 
preparation were actually short (4 in) alumina tubes with one end closed and flattened. These 
“crucibles” had walls approximately 1/8 in thick, and were supplied by Coors. 
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Ai203 and CaO contents of these three slags were chosen by studying Fig. 111.1, 
and selecting compositions with. sufficiently low melting points. In addition to this 
criterion, the criterion that the slag not dissolve the crucible was considered. To this 
end, compositions were chosen so that an increase in A1203 would cause the melting 
temperature to increase (according to Fig. III.l)f . 

The iron contents of the synthetic slags SAlS, SA2S, and SA4S were not restricted 
by the considerations discussed above. Since the SA2S was chosen to have Si02 
content similar to a natural slag (NAEB), it was decided to choose the Fe203 content 
of SA2S to be similar to that of the natural slag$ . The Fez03 contents of slags SA4S 
and SAlS were chosen to be between those of SA01 and SA05, with the expectation 
that their transmittance could be measured and provide more information on the 
effect of iron content on transmittance. The transmittance of SA4S was measured, but 
SAlS had an excessively high melting temperature or viscosity, and its transmittance 
could not be measured. 

111.1.3 The High Temperature Electric Furnace 

The furnace used in these experiments is a Deltec DT31 heated with eight "U"- 
shaped Kanthal Super 33 heating elements. The heating elements hang vertically 
in the furnace, supported from above by external aluminum connecting posts. The 
heating elements are connected in two parallel circuits with four elements in series 
in each circuit. The maximum operating temperature of these heating elements 
is approximately 17OO0C, when operated in an oxidizing atmosphere (air). These 
elements are very brittle at room temperature but become ductile at high temperature 
(16OO0C). Thus they must be hung vertically to prevent them from bending into 
contact with the furnace walls and/or furnace tube. 

The temperature of the furnace was controlled with a EuroTherm model 919 
temperature controller equipped with a programmable control module (Love Controls, 
model 105). This controller used feedback from a type B shielded thermocouple 

t This selection criterion did not prove successful in the case of SA4S, which readily melted its 
alumina crucible after approximately 6 hours at 16OO0C, and was subsequently reproduced 
in a platinum crucible. 

The natural slag NAEB was produced from a melt of Eagle Butte fly ash, and is discussed in 
detail in Chapter 4 
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inside the furnace. A pre-cut cam on the controller was designed to produce a 
linear temperature increase, followed by a level temperature, and finally a linear 
temperature decrease. The peak temperature and cam rotation rate were adjusted to 
provide approximately 12"C/min linear heating rates and a maximum temperature 
of approximately 1550°C. 

The original furnace had 2 inch diameter openings in the top and bottom for 
insertion of an alumina furnace tube. Preliminary experiments revealed a serious 
problem with this 2 inch OD furnace tube configuration. When the molten slag 
is contained in a small (approx. 1 inch ID) crucible the surface is concave due to 
surface tension combined with the small contact angle where the slag wets the alumina 
crucible. To minimize this problem, it was estimated that a 4 inch OD furnace tube 
was required so the slag could be contained in a 2.2 inch ID crucible. Based on 
calculations and experiments, this configuration produces a molten slag surface with a 
radius of curvature of several meters. No precise measurements were done to quantify 
this curvature, but based on measurements, including those discussed in Appendix C, 
the radius of curvature is large enough to prevent significant transmittance and 
reflectance measurement errors. 

The furnace wall was constructed using SALI (Zircar) fibrous insulation board 
as the hot face. The 4 inch OD furnace tube was a 99.8% alumina tube (Coors) 
with approximately 3.5 inch ID. It is not possible to maintain a sufficiently uniform 
temperature inside the furnace with the large (3.5 inch) holes in the top and bottom of 
the furnace. Therefore, a smaller furnace tube was inserted into the top of the furnace 
and a fibrous ceramic (SALI) plug was fitted into the bottom opening. Figure 111.2 
shows a schematic of the rebuilt furnace configuration. 

Based on estimates of the power loss from the furnace, the temperature uniformity 
inside the furnace is relatively good. Sighting through the top of the furnace (using 
welding glasses) shows no visible color variation, but this view is rather restricted. 
The major loss is by conduction through the alumina tubes and furnace insulation. 
With the radiation shield in place, as shown in Fig. 111.2, the radiative loss through 
the top of the furnace is much less than these conductive losses. 

Measurements of the temperature distribution along the central vertical portion 
of the furnace showed less than 10°C change along the central 3 in of the furnace while 
at a mean temperature of approximately 1520°C. This measurement was made using 
a type R (Pt/Pt-l3%Rh) thermocouple with a bead diameter of 0.035 in and wire 
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Figure 111.2: Schematic of modified Deltec furnace used for melts, 
transmittance, and reflectance measurements . 

34 



diameters of 0.005 in. The thermocouple was positioned vertically through the top 
of the furnace using a long alumina thermocouple sleeve (0.125 in OD). No radiative 
shielding was used. 

The usefulness of this furnace temperature distribution measurement is somewhat 
questionable, since it was made (necessarily) without the crucible of molten slag inside 
the furnace. The presence of the crucible and slag will affect the temperature to 
some extent. Specifically, the crucible, by being in direct contact with the alumina 
support tube and by radiating through the top of the furnace, will assume a slightly 
lower temperature than the walls of the furnace. During all measurements and 
operations, the furnace temperature was monitored at  a position near the center 
of the furnace and directly below the crucible. Since the slag layer thickness in the 
crucible was approximately 1 cm during transmittance and reflectance measurements, 
this temperature should be quite close to the actual slag temperature. 

111.1.4 Production of Slag Melts 

The oxide mixtures, prepared as discussed above, were placed in the electric 
furnace. The temperature was increased at a linear rate of approximately 10- 
15OC/min until the it leveled off at approximately 1550OC. At this time the controller 
cam was stopped and the slag maintained a steady temperature until the cam was 
restarted. Figure 111.3 shows the temperature history and heating rates for a typical 
me1 t cycle. 

The molten slag was kept at high temperature for approximately 8 hours in a 
room air atmosphere. This 8 hour time limit, determined by trial and error, was 
found to be long enough to produce a reasonably homogeneous slag while short 
enough to prevent the slag from dissolving its container. These two criteria are 
important practical limitations which also affect the length of time available to make 
high temperature transmittance and reflectance measurements. Evidence that the 
slags were homogeneous was obtained by microprobe analysis of a cross section of the 
SA05 slag melt (see Appendix B). Evidence that the slags had reached a reasonable 
stable composition (e.g. the Fez03 valence state) was obtained during transmittance 
and/or reflectance measurements by comparing results at  the start of the experiment 
with results at the end. 
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Figure 111.3: Temperature and heating rate history for a typical 
slag melt preparation. 

For most synthetic slags tested, the slag partially dissolved the alumina crucible 
(-2mm thick walls) and, if left at 1550-1600OC for too long, would flow out of the 
crucible. The precise length of time needed for this “melt-down’’ to occur was not 
determined, since it varies with slag composition, but a melt of the SA01 slag did 
escape from the crucible sometime between 12 hours and 24 hours. This melt-down 
destroyed much of the inner furnace fittings, breaking the alumina tubes during 
cooling, as discussed above. 

36 



NERNST GLUWER 
MUNDCHRUMATDR 
(EBERT TYPE) 

TUBES (3) 

Figure 111.4: Schematic of the optical system for reflectance and 
transmittance measurements. 
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111.2 Near-Normal Reflectance 

The near-normal reflectance of the molten slags was measured using the apparatus 
illustrated in Fig. 111.4. The optical system is mounted on a 4-ft by 6-ft optical table 
(not shown) located at one side of the electric furnace. An extension is attached to 
the table to allow optical components to be mounted directly above the furnace. A 
hood (not shown) encloses the top of the optical table and table extension to allow 
the entire optical system to be purged with nitrogen. A brass bellows connects the 
furnace tube to the table extension so that the volume inside the furnace tube (where 
the hot samples reside) is open to the optical system under the hood. The following 
section describes the apparatus in greater detail. 

111.2.1 Apparatus for Reflectance Measurement 

A Nernst glower (Electro-Optical Industries model 304) provides the broadband 
infrared source for these experiments. The glower has an electrically heated ceramic 
element approximately 1.5 mm diameter and 2.5 cm long. The brightness of the 
filament is adjustable to a maximum brightness temperature of approximately 1 7OO0C, 
with radiometric feedback control to maintain a constant brightness. A metallic 
envelope surrounds the heated element to inhibit drafts. The ceramic element is an 
electrical insulator at low temperatures, and must be externally heated to higher 
temperatures before sufficient current flows through it to maintain it at  a desired 
temperature. Two metallic heating elements are located near the ceramic element to 
provide this initial heating. The primary advantage of the Nerst glower over some 
other broadband infrared sources (e.g., tungsten lamps) is its ability to operate in 
a n  oxidizing atmosphere - no infrared window is required to isolate the glower from 
the surrounding air. Based on current experiments, the glower may also be operated 
in a pure nitrogen environment. It is not known if the glower would also operate in 
a reducing atmosphere. Finally, another possible advantage of the Nernst glower is 
that the emissivity of the ceramic filament is significantly larger at  longer wavelengths 
(6-12 pm) than it is for some other broadband sources such as tungsten lamps and 
carbon filament lamps. 

The radiation emitted from the glower is first collected by a concave gold front 
surface mirror ( M l )  with 100 mm diameter and 500 mm focal length and imaged onto 
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an aperture using a magnification of approximately two. Two planar front surface 
gold mirrors (M2 and M3) are placed between the concave mirror (Ml )  and the 
aperture to provide sufficient pathlength compactly. The image passing through the 
aperture has a width of approximately 3 mm and length of approximately 6 mm. 

A mechanical chopper (PAR model 125A) is located immediately beyond the 
aperture to modulate the radiation. A chopping frequency of 670 Hz was used 
throughout these experiments. The chopper generates a 670 Hz electrical reference 
signal that is used to synchronize the lock-in amplifier with the modulated radiation. 

The modulated radiation from the chopper is reflected from the planar front 
surface gold mirror M4 onto the concave gold front surface mirror M5. This concave 
mirror has a focal length ( f )  of 500 mm, a diameter (4) of 100 mm, and is located at 
a pathlength of 1 m from both the aperture and the target surface (in the furnace). 

A planar gold front surface mirror, M6, is located above the furnace and is 
mounted on a fixed axis. When M6 is in the “sample” position it reflects radiation 
from M5 onto the sample surface inside the furnace. When M6 is in the “reference” 
position the same beam from M5 is reflected onto the gold reference mirror. In either 
position, M6 collects the light reflected from the sample or reference surface and 
directs it into the front surface concave gold mirror, M7 (f=500 mm, 4=lOO mm). 

Mirror M i  images the reflected light onto the entrance slit of the monochromator 
via the planar gold front surface mirror M8. The distances from M7 to the monochro- 
mator entrance, from M7 to the sample surface, from M7 to the gold reference surface, 
from the sample surface to M5, and from M5 to the aperture are all lm. Therefore, 
the images on the entrance slit of the monochromator and on the sample or reference 
surfaces all have the size and shape of the image formed by the aperture (apart from 

a small amount of spherical aberration and coma). 

The incident radiation is spectrally resolved by the monochromator in combina- 
tion with a set of longpass filters. The grating monochromator (Jarrell-Ash model 
82-020) is an Ebert type monochromator with a focal length of 0.5 m, f /#  of 8.6, 
and interchangeable gratings. The wavelength setting of the monochromator, for a 
given grating/filter combination, is controlled using a stepper motor which is operat- 
ed using the data acquisition computer. Figure 111.5 illustrates the operation of the 
monochromator. 
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Figure 111.5: Schematic of the monochromator used for reflectance 
and transmittance measurements. 

Characteristics of the gratings used in these experiments are shown in Table 111.2. 
The grating operates by producing an angular dispersion of incident light into a 
continuous range of wavelengths. When used in a monochromator, as illustrated in 
Fig. 111.5, the result is a spectrum imaged onto the plane of the exit slit. The angular 
position of the grating determines which portion of the spectrum escapes the exit 
slit, and hence which portion of the spectrum is detected. For a finite exit slit width, 
Ax, a range of wavelengths, AA escapes the monochromator. When the width of the 
entrance and exit slits are the same, Ax, then the slit function is an isosceles triangle 
with base width AA = 2aAs. Here a is a function of the distance from the grating to 
the exit slit and the groove density of the grating. For a particular monochromator 
configuration, the product a x ( l /d)  is constant, where (l /d) is the number of grooves 
per unit width on the grating (e.g., grooves/mm). As seen from Table 111.2 the 
product CY x ( l /d)  2: 1888 grooves nm/mm2. The nominal spectral resolution, Ax, is 
shown for each grating for a slit width of 1.5 mm. This slit width is narrow enough 
to allow adequate spectral resolution while maximizing the radiant power throughput 
to yield good detector signal/noise in a reasonable lock-in integration time (5  10s). 

The gratings used in this monochromator are "blazed" gratings which yields 
efficient reflection of first order radiation. For this grating design the blaze wavelength 

J 
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Table 111.2: Monochromator gratings. 

L 

AX (nm) 
ID Blaze X ( pm) grooves/mm a (nm/mm) for 1.5 mm slits 
1 1.2 590 3.2 9.6 
2 2.6 295 6.4 19.2 
3 4.0 148 12.8 38.4 
4 10.0 50 37.7 113.1 

is the nominal wavelength at which the grating efficiency is near maximum. The blaze 
wavelength is used as a guide for selecting a grating for a given wavelength range. 
Table 111.2 shows the blaze wavelengths, along with other grating characteristics as 
described above. 

In addition to first order diffraction, higher order diffraction is incident on the exit 
slit for a given grating position such that mA = constant. For example, if the grating 
is positioned to image a first order wavelength of 8 pm on the exit slit, then radiation 
at 4, 8/3, and 2 pm would also be imaged onto the exit slit, corresponding to second, 
third, and fourth order diffraction, respectively. To eliminate such shorter wavelength 
radiation, a longpass filter is placed before the entrance slit of the monochromator. 
The longpass filters are mounted on an indexed rotating wheel that allows one to 
move the appropriate filter in-line by rotating the filter wheel to the appropriate 
detent. Table 111.3 shows the characteristics of the six longpass filters used in these 
experiments. 

Table 111.3: Longpass filters. 

Nominal 
cutoff 0.1% Trans. 5% Trans. Xmax I Average 

ID A ( P m )  A ( A ( P 4  ( pm) Trans. 
1 0.84 0.785 0.810 1.57 0.90 
2 1.5 1.35 1.50 2.70 0.75 
3 2.0 1.80 2.00 3.60 0.80 
4 3.5 3.15 3.50 6.30 0.75 
5 6.125 5.80 6.06 11.60 0.80 
6 7.85 7.60 7.85 15.20 0.80 

1. wavelength at which second order transmittance is 50.1% 
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The combination of gratings and longpass filters allows the monochromator 
to resolve a broad wavelength range. Table 111.4 shows the grating and filter 
combinations for the six ranges, labeled A through F, used in these measurements. 
The longest wavelength range (F) has an upper limit of approximately 14 pm. This 
upper limit is due to the low sensitivity of the HgCdTe detector at longer wavelengths, 
and not due to grating or filter limitations. 

Table 111.4: Grating/filter combinations for monochromator ranges. 

Range ID I Grating ID I Filter ID 
A 
B 
C 
D 
E 
F 

I 1. Limit set by detector sensitivity 

~ 

1 .o 
1.6 
2.4 
3.8 
6.4 

11.8 

1.5 
2.4 
3.8 
6.2 

11.8 
14.0' 

The detector is a Mercury-Cadmium-Telluride (HgCdTe) photoconductor (Jud- 
son model J 15-D) with a liquid nitrogen (77 K )  cooled dewar. The detector is mounted 
at the exit slit of the monochromator as shown in Fig. 111.5. The detector has a peak 
spectral response at  approximately 12 pm and a useful responsivity in the range from 
approximately 1 pm to 14 pm. The responsivity decreases rapidly with increasing 
wavelength beyond 12 pm, and the useful range may not extend beyond 13 pm or 
so unless the incident spectral radiation is relatively intenset . The photoconductive 
element has a 1 mm by 1 mm square active area mounted behind a ZnSe window. 
An internal cold shield limits the detection half-angle to  approximately 10". 

The detector produces a resistance that is inversely proportional to the incident 
spectral radiant energy. A detector bias circuit and preamplifier (Judson model 000) 
is provided with a constant 30 mA current to convert the detector resistance to 
voltage. The preamplifier is capacitively coupled with a 5 Hz - 15 MHz bandwidth 
and provides a gain of approximately 50 db. 

The signal from the preamplifier is measured using a lock-in amplifier (Stanford 
Research Systems model SRS-530) using the reference signal from the chopper. The 

t The measured reflectance signals were not sufficiently large to  extend the measurements 
beyond approximately 13 pm. 
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lock-in is a dual phase system which allows automatic correction for phase differences 
between the reference signal and detector signal. The measurable signals from the 
detector preamplifier range from approximately 20 pV to 200 mV. Time constants of 
0.3 sec, 1 sec, 3 sec, and 10 sec were used for these measurements, with the larger 
time constants used for the smaller signals to maintain adequate signal-to-noise ratio. 

A data acquisition computer system (IBM-AT compatible) was used to control 
the stepper motor, to read the lock-in output, to control lock-in settings, and to read 
the temperature of the furnace thermocouple. 

The optical system, including the monochromator, Nernst glower, and chopper, 
is mounted on a 4-ft by 6-ft optical table with the top of the furnace located near one 
end of the table. A small table extension is used to mount optics hardware above the 
furnace (;.e., the movable mirror M6 and the gold reference mirror). 

The top of the furnace tube, shown in Fig. 111.2, is open to the optical system. 
When the furnace is hot, the length of gas above the sample is also hot. However, 
the corresponding length of gas above the furnace between mirror M6 and the cold 
reference mirror is near room temperature. Since the absorption coefficient of the 
water vapor and carbon dioxide in room air is sensitive to temperature, primarily 
through its affect on gas density, the optical pathlengths of the sample and reference 
paths art- not identical. Of course, this is largely limited to the relatively narrow 
atmospheric absorption bands near 2.7 pm (C02),  4.3 pm (C02) ,  and 6.3 pm ( H 2 0 ) .  

In addition. the flow of gases from the furnace tube tend to contain vapors that 
condense on mirror M6 when in the sample position. To alleviate both of these 
problems an aluminum box ( or "hood") was constructed to enclose the entire optical 
system. This hood is lowered over the optical system and sealed at the edges of the 
optical table. A brass bellows is attached between the top of the furnace tube and the 
optical table extension to form a completely sealed system. The crucible and mirror 
support tubes pass through holes in the insulating plug which fits into bottom of the 
the 4-in OD alumina furnace tube (See Fig. 111.2). Small gaps exist between support 
tubes and an plug through which purge nitrogen can escape. 

The optical system hood is purged with nitrogen at a flow rate of approximately 
50 std ft3/hr. The nitrogen is supplied by evaporating liquid nitrogen in copper 
tubing submerged in a heated canister of water. The detector signal near the 4.3 pm 
COz absorption band is monitored to determine the status of the purge. A typical 
spectral scan is shown in Fig. 111.6 repeated several times after a purge is begun, 
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illustrating the effect of C02 on the transmittance of air near 4.3 pm. By increasing 
the nitrogen flow rate during initial purge, the time required to effectively reduce GO2 
absorption was decreased to approximately 2-3 hours, but it was more effective (and 
usual practice) to maintain the purge between experiments. 

Figure 111.6: Effect of nitrogen purge of optical system on detector 
signal in the 4.3 pm wavelength range and at various times following 
the start of the purge. 

Another important aspect of the purge system is the ability of the nitrogen flow 
into the top of the furnace to decrease the rate of condensation on the mirror M6. 
As mentioned above, the mirror M6 is placed directly over the top furnace opening 
when in its sample position. Therefore, material evaporated from the slag tended to 
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condense on the cool mirror. With the purge flow activated, this evaporation was 
effectively eliminated, since a significant portion of the nitrogen flow was downward 
through the furnace. It was difficult to quantify the amount of flow leaving through 
the furnace, since the hood had many penetrations to accommodate adjustment wires 
and rods. By monitoring the reference signal over a long period of time it was 
determined that the small amount of persistent condensation did not significantly 
affect the reflectance measurements. 

In early experiments it was noticed that small amounts of dust under the hood 
would be swept into the furnace by the purge flow. This problem was effectively 
eliminated by placing a small forced-air filter (Norelco) under the purge hood. 
Leaving the hood closed with the filter and purge running continuously removed 
most of the airborne dust under the hood. 

Access to the optical system was rather restricted once the purge hood was in 
place. All major adjustments to the optical system were made prior to lowering 
the hood over the system. Many of the minor adjustments required during the 
experiments, including positioning of the movable mirror M6, were made with small 
wires and rods extending through the hood. A rubber glove with an extendable sleeve 
was mounted near the monochromator to allow the gratings and filters to be changed 
without letting room air into the optical system. A small hole in the top of the purge 
hood allowed transfer of liquid nitrogen from an external dewar to a dewar under the 
hood, which in turn was used to regularly (approx. 2 hr intervals) refill the detector 
dewar. 

111.2.2 Reflectance Measurement Procedure 

The following procedure was used to measure the near-normal reflectance of the 
slags: 

1. The nitrogen purge is started to reduce the C02 and H2O concentrations under 
the purge hood. The detector signal at 4.24 pm is monitored to determine the 
status of the purge. 

2. An alumina (or platinum) crucible is filled with chips of solid slag produced by 
the melt procedure. The crucible is placed on the support tube in the  furnace 
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and the temperature is increased at a rate of approximately 10-15°C/min until 
the furnace temperature is approximately 1600OC. 

3. The slag is left at  160OOC for approximately 2 hours to become homogeneous and 
for the system temperature to stabilize. A thermometer under the purge hood 
(away from the furnace) indicates a steady temperature in the range from 34OC 
to 4OOC. 

4. The vertical position of the slag surface is checked for alignment and adjusted as 
necessary (usually not necessary). The detector signal is maximum when the slag 
surface is properly positioned. 

5. The monochromator wavelength dial indicator is checked for conformity with the 
computer acquisition system. Several trial reflectance measurements are made at 
several wavelengths to establish steady performance. 

6. The near-normal reflectance is measured by first measuring the sample signal at 
several wavelength settings with the mirror M6 in the forward (sample) position. 
Kext mirror M6 is moved to the reference position and the signal reflected from 
the gold reference mirror is measured. The reflectance, R, is the ratio of the 
sample signal, Is, to the reference signal, IT, corrected by the reflectance of gold, 
R,  'c 0.992, such that 

( I I I . 1 )  

7. The reflectance is measured sequentially over the entire wavelength range from 
1 - 13 pm using appropriate grating and filter combinations as shown in Table 111.4. 
Measurements are repeated a t  several wavelengths during the procedure to en- 
sure that they are repeatable. This procedure typically required approximately 
four hours, with the entire reflectance procedure including furnace heating and 
stabilization requiring approximately six to eight hours. 

Once the reflectance data are obtained, the Kramers-Kronig relations are applied 
to determine n over the entire wavelength range and k at wavelengths where k > 0.1, 
as discussed in Chapter 11. 
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111.3 Transmittance Measurements 

The transmittance apparatus is identical to that used for near-normal reflectance 
measurements except that the mirror M6 is fixed in the forward sample position, 
and a platinum mirror is suspended below the molten slag surface. The arrangement 
inside the furnace and the associated optical path is illustrated in Fig. 111.7. 

Primary 
Transmitted Incident 

Beam 

MuitiDlv 

' Mirror Support 
Tubes (3) 

Figure 111.7: Schematic of the submerged platinum mirror config- 
uration for transmittance measurements. The angle of the mirror 
surface to the horizontal is exaggerated for illustrative purposes. 

The platinum mirror of diameter - 1/2-in is supported at a depth from 200 to 
1500 pm below the surface. This depth is adjusted by keeping its position fixed with 
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respect to the three mirror support tubes while adjusting the vertical position of the 
crucible. 

The platinum mirror is supported by three platinum rods (2 mm dia) which 
rest on mirror support tubes. The platinum rods are welded at the center to form 
an integral support structure. Small diameter (e.g., 30 Ga) platinum wires placed 
between the mirror and each rod allow the mirror to be electrically spot welded to 
the rod structure. 

One of the mirror support tubes of alumina has a fixed position, but the 
other two can be moved vertically on micrometer translation stages to adjust the 
orientation of the platinum mirror. These adjustments are made before transmittance 
measurements begin, and are periodically checked to ensure proper alignment. It was 
found that the platinum rods would slowly creep, causing misalignment, so that 
periodic adjustment of the support tubes was necessary. 

The platinum mirror is oriented to make an angle of approximately 2.5' with 
the free surface of the molten slag. With this orientation it is possible to collect 
only the beam that is reflected once from the submerged platinum mirror, and 
to reject the beam that is reflected from the slag surface and the beams multiply 
reflected from the mirror. Thus, the collected beam intensity is proportional to 
Io(l - R)*Rptexp(-4?rk2h/X), where Io is the incident beam intensity, R is the 
reflectance of the slag surface, Rpt is the reflectance of the platinum mirror, and h is 
the depth of the submerged platinum mirror. By measuring the signal at two mirror 
depths, h and h + 6, and taking the ratio, the reflectance factors cancel and we have 

or 
x I ( h  + 6) = -- In ( 

8nb I ( h )  ) . 

( I  I I .2) 

(111.3) 

Two tests were made to ensure that only the once-reflected beam is collected. 
First, when the mirror is submerged to its maximum depth and the wavelength is 
set where k is large (2 O . O l ) ,  the collected signal vanishes when no reflection from 
the slag surface is being collected. A second test was made was to ensure that IC is 
independent of h. Measuring k for several different starting depths, h, and changes 
in depth, 6, assured that multiply reflected beams were rejected. 
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The experimental procedure for measuring the transmittance is similar to that 
for reflectance measurements. The primary difference in the two procedures is that 
the mirror M6 is left in the forward “sample” position during the entire scan. As 
described above, the “sample” and “reference” paths for transmittance measurements 
refer to paths of different depths, h + 6 and h. For transmittance measurements 
the monochromator is fixed at a single wavelength and the vertical position of the 
crucible is adjusted about a fixed submerged mirror. Once the transmittance at that 
wavelength is determined, the monochromator is adjusted to the next measurement 
wavelength. 

The difference in depth, 5, is measured from the movement of the micrometer 
translation stage to which the crucible support tube is attached. A dial micrometer 
attached to the crucible support tube provided a second measure of the change 5. 
A large graduated knob was mounted on the original (smaller) micrometer knob 
to increase the readability and precision while maintaining a minimum graduation 
of 10 pm. The translation stage was found to produce accurate and repeatable 
positioning to within approximately 2 pm. Since the positions were always chosen 
to fall on an integral multiple of 10 pm, the effective readability was less than 
2 pm. Referring to Eq. (111.3), this uncertainty in 5 corresponds to approximately 
1 %  uncertainty in IC for 5 N 200 pm. This level of precision was only achievable if a 
very light touch was applied when adjusting the mirror depth, and if the adjustment 
was done slowly to allow the slag to flow smoothly over the mirror surface. 



Chapter IV. 

Experimental Results 

This chapter describes the results of the slag melt preparation and subsequent 
reflectance and transmittance measurements. Section IV. 1 gives the composition of 
the slag melts, along with their densities measured at room temperature. The results 
of high temperature reflectance and transmittance measurements are presented in 
sections IV.2, IV.3, and IV.4. The remainder of the chapter develops correlations for 
the optical constants and attempts to explain the observed effects. 

IV.1 Slag Compositions and Densities 

As discussed in the  previous chapter, nine synthetic slags were produced from 
powdered oxides. Once the slags were produced, and cooled to room temperature, a 
small sample of slag was extracted from the melt. Electron microprobe measurements 
were made for slags SAOO, SAOl, SA05, SA10, SA20, and NAEB. The results of the 
microprobe measurements for the SAxx slags are presented in Table IV.l along with 
initial compositions for the three slags SAlS, SA%, and SA4S. Table IV.2 shows the 
results from Table IV.l recomputed on a mole percent basis. Table IV.3 shows the 
microprobe results for the natural slag NAEB. 

The microprobe results show good agreement with the original oxide mixture 
compositions presented in Table 111.1; with the largest difference being in the Fe203 

content. The microprobe results consistently indicate that the Fez03 content of the 
final slag is somewhat less than expected. The cause of this decrease in Fez03 may 
be due to composition inhomogeneity - with iron content increasing with depth in 
the slag. A careful microprobe analysis of this composition distribution is presented 
in Appendix B which supports this explanation for the Fez03 deficiency near the 
free surface of the slags, but do not fully explain why the small composition gradient 
occurs. The effect may be density stratification, with the heavier iron settling toward 
the bottom of the crucible. 
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Table IV.1: Composition of synthetic slags. 

Oxide Weight Percent 
Slag CaO 

I SA00 I 60.31 I 28.57 I 11.04 I 0.08 I 
59.40 28.49 11 -28 
55.10 27.60 12.40 

SAlO 53.10 27.46 
SA20 46.36 25.97 8.94 18.73 
SA4S* 38.83 23.30 34.95 2.90 
SA2S* 18.60 43.71 30.69 7.00 
SAlS* 9.62 40.38 46.15 3.85 

I * Estimate based on initial oxide mixture. I 
Table W.2: Slag compositions in mole fractions. 

I I Oxide Mole Percent I 
Slag Si02 A1203 CaO Fez03 
SA00 67.76 18.92 13.29 0.03 

I SA01 I 67.05 I 18.95 I 13.64 I 0.35 I 
SA05 63.70 18.81 15.36 2.13 
SAlO 63.59 19.38 12.75 4.28 
SA20 59.21 19.55 12.24 9.00 
SA4S 42.62 15.07 41.11 1.20 
SA2S 23.29 32.25 41.17 3.30 
SAlS 11.41 28.22 58.65 1.72 

The densities of the nine slags were measured using a specific gravity bottle. By 
measuring the mass of several small chips of slag, ml ,  the mass of the specific gravity 
bottle carefully filled with water m2, and the mass of the bottle filled with water with 
the pieces of slag inside, m3, the specific gravity of the slag can be found from the 
relation 

(IV.1) 

For these measurements approximately 1-2g of slag was used. The specific gravity 
bottle filled with water had a mass rn2 21 71.5g. A Mettler balance was used to 
accurately determine the mass to the nearest 0.001g (approx.). The density of each 
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Table IV.3: Composition of Eagle Butte slag (NAEB) 

I Oxide I Wt.% I Mol% I 
Si02 28.75 31.32 

A1203 17.57 11.28 
Fen03 6.93 2.84 
CaO 33.25 38.82 
Na2O 1.75 1.85 
K 2 0  0.00 0.00 
BaO 2.52 1.08 

I Ti02 I 1.12 I 0.31 I 

slag was measured several times and the uncertainty was typically found to be less 
than or approximately equal to 1%. Most of the errors could be traced to improperly 
filling the bottle, or allowing air bubbles to be trapped in the bottle. After gaining 
experience it was relatively easy to obtain repeatable results to within 1%. The 
resulting densities are shown in Table IV.4. 

Table N.4: Measured densities of the slags. 

Slag Density (g/cc) 
SA00 2.54 
SA01 2.56 
SA05 2.61 
SA10 2.68 

SAlS 1 2.98 I 
NAEB I 3.03 I 

In a later section, the density of the slag will be shown to be an important 
parameter for modeling the optical constants. An approximate formula is presented 
that allows one to estimate the density based on composition. 
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IV.2 Reflectance Measurements 

The near-normal reflectances of the nine molten slags were measured using the 
procedure described in Chapter 111. The reflectances of SAOO, SA05, SA10, and SA20 
are shown in Fig.IV.l. As shown, the reflectance, R, is approximately 5% at a 
wavelength of 1 pm, decreases to a minimum of less than 1% near 8 pm, increases 
to a maximum of 11-14% near 10 pm, then decreases at longer wavelengths. As 
discussed in Chapter 11, this behavior indicates that the molten slags have relatively 
weak absorption in the short wavelength region, where R is gradually decreasing with 
increasing wavelength (normal dispersion). Where the reflectance reaches a local 
minimum the absorption is increasing, while the subsequent steep rise in R indicates 
a strong absorption in that wavelength range. 

The effect of composition on the reflectance is illustrated in Fig. IV.l and 
Fig. IV.2. In Fig. IV.l the Fez03 concentration is increasing from approximately 
0 wt.% for SA00 to approximately 19 wt.% for SA20. There is a corresponding 
decrease in Si02 content for the four slags. As shown, the reflectance near 1 pm 
increases with Fez03 content. Another significant feature is the shift in the wavelength 
of minimum reflectance, with the minimum shifting to longer wavelengths with 
increasing Fe2O3 (and decreasing Si02). Finally, the maximum reflectance decreases 
with increasing Fez03 content. Since the sharp rise in reflectance near 8-10 pm is 
due to a silica absorption band near 10 pm, one can deduce that as the Si02 content 
is decreased the absorption band shifts to slightly longer wavelengths and the peak 
absorption decreases. This result will be confirmed by the analysis of the reflectance 
data in following sections. 

The reflectance of the slags SA4S, SA2S, and SAlS, shown in Fig. IV.2, further 
demonstrates the effects of composition on reflectance. For these slags the Si02 
content is decreased substantially, with SAlS having approximately 10 wt.% Si02. 
The trends illustrated in Fig. IV.1 are reasonably consistent with those illustrated in 
Fig. IV.2. That is, the absorption band responsible for the sharp rise in reflectance 
shifts to longer wavelengths as the Si02 content is decreased. However, the peak 
reflectance for SA2S and SAlS occurs at longer wavelengths than could be measured. 

The slag SAOl is identical to slag SA00 except that slag SAOl has approximately 
0.82 wt.% Fe2O3. and slag SA00 has almost no Fe203. The microprobe measurements 
showed that SAOl had approximately 1 wt% more Si02 than slag SAOO. The effect 
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of these small differences on the reflectance is slight, as illustrated in Fig. IV.3. 
The maximum difference occurs at longer wavelengths where R S A O ~  - RSAOO is 
approximately 0.5%. In the short wavelength range (A  < 8 pm), the difference is 
less than approximately 0.2%. 

Finally, the low silica, high calcia (and high density) slag NAEB was the only 
“natural” slag studied. It contains significant quantities of MgO, BaO, and minor 
amounts of several other oxides (see Table IV.3). Based on the Si02 composition 
(28 wt.%) the reflectance near the Si02 absorption band is expected to lie somewhere 
between that of SA4S (42 wt.% Si02) and SA2S (23 wt.% Si02). Figure IV.4 confirms 
this expectation. In the shorter wavelength region (A  < 8 pm) the reflectance of 
NAEB is higher that that of SA4S or SA2S. From this result one can conclude that 
the reflectance in the 1-8 pm region is dependent on factors other than just Si02 
content. This result is expected, and is analysed in detail in the following sections. 

IV.3 Kramers-Kronig Analysis of the Reflectance 

The Kramers-Kronig (KK) analysis described in Section 11.2.2 was used to 
compute the complex refractive index from the reflectance measurements €or the nine 
slags. A computer program was written to perform the integration in Eq.(II.38) 
using the trapezoid rule? . As discussed in section 11.2.3, the refractive index n 
was determined for all wavelengths but the absorption index E was determined only 
at wavelengths where k is larger than approximately 0.1, that is, only where the 
reflectance depends significantly on E .  

The results of the KK calculations for slags SAOO, SA05, SA10, and SA20 are 
shown in Fig. IV.5. We see the expected trends in n and E versus wavelength. The 
real refractive index, n, has normal dispersion at wavelengths below approximately 
8 pm, corresponding to the wavelength range where k is relatively small (compared 
to n-  1). At wavelengths longer than 8 pm the strong absorption feature corresponds 
to the region of anomalous dispersion in n. 

The effect of Fez03 content on n and E is evident in Fig. IV.5. In the short 
wavelength range (A < 8pm) increasing the iron content increases n, and in the long 

t Higher order integration schemes (e.g., Romberg integration) were also studied but produced 
the same results. 
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Figure IV.1: Near normal reflectance of molten slags SAOO, SA05, 
SA10, and SA20 versus wavelength. 
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Figure IV.2: Near normal reflectance of molten slags SAOO, SA4S, 
SA2S, and SAlS versus wavelength. 
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Figure W.3: Near normal reflectance of molten slags SA00 and SA01 
versus wavelength (top), and the difference between the reflectance of 
the two slags. 
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Figure N . 4 :  Near normal reflectance of molten slags SA2S, SA4S, 
and NAEB versus wavelength. 
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Figure IV.5: Refractive index (n and I C )  of molten slags SAOO, 
SA05, SAlO, and SA20 determined by Kramers-Kronig analysis of 
near normal reflectance. 
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wavelength range (A  > 8pm) the increase in Fe2O3 produces a weaker and somewhat 
broader absorption band. These effects are quantified, and correlated with the slag 
composition in later sections. 

The effect of composition is further illustrated in Fig. IV.6 where n and k for SAOO, 
SA20, SA4S, and SA2S are presented. The most significant feature illustrated here is 
the effect of lower Si02 content on the absorption band near 10 pm. It is evident that 
the absorption band generally becomes weaker and broader with decreasing Si02, but 
it is also evident that the band shifts to longer wavelengths as Si02 content decreases. 

W.4 Transmittance of Molten Slags 

The transmittances of three molten slags, SAO1, SA4S, and SA05, were measured. 
Several attempts to measure the transmittance of slags with higher Fe203 content 
(e.g., SAlO) failed due to insufficient signal with which to align the submerged mirror 
after initially submerging it. This critical first step in the process proved to  be very 
difficult in all cases - several attempts to measure the transmittance of the three slags 
above failed before finally achieving proper alignment. 

Once the submerged mirror was aligned the transmittance was measured at several 
wavelengths. The submerged mirror would typically drift out of alignment after 
several wavelength measurements, and was periodically checked and corrected during 
the wavelength scan. This need for regular realignment slowed the measurement 
process, with a typical scan taking several hours (4-8). Transmittance measurements 
were repeated several times at several wavelengths during the course of the experiment 
to determine if the properties of the slag were changing. No significant changes were 
observed. 

The alignment drift was not identical for the three slags. The problem was worse 
for the SAOl and SA05 slags. The SA4S slag was probably less viscous than the SAOl 
and SA05 slags, thus offering less resistance to the motion of slag around and over 
the surfaces of the submerged mirror. The alignment of the mirror for the SA4S slag 
was reasonably steady throughout the measurement. 

In addition to the initial alignment difficulties and drift discussed above, there 
were other difficulties that made the transmittance measurements very tedious. The 
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Figure IV.6: Refractive index ( n  and I C )  of molten slags SAOO, 
SA20, SA4S, and SAZS determined by Kramers-Kronig analysis of 
near normal reflectance. 
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most significant problem was the presence of bubbles in the molten slag. This was 
particularly troublesome with slag SAOl, as discussed below. 

During the transmittance experiments the reflection from the pool of slag was 
visible in the longpass filter in front of the monochromator. When the platinum 
mirror was aligned it could be seen as a dark region in the pool, with a bright spot 
where the image of the Nernst glower fell. If the mirror was too deep, or the emission 
from the slag too large, the mirror could not be seen. For example, the mirror was 
not visible when submerged in slag SA05, but was visible in slag SAOI, and visible in 
slag SA4S only when the mirror was very shallow. 

Small bubbles could be seen in the slag, appearing as faint dark spots. The 
bubbles could be seen to move as the crucible was raised and lowered, flowing away 
from the center of the mirror when the slag layer above the mirror was thinning. The 
detector signal would drop when a bubble passed through the image of the Nernst 
glower. With some effort and sufficient time, one could rid the detection volume 
of detectable bubbles by varying the molten slag layer thickness, hence stirring the 
slag. The bubbles were generally sparse and non-uniformly distributed. Of course, 
since the transmittance measurement continually stirred the slag, it was necessary to 
continually check for bubbles. 

The transmittance measurements yield a direct measure of I C ,  as discussed in 
Chapter 111. Figure IV.7 shows the results for slags SAOI, SA$S, and SA05. As 
expected, k increases with increasing iron content, and increases with wavelength 
for wavelengths longer than approximately 4 pm. At the long wavelength limit of 
the transmittance spectra, near 5 pm, it is apparent that k for SA05 and SAOl are 
converging to similar values, while k for SA4S is lower. This trend is expected since 
the absorption in the 4-5 pm range is due primarily to multiphonon absorption by 
SiOz, and not by Fe2O3. SA4S has significantly less Si02 than either SAOl or SA05. 

The effect of temperature on k in the 1-5 pm range is illustrated in Fig. IV.8. 
For the entire wavelength range the absorption index increases with increasing 
temperature. Both the room temperature slags and the molten slags approach a value 
independent of Fez03 content near 5 pm, but the room temperature slags approach 
a lower value. 

The effect of.temperature on k was investigated by Goodwin [I 11 for temperatures 
below approximately 1200 K. Thin wafers of slag SA05 were placed in a furnace 
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Figure IV.7: The absorption index of molten slags SAOl, SA4S, and 
SA05 as determined from transmittance measurements. 
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Figure IV.8: The effect of temperature on the absorption index of 
SA01 and SA05 in the 1-5pm range. 
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Figure IV.9: The effect of temperature on the absorption index of 
SA05 at several wavelengths. 

and transmittance measurements were made. The resulting data are illustrated in 
Fig. IV.9, along with the new values at 1873 K. The curves for E(T) demonstrate 
that the results for the molten slag are in agreement with the  trends predicted by the 
lower temperature measurements. 

It  is significant that there are no discontinuities in the optical properties through 
the transition from lower temperatures where the slags are solid (but glassy) to higher 
temperatures where the slags are liquid. Unlike crystalline solids which undergo 
a discontinuous structural change, or phase change, the properties of glassy solids 
change more gradually and continuously with temperature from the solid to liquid 
states e 

Referring to Fig. IV.8, it is evident that the high temperature slags have an 
absorption feature near 2.8 pm that is absent in the low temperature data. This 
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Figure IV.10: Comparison of k for SA05 with slag produced from 
natural slag NAOl (5.68 wt.% Fez03). 
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Figure IV.11: Comparison of k for SA01 with sodium-silica slags 
produced in air and reducing environments. 
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feature is probably due to OH absorption in the slag. The slag samples prepared here 
were mixed with water to facilitate good mixing, while Goodwin mixed the powered 
oxides dry and held the melts longer at high temperature to ensure good mixing. In 
a coal furnace there is ample water (combustion product); thus the slags mixed in 
water are probably more typical of real fly ash. Also, the clays (and perhaps other 
minerals) in the coal that form the ash also contain OH. Goodwin made transmittance 
measurements of slag produced from real ash, NAO1, with composition similar to 
that of SA05. It showed a slight increase in absorption near 2.8 pm, as illustrated in 
Fig. IV.10. Note that the slag NAOl had approximately 5.68 wt.% Fe2O3 thus higher 
absorption than room temperature SA05. 

10-3 

y 10" 

10'5 
1 2 3 4 5 

Wavelength (pm) 

Figure IV.12: Comparison of k for SA01 with room temperature 
slags SA01 and SBOl (Goodwin, 1986), produced in oxidizing and 
reducing atmospheres, respectively. 

The 2.8 pm absorption feature, presumably attributable to OH absorption, is 
also evident in the transmittance of some sodium-silica glasses investigated by 
Coenen [23], as illustrated in Fig. IV.ll. Coenen also investigated the effect of 
producing the iron bearing glass in oxidizing and reducing environments and the 
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Figure W.13: Comparison of k for SA05 with room temperature 
slags SA05 and SD05 (Goodwin, 1986), produced in oxidizing and 
reducing atmospheres, respectively. 

effect of temperature in the range from 25°C to 1400OC. The glass produced in an 
oxidizing environment has weaker absorption in the 1-4 pm range. Nevertheless, at 
wavelengths below approximately 2.6 pm, IC for the molten slag SA01 is much closer 
to the values measured by Goodwin for room temperature slags. 

Figures IV.12 and IV.13 show the effect of oxidation state on k. The high 
temperature absorption index lies above that of room temperature slag produced in an 
oxidizing environment, and generally somewhat below that of room temperature slag 
produced in an reducing environment. However, near the 2.8 pm OH absorption band 
and at longer wavelengths the high temperature slag has somewhat higher absorption 
than either slag at room temperature. 

The major conclusion to be drawn here is that increasing the Fez03 content of the 
slag increases IC in the wavelength range from 1-4 pm. In addition, for slags produced 
in an oxidizing environment (air) the absorption index increases with increasing 
temperature. However, the temperature effect may be much less significant than the 
effect of the oxidation state of the Fe2O3 - slags produced in a reducing environment 
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show significantly higher absorption index in the 1-4 pm range than those of similar 
composition produced in an oxidizing atmosphere. Finally, OH in the slag produces a 
sudden absorption increase for increasing X near 2.8 pm. This effect is significant for 
slags with low iron (Fe203< lwt.%), but is of decreasing importance for slags with 
higher iron content. Both slags produced from real ash and those produced here by 
wet mixing of pure oxides show this OH absorption feature. Slags produced by dry 
mixing of pure oxides did not show significant OH absorption. 

IV.5 Correlations for the Optical Constants of High Temperature Slag 

IV.5.1 The Density of Glass. 

The density of glasses, of which coal slags are a subset, vary considerably with 
composition. In silica glass most of the volume of the glass is attributable to oxygen. 
For example, in a silica glass where oxygen contributes only 53% of the mole fraction it 
may contribute up to 98.7% of the total glass volume [24]. Therefore, to a considerable 
degree the density of glass is a measure of its oxygen content, with denser glasses 
typically containing less oxygen. Of course, predicting the exact density of glass is 
complicated by the fact that the mean volume occupied by the oxygen ions (O--) 
varies with glass composition, and from site to site. Glass does not have long range 
order of the type seen in crystals, but is a polymer of oxides interwoven by bonds 
with slightly varying bond angles and lengths. Free spaces in the glass have sizes 
that vary throughout a given glass, and with glass composition. Many texts exist on 
the structure of glasses and the resulting properties, but are largely beyond the scope 
of this work. See, for example, Volf [24] and Holloway [25] for further discussion of 
glass and its properties. A brief discussion of the structure of glass is presented in 
Appendix F. 

The density of glass cannot generally be computed from the weighted average of 
the densities of the free oxides since, for example, the structure of tetrahedral Si04 in 
glass is slightly different than the tetrahedral structure in crystalline quartz. In the 
glass, the “tetrahedral” structure is not precisely tetrahedral, since that would imply 
long range order not found in glass. Instead, the bond angles and distances about a 
given Si atom are perturbed from the ideal tetrahedral arrangement found in perfect 
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Table IV.5: Density of free oxides and oxides in glass at room 
temperat ure 

Oxide Oxide (g/cm3) 
Si02 2.20 

A1203 3.97 
CaO 3.31 

Fez03 5.24 
Na2 0 
BaO 
Ti02 
MgO 

2.27 
5.72 
4.86 
3.58 

I * Density of free oxide. 

Density of Oxide 
in Glass (g/cm3) 

2.28 
2.50 
3.90 
5.24* 
3.10 
7.00 
3.80 
3.30 

crystals. For example, consider the calculation of the density as the mass weighted 
sum of specific volumes for free oxides given in Table IV.5. For oxide density pi,  the 
mean density of the mixture is given approximately by -q 1 

P i  
(I V.2) 

where r ,  is the weight fraction of oxide i. The results are summarized in Table IV.6. 

[:sing Eq. (IV.2) to estimate the slag density consistently overpredicts the density, 
as expected. The error is typically on the order of lo%, which is somewhat less 
than the density variation with composition. For example, the density of SA00 is 
approximately 16% lower than that of NAEB or SA2S. For some applications it may 
be more important to know how the density varies with addition of some oxide than to 
predict the exact value. For such applications use of Eq. (IV.2) is probably sufficient. 

An  improved estimate is obtained by recognizing that the contributing density of 
an oxide in glass is not the same as its free density [24]. Therefore, Volf suggested 
that the densities of oxides in glass shown in Table IV.5 be used. Using these eflective 
oxide densities in place of the oxide densities in Eq. (IV.2) produces better agreement 
with the experimental results, with average errors of approximately 3%, as shown in 
Table IV.6. 

Finally, the densities of the slags decrease with increasing temperature owing 
to thermal expansion. Typically silicate glasses have relatively small coefficients of 
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Table W.6: Estimate of density based on oxide composition. 

Slag 
SA00 
SA01 
SA05 
SAlO 
SA20 
SA4S 
SA2S 
SAlS 
NAEB 

Measured 
2.54 
2.56 
2.61 
2.68 
2.89 
2.79 
3.07 
2.98 
3.03 

Slag from previous study 

SAlO 
SB20 

using free oxide 
density 

Est. 
2.73 
2.75 
2.83 
2.89 
3.05 
2.97 
3.40 
3.48 
3.16 

% Error 
-7.67 
-7.41 
-8.24 
-7.76 
-5.53 
-6.27 

-10.82 
-16.70 
-4.38 

;oodwin, 1986) 

_ _ _ _ ~  ~ 

using oxide in 
glass density 

Est. 
2.46 
2.47 
2.54 
2.59 
2.73 
2.79 
2.87 
3.04 
3.01 

% Error 
3.33 
3.55 
2.56 
3.42 
5.43 
0.09 
6.53 

-1.88 
0.53 

2.77 
2.83 
2.90 
3.03 

-9.11 2.51 
-8.98 2.57 
-9.98 2.64 

-11.29 2.77 

1.14 
1.04 

-0.11 
-1.87 

thermal expansion on the order of a few parts per million per degree centigrade 
change in temperature at room temperature. Holloway [25] gives the linear thermal 
expansion coefficient for Aluminosilicate glass at room temperature as 3.3 x loe6/ “C.  
If this expansion coefficient is used to compute the change in density, then from 25 
to 1600°C the density would only decrease by 1.6%. Since the expansion coefficient 
increases somewhat with increasing temperature, the true density decrease may be 
somew hat larger. 

IV.5.2 The Normal Dispersion Region. 

In the wavelength range from 1 pm to approximately 8 pm the real refractive 
indices of the slags decrease with increasing wavelength+ . In this wavelength range 
the absorption index, k, is very small compared to the real refractive index. However, 

t This is called normal dispersion, since prisms with negative dn/dX are most common, and 
disperse light “normally”. 
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as will be shown here, the normal dispersion of n does depend on the position of the 
Si02 vibrational absorption band, even though it lies at much longer Wavelengths. 

In Chapter I1 the oscillator model for the complex dielectric function was pre- 
sented (Eq.(II.30)). In this model the complex dielectric function is given by 

where nm is the sum of contributions by high frequency absorption bands. If we 
ignore the imaginary terms and retain only the terms which contribute to n, we can 
write 

If w2 >> w: we can approximate Eq. (IV.3) by the expression 

I .2 

(IV.3) 

( I  V.4) 

This model can be expressed in terms of wavelength, X = 1/w ( t  ), as 

( I  V.5) 

Here yj has been included in the constant term X, , j  through the formula 

This general form for the normal dispersion fits most dielectric materials ( I C  << n) ,  
and if we are interested only in the near infrared spectrum it can be approximated as 

[a61 

(IV.6) 

Equation IV.6 was fitted to the measured n of the nine slags studied here. A least 
squares procedure was used to determine C, B, and Xo using n only at  wavelengths 

t Here w indicates wavenumber, which is proportional to frequency but has units of 1engtih-l. 
Note that to convert from wavenumbers to frequency multiply by 27rc,, where c, is the vacuum 
speed of light. 
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Figure IV.14: Best fit of the equation n2 - 1 = C - SX2/ (XE - X2) 
to the measured refractive index, n, for the nine slags. 
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Table N . 7 :  Values of constants for best fit of normal dispersion 
model to measured refractive indices. 

Slag 
SA00 
SA01 
SA05 
SA 10 
SA20 
SA4S 
SA2S 
SAlS 
NAEB 

C 

1.293 
1.324 
1.333 
1.421 
1.497 
1.494 
1.556 
1.578 
1.628 

B 

0.949 
0.950 
0.891 
0.999 
0.962 
1.116 
1.493 
1.548 
1.184 - 

11.03 1-8.5 
11.02 1-8.5 
10.95 1-8.5 
11.18 1-8.4 
11.26 1-8.6 
12.22 1-9.0 
13.84 1-9.2 
14.72 1-9.8 
12.90 1-9.4 

rms 
diff. 

0.0045 
0.0052 
0.0040 
0.0051 
0.0033 
0.0044 
0.0039 
0.0037 
0.0048 

Max diff. 
(at A Pm) 

-0.0094 (4.4) 
0.0118 f1.6) 

0.0108 (1.2) 
0.0069 (1.3) 

0.0097 (1.1) 

-0.0104 (4.4) 

-0.0151 (4.4) 

-0.0104 (4.4) 
-0.0127 (4.4) 

where d n / d A  < 0. The fits are illustrated in Fig. IV.14. Table IV.7 summarizes the 
best fit parameter values for each slag along with the errors of the fit. In all cases the 
maximum error did not exceed approximately 0.015, and the RMS error was typically 
less than 0.005. 

To make use of the normal dispersion fit the variations of C, B and A, with slag 
composition and density were investigated. As expected, A, increased with decreasing 
Si content. A correlation for A, versus the mole fraction of Si02 was found and is 
illustrated in Fig. IV.15. The correlation is 

A0 N 15.2 - 6.535sio2. 

Here X is in pm and isio2 is the mole fraction of Si02 in the slag (0 <  is^ < 1). 

(IV.7a) 

A similar correlation was found for B,  which also correlated well with the mole 
fraction of Si02. The constant B is seen to decrease with increasing Si02 content, 
with an  approximate relationship 

B fi 1.65 - 1.10isio1. ( I  V.7b) 

The parameter B is dimensionless. This correlation is illustrated in Fig. IV.16 

Finally, the parameter C was found to correlate best with the density of the slag; 
it did not correlate well with Si02 content. The correlation 

C z -0.124 + 0.556p, ( p  in g/cm3) ( I  V.7c) 

is shown in Fig. IV.17. 
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Figure IV.15: Variation of the parameter A, with mole percentage 
of SiOz. 

An interpretation of these results is that the parameters A, and B are related to 
the absorption properties at longer wavelengths, namely the Si02 absorption band. 
When the long wavelength absorption band is strong, B is large and n decreases faster 
with increasing wavelength. The more Si-0-Si bonds present, the stronger is the band 
and the more rapidly n changes at shorter wavelengths. The parameter A, is related to 
the center frequency of the long wavelength absorption band. In contrast, C is related 
to the strength of the ultraviolet and higher frequency absorption bands. These bands 
are dependent, for the most part, on transitions in the electronic shells of the atoms. 
Therefore, the strength of the high frequency absorption bands is strongly dependent 
on the number of atoms per unit volume, or density. The density of a material 
depends on atomic weight (number or protons and neutrons in the nucleus) divided 
by the effective volume occupied by the atom (=(outer shell r a d i ~ s ) ~ ) .  T h  is ratio 
generally increases with the atomic number and atomic weight; for example, lead, 
barium, tungsten, and uranium metals, oxides and glasses are all very dense and have 
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Figure N.16: Variation of the parameter B with mole percentage 
of Si02. 

high refractive indices. Of course, the value of C also depends on the wavelength and 
strength of the electronic absorption bands. 

The correlations in Eq. (IV.7) were used to generate values for A,, B,  and C using 
the measured values for isio2 and p for each slag. A comparison of the resulting 
values of n(A) determined from Eq. (IV.6) are presented for slags SA00 and NAEB 
in Fig. IV.18. We see that the fit is reasonably good, with typical differences of less 
than f0.05. Evidently, the correlation for C underpredicts the value of C required 
to give the best fit to the NAEB data by approximately 0.037 (2.3%). Table IV.8 
summarizes the use of the correlations in Eq. (IV.7) to predict the measured values 
of n for all nine slags studied. 

Finally, it is often more difficult to know the density of ash than it is to know 
t h e  composition. For example, computer controlled scanning electron microscopes 
can measure the compositions of individual fly ash particles, but their densities are 
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Figure IV.17: Variation of the parameter C with slag density, p. 

more difficult to  measure [17]. Therefore, it is useful to use Eq. (IV.2) to estimate 
the density based on the composition. Using the densities of oxides in glass presented 
in Table IV.5, one can estimate p for a glass with a specified composition and then 
use Eq. (IV.7) to obtain n only from a knowledge of the composition of the ash or 
slag. Table IV.9 summarizes the errors introduced by using this estimate of density. 
We see that the RMS errors are typically less than 0.03; NAEB is exceptional with 
an RMS error of 0.069. 

N . 5 . 3  A Mixture Rule for n. 

The foregoing correlation for the refractive index, n, uses only the density and 
mole fraction of Si02, and ignores other differences in composition. It is assumed 
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Table W.8: Evaluation of correlation for normal dispersion model 
with measured refractive index, n. Values of constants based on 
measured compositions and densities. 

SA05 1 ![ 
NAEB 

1.393 0.951 11.05 
1.512 0.999 11.33 
1.455 1.181 12.42 
1.614 1.394 13.68 
1.563 1.524 14.45 
1.591 1.305 13.15 

Range Max diff. 
diff. 

1-8.5 0.0105 0.0292 (8.4) 
1-8.5 
1-8.4 0.0107 0.0198 (1.2) 

1-9.0 0.0146 0.0227 (2.6) 

1-9.8 0.0133 0.0395 (9.8) 
1-9.4 0.0183 0.0300 (6.4) 

1-8.6 0.0046 -0.0102 (4.4) 

1-9.2 0.0243 -0.0408 (9.0) 

Table W.9: Evaluation of correlation for normal dispersion model 
of n using estimate of p based on weighted sum of oxide densities in 
glass. 

C B 
Slag 

SAW 1.268 0.905 
SA01 1.274 0.912 
SAOS 1.314 0.949 
SA10 1.342 0.951 
SA20 1.421 0.999 
SA4S 1.455 1.181 
SAPS 1.500 1.394 
SA 1s 1.597 1.524 
NAEB 1.444 1.305 

A0 

(ctm) - 
10.78 
10.82 
1 1.04 
11.05 
11.33 
12.42 
13.68 
14.45 
13.15 

Range rms Max diff. 

1-8.5 0.0189 0.0442 (8.3) 
1-8.5 0.0247 0.0468 (8.3) 
1-8.5 0.0140 0.0297 (8 .5 )  
1-8.4 0.0284 0.0375 (7.8) 
1-8.6 0.0298 0.0460 (8.6) 
1-9.0 0.0146 0.0227 (2.6) 
1-9.2 0.0156 0.0270 (1.1) 
1-9.8 0.0075 0.0245 (9.8) 
1-9.4 0.0687 0.0968 (9.4) 

(w) diff. (at A, ctm) 

that the other constituents affect n only through their infiuence on density. Eased on 
the accuracy of the foregoing correlations, this assumption may be quite reasonable, 
at least for the narrow range of compositions studied here. However, in this section 
an alternative correlation is presented that uses more compositional information to 
estimate the refractive index in the region of normal dispersion - a mixture rule. 
This approach has a much greater likelihood of predicting n for compositions differing 
significantly from those studied here. The following development follows closely that 
of Born and Wolf [26] and Goodwin [l 11. 



To deduce the refractive index of a mixture of oxides from the refractive indices 
of pure oxides, or other mixtures, it is necessary to relate the refractive index to a 
physical quantity that is additive. One such quantity is the polarizability [ll], since it 
relates the interaction of an applied electric field to local perturbations of the electric 
field in the vicinity of a single atom or molecule. However, to facilitate the summing 
over many species it is necessary to introduce the mean molar refractivity. 

The mean molar refractivity of a material, A, is defined as 

(IV.8) 1 A = -N,a 
3 

where Nm is Avogadro’s number (6.02 x atoms/mole) and cr is the mean polar- 
izability of the atom or molecule. The polarizability is a measure of the polarization 
of a given molecule induced by its interaction with an electric field, and the mean 
polarizability is an average over all orientations for that interaction. 

To relate n to the mean polarizability of a molecule, consider the interaction of 
an electric field E with a molecule having polarizability a. The dipole moment of 
the molecule is the product of the polarizability and the local electric field, El,,, 

at the molecule. Note that the molecule changes an applied electric field locally by 
interaction with its own electric field. For a collection of molecules the polarization, 
P, is the dipole moment per unit volume, or 

(IV.9) 

Here N is the number density of molecules and EO is the permittivity of free space. The 
dielectric constant, E, of an isotropic medium is defined as the ratio of the displacement 
to the electric field, or 

( E O E  + P) 
E E = D/E = 

Substituting Eq. (TV.9) into Eq. (IV.10) gives 

(IV.10) 

E Eloc -- 1 = N a -  
EO E 

For a real dielectric constant, 
between the local field, Eloc, 

c/eo = n2, as discussed in Chapter 11. The relationship 
and the space averaged field, E ,  is a superposition of 

the external electric field and the local electric field, which is proportional to the 
polarization, that is, 

El,, = E + C P / E o  (IV.11) 
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Table IV. 10: Dispersion equation parameters for pure oxides. 

Oxide form 
Si02 fused silica 

A1203 sapphire 
CaO 

Fe2O3 hematite 
Ti02 rutile 
MgO 

density 
(g/cm3) c 

2.20 1.104 
3.97 2.082 
3.31 2.31 
5.24 8.3636 
4.86 5.031 
3.58 1.9625 

* References and tabulated values from 

B 
0.8975 
5.281 

11.32 
0.0 
7.764 
2.470 

2oodwin 

17.93 
33.90 

0.0 
15.60 
15.56 
111. 

The constant c is the Lorentz local field factor, and is 1/3 for isotropic (or cubic) 
sites. If we assume c = 1/3 then the polarizability becomes 

3 (n2 - 1) 
N (n2 + 2) ' 

a = -  (IV. 12) 

This is called the Clausius-Mossotti relation, and is valid for a wide range of dielectric 
media. The critical assumptions are Eq. (IV.l l )  and the local field factor of 1/3. 

Substituting Eq. (IV.12) in Eq. (IV.8), we can write the molar refractivity of a 
material as 

(IV.13) 

Here h;i is the molecular weight of the material. If there are several components in 
the material (e.g., components with different polarizabilities) then we can write 

A = C 4 ; A ;  (IV.14) 
t 

where i; is the mole fraction of material i having molar refractivity Ai. This 
summation assumes that the refractivity of a given material is not altered by the 
presence of the other materials. Essentially this requires that the chemical bonds 
constituting the separate materials are not significantly altered when incorporated in 
the composite material. This is not always exactly true, but it is probably reasonably 
accurate for coal slag as evidenced by the accuracy of the predictions given below. 

Substituting Eq. (IV.14) into Eq. (IV.13) we obtain 

(IV.15) 

where xm,i is the mass fraction of species i, pi is its density, and n; is its refractive 
index. 



The mixture rule, Eq. (IV. 15) is relatively simple to use once the refractive indices 
of the constituents of a slag, n;, are known. Goodwin [ll] suggests using the values 
shown in Table IV.10 (see (27-331) to compute ni using the normal dispersion formula 

(IV.16) 

It is significant that the values of Ci, Bi, and A,,; tabulated in Table IV.10 are for 
oxides in a chemical form where the bonds are expected to be similar to the bonds 
of the same metal cations in the slag. For example, fused silica has a tetrahedral 
structure of Si singly bound to four neighboring oxygens, and is expected to have a 
similar structure in slag. 

As demonstrated in the previous section, the infrared absorption wavelength, A,, 
shifts to significantly larger values when the silica content is decreased. To account 
for this shift in the infrared absorption band it is necessary to modify the dispersion 
relation for Si02 to the form 

(IV.17) 

In addition to this A, correction for SiO2, a small correction term was added to 
the mixture density, p, in Eq. (IV.15) to improve the fit. The final mixture rule is 
thus 

n2 - 1 
Pi 

(IV.18) 

Equation IV.18 was fitted to the refractive index data for all nine slags to find 
the best values for the free parameters 6A0 and 6p. The results of the fit to n for the 
nine slags are illustrated in Figs. IV.19 and IV.20. An approximate correlation for 
SA, is 

6x0 N 2.82 - 2.9O5sio2. (IV.19) 

As expected, the resonance wavelength A, shifts to longer wavelengths as the silica 
content is decreased. 

The correction Sp was typically very small for all the slags studied here. Further- 
more, the Sp correction was not particularly well correlated with the measured slag 
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A 
2.82 - 2.90 xsiO, 

Mole Fraction SO, (%) 

Figure IV.19: Correlation for bA, in the mixture rule for the normal 
dispersion fit to the measured refractive index, n. 

composition or density. (R=-0.73)+ This result suggests that the mixture rule, along 
with the correction for A, shift, is fairly robust, and that the bp correction may not 
be warranted . 

t The linear correlation coefficient, R, for a set of data (ti, y,) is defined as [50] 

When data points fall exactly on a line with positive slope, R = 1 and we say I and y have 
completely positive correlation. When data points fall exactly on a line with negative slope, 
R = -1 and we say I and y have completely negative correlation. When R = 0 we say I and 
21 are uncorrelated. 
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Slag Density, g/crn3 

Figure TV.20: Correlation for 6 p  in the mixture rule for the normal 
dispersion fit to the measured refractive index, n. 

A summary of the errors of the correlation, the best fit parameters, and the 
effects of using the correlations for SA, and 6p is presented in Table IV.ll.  The 
results show excellent agreement between the correlation and the measured data. A 
comparison of the measured and calculated n for two typical slags, SA00 and SA4S, 
is presented in Fig. IV.21. The rms differences reported in Table IV.ll between the 
best two parameter fit using the mixture rule model and the experimental data are 
typically 0.003-0.005. This is quite good agreement, considering only SA, and 6p  are 
adjusted to produce the fit. In the second set of results, labeled “One parameter 
correlation”, SA, is computed using the correlation (Eq. (IV.19)) and Sp is held at 
zero. The differences again are quite small, although somewhat larger than if we use 
the correlation Sp = 0.741 - 0 . 2 7 8 ~  as shown under the “Two parameter correlation” 
heading. 
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Figure fv.21:  Comparison of measured n with calculation using the 
mixture rule in the region of normal dispersion. 
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Table IV.11: Evaluation of the mixture rule correlation for n. 

Best two parameter fit 
SA00 
SA01 
SA05 
SAlO 
SA20 
SA4S 

0.030 0.926 
0.060 0.957 

-0.016 0.926 
0.029 0.963 

-0.142 1.028 
-0.046 1.498 

1-8.5 
1-8.5 
1-8.5 
1-8.4 
1-8.6 
1-9.0 

0.0047 
0.0057 
0.0047 
0.0052 
0.0032 
0.0042 

0.0094 ( 7.4 ) 
0.0107 ( 7.0 ) 
0.0094 ( 7.0 ) 

0.0107 ( 8.6 ) 
-0.0113 ( 4.4 ) 

-0.0143 ( 4.4 ) 
SA2S -0.164 1.884 1-9.2 0.0041 -0.0101 ( 4.4 ) 
SAlS -0.087 2.650 1-9.8 0.0038 0.0103 ( 6.4 ) 
NAEB 0.006 2.050 1-9.4 0.0047 0.0133 ( 6.4 ) 

h e  parameter correlation: 
6Ao = 2.82 - 2.9Oii.sio,, 6 p = O  

SA00 
SA0 1 
SA05 
SAlO 
SA20 
SA4S 
SA2S 
SAlS 

NAEB 

0.0 0.855 
0.0 0.876 
0.0 0.973 
0.0 0.976 
0.0 1.103 
0.0 1.584 
0.0 2.145 
0.0 2.489 
0.0 1.912 

1-8.5 0.0109 0.0285 ( 8.5 ) 
1-8.5 0.0147 0.0281 ( 8.5 ) 

1-8.4 0.0053 0.0125 ( 1.2 ) 

1-9.0 0.0128 -0.0254 ( 4.4 ) 

1-9.8 0.0180 -0.0296 ( 4.4 ) 
1-9.4 0.0079 0.0305 9.4 

1-8.5 0.0066 -0.0192 ( 8.3 ) 

1-8.6 0.0317 -0.0425 ( 2.8 ) 

1-9.2 0.0390 -0.0490 ( 2.8 ) 

I'wo parameter correlation: 
bA0 = 2.82 - 2.90Xsio2, 

0.035 0.855 1-8.5 
0.029 0.876 1-8.5 

SA05 0.015 0.973 1-8.5 
-0.004 
-0.062 
-0.035 
-0.112 
-0.087 

NAEB -0.101 

0.976 1-8.4 
1.103 1-8.6 

1-9.2 
2.489 1-9.8 
1.912 1-9.4 

dp = 0.741 - 0 . 2 7 8 ~  

0.01 14 0.0288 ( 8.5 ) 

0.0057 0.0135 ( 1.2 ) 
0.0194 -0.0267 ( 2.8 ) 
0.0072 -0.0219 ( 8.8 ) 
0.0159 -0.0253 ( 9.0 ) 
0.0041 0.0110 ( 9.8 ) 
0.0241 0.0358 ( 6.4 ) 
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IV.5.4 The Si02 Absorption Region (8-13pm). 

The absorption band in the wavelength range 8 < X < 13 pm is predominantly 
due to vibrational absorption by Si-0-Si and Si-0- molecular structures in the glassy 
slag (a description of the structure of silica glass is presented in Appendix F). In this 
wavelength range (8 < X < 13 pm) the optical constants can be reasonably modeled 
as a Lorentz harmonic oscillator (or multiple oscillators). The resulting oscillator fit 
parameters are functions of slag composition. 

2 A computer code was written to calculate the best fit parameters, wo, y, nm, and 
up in the single oscillator form of Eq.(II.30), 

c = (n  + ik12 = no;, 2 + 4 
w? - w2 - iyw ' 

(IV.20) 

The parameters were computed to produce the least square error between the 
measured reflectance and the reflectance calculated using n and k from Eq. (IV.20). 
Calculations were performed for all nine slags and the resulting best fit parameters 
are shown in Fig. IV.22, along with correlations for these parameters. 

As mentioned above, the absorption in this region is predominantly due vibra- 
tional absorption by Si-0-Si and Si-0- bonds. In general there is a distribution 
of bond strengths and bond angles that results in a rather broad range of absorp- 
tion frequencies. The breadth of this absorption frequency distribution depends on 
temperature and Si02 content. Low temperature, high Si02 glasses and slags have 
multiple narrow ranges of absorption frequencies with the most predominant range 
being centered about the Si-0-Si bond frequency and a somewhat weaker range 
centered about the lower frequency of the Si-0- bond. In contrast, the molten slags 
and slags with a large content of network-breaking oxides (e-g., CaO, N a 2 0 ,  Fe203) 

have a higher proportion of the lower frequency Si-0- bonds but, overall, exhibit a 
broader distribution of absorption frequencies. Therefore the population of the higher 
frequency Si-0-Si bonds should be a function of the number of Si atoms relative to 
other non-network forming atoms. We do not have enough data to correlate the 
distribution of absorption frequencies to each network breaking oxide; so, instead, we 
correlate wo to the mole fraction of Si02, which is a measure of the relative number 
of Si atoms. By contrast, the strength of the absorption in the slag ( w p / w o )  is a 
function of the concentration or density of absorbing bonds, and not just the relative 
population of one type of bond to another. Therefore, it is reasonable to use the 
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molar concentration, [Si], to account for increases in absorption that may be due to 
changes in bond concentration. 
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Figure IV.22: Single Lorentz oscillator fit parameters for the nine 
molten slags. 

As expected, the oscillator frequency, wo is a strong function of the mole fraction, 
0 < isioz < 1, of silica. The frequency shifts from approximately 850 cm-' (1 1.7 pm) 
for 20 mol.% Si02 to approximately 1000 cm-I (10 pm) for 70 mol.% Si02.  From 
fits for the nine slags the expression 

(IV.21) 



is found to predict the oscillator frequency quite accurately. Note that extrapolating 
this expression to isioz = 1 gives wo,sio2 = 1110 cm-l, which is approximately the 
same as the highest vibrational frequency (1 100 cm-*) of pure fused silica at room 
temperature [34]. The linear correlation coefficient for Eq. (IV.21) is approximately 
R 2! 0.99. 

In addition to shifting to longer wavelengths, the Si02 absorption band becomes 
broader and weaker as Si02 is replaced by other constituents (all of which have no 
fundamental absorption band in the wavelength range of interest). These effects are 
quantified by the correlations 

Y - 2~ 0.404 - 0.724 [Si] 
WO 

and (2) 21 0.747 - 0.740 [Si] 

(IV.22) 

(I V.23) 

Here [Si] is the molar concentration of Si atoms in the slag in units of mol/l and may 
be computed using 

I (IV.24) PXSiOz 

Msioz 
[Si] = - 

where p is the slag density, zsio2 is the mass fraction of SiOz, and A?sio2 is 
the molecular weight of Si02 (60 g/mol). For example, if the weight percent of 
Si02 is 63% and the density is 2.6g/cm3, then the molar concentration [Si] is 
(2.6)( 1000)(63/100)/60 21 27.3 mol/l. 

The correlations Eq. (IV.22) and Eq. (IV.23) have linear correlation coefficients 
of -0.95 and -0.85, respectively. These correlations are not as good as that of 
Eq. (IV.21), but nevertheless predict the proper trend quite well. 

Finally, the high frequency contribution to the oscillator fit, n2 ,  is reasonably 
fitted by the correlation 

noo 2 N 1.41 + 0 . 2 1 ~  (I V.25) 

where p is the slag density in g/cm3. The linear correlation coefficient for Eq. (IV.25) 
is only 0.82, but the variation of nk with composition is not particularly large. 

Correlations for each parameter w,, wp/wo, y/wo, and nk, in the oscillator fit were 
computed using mole fraction of Si02, weight fraction of Si02, molar concentration 
[Si], and density as independent variables. Of the these four possible correlations 
for each parameter, the correlations above were the best (largest R2), although the 
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differences between correlations with mole fraction Si02 and [Si] were very small, as 
expected. 

Comparisons of the n and k values predicted by these correlations with the 
measured values for the SA00 and SA4S molten slags are shown in Fig. IV.23 and 
Fig. IV.24, respectively. This degree of agreement is typical, with the difference 
between the calculated and measured n and IC being within 0.05 except near the 
short wavelength limit. 

In addition to this single oscillator correlation, two, three, and four oscillator fits 
were also computed. The resulting differences between the correlated and measured 
optical constants were reduced somewhat , but the large number of fitting parameters 
seems unreasonable since there are only nine data sets (for the nine slags). Also, 
the single oscillator fits produce acceptable accuracy compared to the likely errors 
involved in estimating the composition and density distributions of real fly ashes. 

N . 5 . 5  The Absorption Index in the 4-8pm Region. 

In the wavelength range 4 < X < 8 pm the absorption index, k, of the molten slags 
could not be directly measured using the thin film transmittance technique described 
in Chapter 111. However, Goodwin [ll] measured k for low iron slags (e.g., SAOO) in 
this wavelength range at several temperatures up to a maximum of approximately 
1200 I( and found that a two-phonon model reasonably predicted the temperature 
dependence of k .  Using Goodwin’s data a model is developed that allows one to 
estimate the absorption index in the 4-8 pm range for the molten slags studied here. 

As mentioned, a two-phonon model was shown to reasonably fit the absorption 
index; I C ,  in the wavelength range from 4-8 pm, where the fit is of the form 

r 7 

(IV.26) 

Here k, is the contribution to the absorption that is not due to the two-phonon process 
and k6 is the contribution attributable to two-phonon absorption. The constant 
C:! 2 14388pmK is the second radiation constant. As illustrated in Fig. IV.25, 
the absorption index increases with both increasing wavelength and temperature in 
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Figure IV.23: Comparison of correlation with measured n and IC for 
molten slag SAOO. 
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this wavelength range, just as the two-phonon expression predicts. Goodwin used 
measurements of k at various temperatures to deduce k, and kb at each wavelength. 

Instead of computing k, and kb directly from the measured k at two temperatures, 
it is useful to note that in this region k varies from transparent (k < to highly 
absorbing (k > lo-'). Also, in this region between the fundamental vibrational 
frequency (here - 1100 cm-l) and the transparent frequencies (here - 2500 cm-') 
the absorption coefficients (a = 47rkw) of many insulating solids have been found to 
vary exponentially with frequency. That is, the absorption index, k, is of the form 

A 
k - (IV.27) 

This form is almost universally observed in most non-metallic solids, including oxides, 
alkali halides, alkaline earth fluorides, and semiconductors. For a discussion of the 
basis for this relation, see Mitra 1331. 

[331 

w 

The absorption index in Fig. IV.25 has the form of Eq. (IV.27) at the short 
wavelengths, but to model the knee near 5.5 pm a second exponential region is 
suggested. Specifically, we assume 

where LJ* is the frequency at which the two exponentials cross, 

( I  V.28) 

(IV.29) 

The values of k, and kb were determined by using Eq. (IV.26) and Goodwin's 
measured values of k at 295 K and 1200 K (Fig. IV.25) for slag SAOO. Next the 
two-exponential model (Eq. (IV.28)) was fitted to kb. The resulting fit is illustrated 
in Fig. IV.26 along with the remaining contribution IC, not attributable to two-phonon 
absorption. The constants in Eq. (IV.28) are summarized in Table IV.12. Finally, 
the expression 

(IV.30) 

can be used to estimate the contribution k,, where the constants are given in 
Table IV.12. This form was chosen arbitrarily but since the contribution by k, is 
not large the resulting error in IC is not important. 
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Figure IV.25: Effect of temperature on the absorption index in the 
4-8 pm range for synthetic slag SAOO. Data from Goodwin, 1986. 
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Figure IV.26: Fit of the two-exponential model (dashed line) to 
the function kb (thick line) determined from measurements of k for 
slag SA00 at 295 K and 1200 K (Goodwin, 1986). Also shown is the 
function k, (thin line) determined from the same data and its model 
(dots). 
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Table N.12: Fit parameters for k in the 4-8 pm range for slag SAOO. 

Parameter Value Parameter Value 
0.0015 A0 295 cm-' A k o  

BO 443 cm-l Bk, 1800 cm-I 
A1 51370 cm-' cko 110 cm-l 
B1 200 cm-l 

An approximate expression for k is obtained by combining Eq. (IV.26) with 
Eq. (IV.28) and Eq. (IV.30). The resulting approximation is illustrated in Fig. IV.27 
for temperatures up to 1873 K, along with the measured IC from Fig. IV.25. As 
expected, the agreement is reasonably good, with the largest error occurring at  the 
long end of the 4-8 pm range - near the short wavelength edge of the fundamental 
absorption band. In this region the absorption is becoming dominated by single 
phonon processes and is not expected to match the correlation. 

The two-phonon absorption model used here assumes that the contribution 
at frequency w is due to a combination of two single absorption events at half 
the frequency w/2 (or twice the wavelength). The above expressions were derived 
assuming that the spectral distribution of fundamental absorption frequencies is that 
of SAOO. If the distribution of fundamental absorption frequencies is shifted to lower 
frequencies (i.e., longer wavelengths) because the composition contains less Si02 
than the SA00 slag, then one should expect a corresponding shift in the frequency 
distribution of the two-phonon processes. To account for this shift, recall that the 
oscillator model predicted that the fundamental frequency, wo, depends on the mole 
fraction of Si02, &02 via Eq. (IV.21), i.e., 

To account for this frequency shift the frequency, w, in all of the above expressions 
should be shifted to account for compositional effects. That is, one replaces w in the 
above expressions by w' = w + Sw where 

SW N 355 (0.678 - isio2) ( I  V.31) 

Here 0.678 is approximately the mole fraction of Si02 in SAOO. Figure IV.30 in the 
following section illustrates the effect of this shift. As shown, the agreement in the 
4-5 pm range with measured k for SAOO, SA05, and SA4S is quite good. 
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Figure IV.27: Fit (dashed) of correlation for k to measured ab- 
sorption index (solid) in the 4-8 pm range for Goodwin’s (1986) slag 
SAOO. 
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Iv.5.6 The Absorption Index in the 1-4pm Region. 

In the short wavelength limit of the measurements, between 1 and 4 pm, absorp- 
tion in the slags is due primarily to the presence of Fe2O3. The level of absorption 
depends on the total iron concentration as well as the valence state of the iron. For 
example, slags produced in a reducing atmosphere have an abundance of ferrous 
iron cations, Fe2+, while those produced in an oxidizing atmosphere (as were the 
slags in this study) have a lower ferrous iron content. Fully reduced samples show 
increased absorption bands near 1.1 and 1.9 pm owing to transitions involving the 
split d energy levels of the Fe2+ cation. In samples with significant levels of ferric 
iron, Fe3+, absorption throughout the visible spectrum is attributable to transitions 
involving charge transfer between the Fe2+ and Fe3+ cations, i.e., intervalence charge 
transfer. This is what makes iron-bearing glasses and the naturally oecuring mineral 
obsidian black. Goodwin [ll] studied the effect of the valence state of iron in coal slags 
in some detail and developed correlations that allow one to estimate the absorption 
index from the valence state and iron content. However, because of the lack of valence 
state information for the slags studied here it is difficult to improve on Goodwin’s 
correlations. Instead, a simpler correlation is presented that is expected to predict 
the general trends associated with iron content, that is, higher iron slags have higher 
absorption indices in the visible and near infrared (1-4 pm). 

If one assumes k is constant over the wavelength range from 1-4 pm and that the 
constant value is the average of the measured k over this range, then a plot of versus 
mass fraction of Fe2O3 shows that the average k increases with Fe2O3 mass fraction. 
The results for several slags is presented in Fig. IV.28, where all data points except 
those labeled 1600°C are from Goodwin’s work. A simple quadratic fit through these 
points (intersecting 0,O) shows that to reasonable accuracy 

k N (4.02s + 1 6 . 9 ~ ~ )  x ( I  V.32) 

As expected, this correlation underpredicts k for slags that are fully reduced (Fe2+/Fe 
= 1) and tends to overpredict & for slags produced in an oxidizing atmosphere. 
However, given the likely uncertainty in knowing the valence state and Fez03 
composition distributions for real fly ashes, the error (rms N 0.06 x max 2: 

0.16 x for SE10) is probably acceptable. 

As discussed above, if more detailed knowledge of the valence state and Fe 
concentration is known for a dispersion of fly ash, then the more accurate correlations 
developed by Goodwin [l l]  may be used. 
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Figure IV.28: Correlation for the average absorption index in the 
1-4 pm region owing to Fe203 content. 

IV.5.7 A Combined Model for the Complex Refractive Index 

In this section the separate correlations for n and k are combined to produce an 
algorithm that can be applied to a broad range of ash particle compositions. The 
resulting model provides an estimate of n and IC over the entire wavelength range from 
1 pm to 13 pm. A summary of the entire algorithm is presented below along with 
some estimate of the bounds on the slag compositions that are expected to produce 
acceptable results. 
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Density Calculation 
Throughout these calculations the density of the slag comprising individual particles 
is required. However, since this may not be available, the procedures described in 
section IV.5.1 may be used to estimate p from the composition of the particles, which 
is more readily measured. Equation IV.2 with the oxide densities in Table IV.5 may 
be used. The effective density for oxides in glass give somewhat better results than 
those of the free oxides. 

Real Refractive Index, n 
The combined model for the calculation of n requires only two correlations. At the 
shorter wavelengths (the region of normal dispersion) the mixture rule developed in 
section IV.5.3 is used. For this calculation the inputs to the correlation are the weight 
fractions of the oxides SiO2, Al2O3, CaO, FezO3, TiO2, and MgO; the mole fraction 
of SiO2, and the density of the slag. The contribution of each oxide in Eq. (IV.15) is 
computed using pi from Table IV.10, the weight fraction of the oxide, X m , i ,  and the 
factor (n: - l)/(n: + 2) where nj is computed using Eq. (IV.16) and the constants Ao, 
C, and B from Table IV.10. Only the weight fractions of the six oxides in Table IV.10 
are included. The sum of these weight fractions in Eq. (IV.15) are not normalized 
to unity, but for most slags probably account for a large fraction of the total weight. 
If there are significant contributions by other constituents, then their constants A,, 
C, and B should be used (where possible). Fortunately most coal ash particles are 
primarily composed of the six oxides listed above. 

At long wavelengths the single oscillator model for n, Eq. (TV.20), is used to 
compute n, Le., the real part of &. The inputs are the mole fraction of Si02, the 
molar concentration of Si, and the density of the slag. The oscillator parameters are 
computed using Eq. (IV-21), Eq. (IV.22), Eq. (IV.23), and Eq. (IV.25). 

At some wavelength longer than approximately 7 pm the mixture rule yields a 
value of n that is smaller than that found from the oscillator fit. If the  wavelength at 
which n,ix = nose is denoted by A,, then for A < A, the mixture rule should be used 
while for X > A, the oscillator fit should be used. The resulting curve is reasonably 
smooth but there is a discontinuity of slope at A = A,. 

Absorption Index , k 
The correlation for IC is somewhat complicated by the fact that three distinct 
phenomena are responsible for the absorption. At short wavelengths the absorption is 
due to Fez03 content, at long wavelengths it is due to vibrational absorption by SiO2, 
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while at intermediate wavelengths it is due to combination and overtone mechanisms, 
i .e., mu1 t ip honon processes. 

A t  short wavelengths (1-4 pm) k is modeled as a constant given by Eq. (IV.32). To 
accommodate the transition to the two-phonon mechanism near 4 pm the absorption 
coefficient is modeled as 

k = kl + kp. 

Here Jcl is given by 

k ("Fez03 ) ; X < 4.5pm 
ki = { k(x~,,o,)exp('4.5 - A )  ; 4.5 5 X < 8.5pm 

0 ; X > 8.5pm 

(IV.33) 

(IV.34) 

where l(qe2o3) is given by Eq. (IV.32). The short wavelength value is exponentially 
decreased for X > 4.5pm until it becomes negligible at 8.5 pm compared to  k2. 

The second term, kp, in Eq. (IV.33) is the contribution by either the oscillator 
model correlation (long wavelengths) or the two-phonon model correlation (inter- 
mediate wavelengths). The transition from the two-phonon model to the oscillator 
model requires some modification of the oscillator model solution for k. 

From Fig. IV.23 and Fig. IV.24, one notices that the oscillator model overpredicts 
k at the short wavelength edge of the absorption band. Unfortunately this error 
prevents the intersection of the extrapolated curve for k,,, at shorter wavelengths with 
k from the two-phonon model. To remedy this problem an alternative formulation 
for k is now introduced that applies to the short wavelength side of the absorption 
band. 

Consider the oscillator model for =  id' given by Eq. (IV.20). Here E' = n 2 - k 2  
and c" = 2 n k  are the real and imaginary parts of e ,  respectively. The peak value in 
the imaginary part of is and occurs at a frequency wmax. This peak and the 
associated frequency 'can be found by iteration. At frequencies less than Wma the 
ordinary oscillator model is used to compute k = e"/272. At higher frequencies the 
absorption index is computed using 

(I V.35) 

Here w, and y-have their usual meanings and are given by the oscillator correla- 
tions presented in section IV.5.4. The resulting absorption index calculated from 
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Eq. (IV.35) matches the measured k very well, and also is guaranteed to intersect the 
two-phonon model. Therefore, the transition from the two-phonon model described 
in section IV.5.5 to the oscillator model is found by finding the intersection between 
k ( X )  given by the two models. At wavelengths shorter than this intersection the 
two-phonon model is used for kz, while at longer wavelengths the modified oscillator 
model is used. The transition from one model to the other has a discontinuous slope 
but otherwise seems reasonable given the sparseness of measurements of k in the 
4-8 pm range. 

Putting all of these elements together in a single computer subroutine allows 
quick calculation of the optical constants of a slag from its composition. Such a 
calculation is shown in Fig. IV.29 where the computed optical constants are compared 
to measured results for molten slag SA05. The computed absorption index, k, in the 
region between 5 and 8 pm provides a credible transition from the short wavelength 
data to the long wavelength data, although the calculated k may be slightly too 
high. Given the lack of measured data it is probably unwarranted to attempt further 
corrections. 

In the wavelength range from 4 to 5 pm the model accurately predicts the slope 
and magnitude of the increase in I C .  Also, as Fig. IV.30 illustrates, the frequency shift 
of the SA4S absorption data relative to SA01 or SA05 is predicted by the model. The 
convergence of the SA01 and SA05 absorption indices near 5 pm is also predicted 
by the model, since both slags have approximately the same Si02 content. In all 
cases it seems that the correlation slightly overpredicts k in this region. The small 
discrepancies in the model for k at wavelengths shorter than 4 pm is entirely expected, 
as discussed in section IV.5.6, since the model for k in this region does not account 
for the ferrous/ferric ratio. 

The comparisons between the overall correlations and the experimental data in 
Fig. IV.31 and Fig. IV.32 provide further evidence that the correlation is reasonably 
robust. The model not only predicts the shift of the fundamental Si02 absorption 
band associated with Si02 content, as discussed in section IV.5.4, but also provides 
the expected form of IC in the intermediate wavelength range (4-8 pm). 

Model Limitations 
As expected, there are bounds on the applicability of the correlations for the optical 
constants given here. Obviously if the composition of interest lies outside the range 
of compositions used to develop the correlations, it is difficult to gauge the accuracy 
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Figure IV.29: Comparison of the overall correlation formulae for 
the optical constants with measured data for slag SA05 at 1600°C. 
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of the results. In the following chapter the correlation is used to calculate the optical 
constants of thousands of fly ash particles whose compositions were measured using 
computer controlled scanning electron microscopy. Some particle compositions do 
not resemble alumino-silicates, but, for instance, are very high in other elements, e.g., 
Ti02 (rutile) and sulfur (iron pyrite). The model cannot be expected to correctly 
estimate the optical constants of such particles, which, however, occur infrequently 
in the ashes studied here. 

Without further experience and experimental data it is not possible to establish 
a strict range of applicability. However, an estimate of the properties of acceptable 
compositions is useful. Therefore, for subsequent calculations using the correlations 
in this chapter it is suggested that the following rninirnd conditions should be met 
for the composition to be acceptable: 

1. Si02 weight percentage, 0 < ssjoz < 95%. Pure quartz particles are not included. 

2. The sum of the weight percentages of Si02, Al2O3, CaO, Fe203, MgO, and Ti02 
must be 80% or higher. 

3. The weight percentage of Fe203 must be less than 30%. 

It should be borne in mind that these are minimal criterion - it is not well 
established how accurate the results will be when the composition is far from 
those studied here. Nevertheless, it is fortunate that for most ashes studied by 
Ghosal [I71 the bulk of the particles meet these criteria, and a significant fraction 
have compositions somewhere between those of SA00 and SA4S. This issue is discussed 
further in Chapter V. 
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Chapter V. 

Radiative Properties of Fly Ash 

In this chapter the correlations developed in Chapter IV for the optical constants 
of hot slags are used to estimate the radiative properties of dispersions of fly ash. 
In the first section the radiative properties of ash dispersions are defined. In the 
second section the characteristics of some fly ashes from representative U.S. coals 
are presented. In the third section the composition distributions for several of these 
ashes are used to compute their optical constants using the correlations developed 
in Chapter IV. In the fourth section the results of Mie scattering calculations are 
presented, based on the measured size and computed refractive index distributions. 
Radiative properties of dispersions of several ashes are documented. These results are 
used in Chapter VI to evaluate the effects of ash on radiative heat transfer through 
a planar layer of combustion products gases. 

V. 1 Radiative Properties of Dispersions 

The radiative transfer of energy in an absorbing, emitting, and scattering medium 
is described by the radiative transport equation [35] 

Here Zx(r,h) is the spectral radiance at position r in direction fl at wavelength X 
and Zxb(!T) is the Planck blackbody function. The spectral absorption coefficient, 
ax, spectral scattering coefficient, OX, and scattering phase function, @,(A, A’) are 
generally functions of position, r, and wavelength, A. The extinction coefficient, PA, 
is the  sum of the scattering and absorption coefficients. The spectral radiative heat 
flux vector is defined in terms of the spectral radiance by 

The total heat flux vector is the integral of the spectral heat flux vector over all 
wavelengths, that is 
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The radiative transport described by Eq. (V.l)  depends on three radiative 
properties of the medium: 1) the spectral absorption coefficient, a ~ ,  2) the spectral 
scattering coefficient, a ~ ,  and 3) the spectral scattering phase function, @~(h  - h'). 
For coal combustion systems, the first includes contributions from gases as well as 
particles, while the second and third relate only to macroscopic particles. 

Suppose the medium is a dispersion comprising many scattering and absorbing 
particles with a broad distribution of sizes. For each differential class of particles 
with diameter D within dD, we can write Eq. (V.l j  to describe the contribution of 
that particle class to the radiative transport. If the fraction (by number) of particles 
within the size class D is 4 ( D ) d D  then the radiative transport equation for a medium 
composed of only that class of particles is 

v * I fih I + d(D)Px(WD I x  =4(D)ax(D)dD IbX('T) 

Here ~ A ( D ) ,  ox (D) ,  Px(D),  and @ ~ ( h  - h ' , D )  are the radiative properties for the 
class of particles with diameter D. Integrating Eq. (V.4) over all diameter classes one 
finds that the average radiative properties are 

Suppose that in addition to a distribution of particle sizes there is also a distri- 
bution of particle compositions. One approach for including this added complexity 
is to write the particle distribution function as, 4 = d ( D ,  C), where C represents the 
composition of the particles. For this approach one could divide the ash particles into 
classes of like compositions and use a correlation similar to that developed in Chapter 
IV to estimate the optical properties for a composition class. With this approach the 
choice of composition classes is not obvious. An alternative approach is to write the 
distribution function as d = d ( D ,  n, k), and divide the ash into classes of like optical 
constants. This approach allows for composition variations within a class provided 
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these variations do not significantly affect the optical constants. While both of these 
approaches should produce the same results, this latter approach is adopted here and 
is probably more reasonable for purposes of computi,ng the radiative properties of fly 
ash since it allows one to ignore composition variations that do not affect the optical 
constants. 

Let the fraction of particles with diameters D and optical constants n and k be 
d ( D ,  n ,  I C )  dD dn dk, then the average spectral radiative properties are 

and 

In practice it is useful to replace the integrals over n and k with summations over 
a finite number of compositional classes, each class having approximately constant n 
and k .  For example, suppose that di (D)dD is the fraction of particles with size D 
within dD with optical constants n; and k,. Then the integrals over n and k can be 
replaced with the summations 

(V.11) 

(V. 12) 

and 

(V.13) 

Here the subscript i denotes values for the class of particles with n = n; and k = ICi. 

The scattering and absorption efficiencies for a particle illuminated by a plane 
monochromatic wave are defined as 

Scattered Power 
Power incident on the cross sectional area 

Absorbed Power 
Power incident on the cross sectional area 

Qs = (V.14) 

Q a  = (V.15) 
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These efficiencies are not limited to unity. In fact, for very large particles (compared 
to A)  Qs + Qa + 2. If the particle is non-absorbing then Qs ---t 2. An interpretation 
of this result is that for a large non-absorbing particle some fraction of the incident 
light is reflected or refracted by the particle, up to a total fraction of unity, while the 
remainder of the scattering is attributable to diffraction whereby the particle affects 
the incident wavefront beyond its physical radius. Very small particles (7rD/X << 1) 
have &a and Qs values much less than unity. Particles with dimensions comparable 
to X can have Q3 and Qa values several times unity. 

Assuming that one can calculate (or otherwise estimate) the scattering and 
absorption efficiencies, Qs,i and Qa,i, and the scattering phase function, @ x , i ( p )  for 
a spherical particle with diameter D, and prescribed optical constants, ni and kj,  for 
incident radiation at wavelength, A, the scattering and absorption cross sections are, 
by definition, 

(V.16) 7r D2 
C s , i (  D, A)  = Qs,i(D, A)- 4 

(V.17) 

If the number density of particles is Ni (total number of particles of class i per unit 
volume of medium) and the number fraction of these particles with diameter D is 
4i( D ) d D ,  then their contribution to the scattering coefficient for particles with optical 
constants nj and ki is 

The volume fraction of particles in class (n;,  k;) is 

In terms of the volume fraction of particles, Cv, Eq. (V.18) can be written as 

Here D32,i is the Sauter mean diameter, 

If we define the size-averaged scattering efficiency as 

JF Qs, i (  D, A)D2 4i( D ) d D  Jr D24i(D)dD 
Q s , i ( X )  = 7 

(V.18) 

(V.19) 

(V.20) 

(V.21) 

(V.22) 
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and integrate over particle diameter, the resulting expression for the scattering 
coefficient for particles of class (ni, k i )  is 

(V.23) 

Similarly, the absorption coefficient is 

(V.24) 

where &a,i(A) is the size-averaged absorption efficiency. A similar analysis gives the 
size-averaged scattering phase function for class (ni ,  k i )  as 

(V.25) 

Finally, the overall radiative properties for the medium are the sums of those for 
each composition class, i.e., 

*A = q i ,  (V.26) 
1 

a A  = C a A , i ,  
i 

(V.27) 

and the scattering phase function is 

(V.28) 

Note that the @A,&) are weighted by the scattering coefficient for each class. 

It should be noted that in the above formulation D was described as the diameter 
of a spherical particle. In fact, this formulation is somewhat more general than 
that. One could regard D as an “effective” diameter for irregularly shaped, randomly 
orientated particles. The restriction that D be the diameter of a spherical particle 
is only important when one introduces Mie theory to compute the scattering and 
absorption efficiencies; in such a case the particles are strictly assumed to be spherical. 

Several results can be anticipated on the basis of the formulation above. First, 
for very small particles (x = nD/A << 1 )  in the Rayleigh limit of Mie theory, the 
scattering efficiency is proportional to x4. Since 0 3 2  is proportional to the diameter 
of the particles, the scattering coefficient for the medium is proportional to CUD3. 
If the density of the particles are all approximately p then C, is proportional to the 
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mass loading of particles (pCv). Thus the scattering coefficient is proportional to the 
product of the mass loading of particles and the average volume of a single particle. 
If a given mass dispersion of particles were divided into finer particles the scattering 
would decrease proportionately to D3. Conversely, if a very fine dispersion of particles 
formed larger agglomerates the scattering would increase as D3 for the new particles. 
In contrast, the absorption efficiency for very small particles is proportional to x, 
or the diameter of the particles. Thus the absorption coefficient for a dispersion 
of very fine particles is.essentially constant for a constant mass loading. For this 
reason if a dispersion of soot, for instance, is composed of very fine particles then 
one should not expect the absorption coefficient to have significant dependence on 
the size distribution of the soot particles. The scattering albedo, w = a/(o + CY) will 
decrease with particle volume but be independent of mass loading. 

Another limiting case that can be easily understood is the large particle limit, 
where &a and Qs are approximately constant with &a + Qs -+ 2. In this limit 
the scattering and absorption coefficients for a fixed mass loading decreases as 1/D. 
Decreasing the particle size increases both the scattering and absorption coefficients 
in the same proportion. The scattering albedo, w ,  will be independent of particle size 
and mass loading. It is also interesting to note that for very large particles Qu will 
not exceed the hemispherical emittance of the constituent material (i.e. QU 5 l),  
thus 0.5 5 w 5 1. 

V.2 Characteristics of Fly Ash Dispersions 

In a recent study [17] a considerable amount of detailed information on the 
size and composition distributions of fly ash were presented for six representative 
U.S. coals. This section essentially summarizes the portions of that study that are 
required to compute the radiative properties of fly ash. For additional detail see 
Ghosal [17] and Ghosal, et. al. (361. 
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V.2.1 Fly Ash Size Distribution 

Fly ash particles are typically closely spherical with sizes ranging from very small, 
submicron particles to very large particles of adventitious rock (>lo0 pm). However, 
to a reasonable approximation it has been found that the size distribution for fly ash 
particles is generally well-modeled by a lognormal distribution function. 

The particle size distribution function, 4 ( D ) ,  is defined so that 4(D)dD is the 
fraction of particles with diameter D within dD. For a lognormal distribution t 

(V.29) 

where a, = lnug. Here the number median diameter is D, (half the particles are 
smaller than D,) and ag is the geometric standard deviation. It is more convenient 
to recast Eq. (V.29) in terms of u = In D and write it as a differential function 

( V. 30) 

where du = d(lnD) = d D / D ,  T i  = log D, and f(exp(u)) is the lognormal distribution 
function used by Ghosal. In this form we can easily interpret the distribution as a 
normal distribution centered about ii with approximately 68.3% of the particles within 
fa, of E and approximately 95.4% of the particles within f2a, of E. 

The i th moment of 4 is obtained by multiplying Eq. (V.30) by D' and normalizing 
so that the integral over all diameters is unity. If we adopt the notation where 4, is 
the ith moment, then 

(V.31) 

For i = 0 we have $0 = 4, which is just the differential number distribution function 
described above. If i = 3, then 4 3  is the differential volume distribution function 
where 43dD is the fraction of the total particle volume due to particles with diameter 
D within the range from D to D + dD. The function 4 3  is the volume distribution 

t The notation here is slightly different than that used by Ghosal [17]. Here 4(D)dD is 
the fraction of particles with diameter D within dD. Ghosal defines f(D) = $/D so that 
f(D)d(lnD) is the fraction of particles at D within d lnD.  
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function. Similarly, 42 is the differential area distribution function and 41 is the 
differential diameter distribution function. 

Written in the form of Eq. (V.31) it is apparent that exp(E+ ic:) is the median 
diameter of the i f h  moment, but all moments of the distribution function have the 
same standard deviation, o, = log(a,). For example, for i = 3 the volume median 
diameter is 

D, = 03 = exp(h + 3 ~ ; ) .  (V.32) 
- 

One half of the total particle volume is due to particles with diameter smaller than 
D3. Similarly, the area median diameter, E ,  is given by 
- 

- 
D, = D2 = exp(E+ 2 4 ) .  (V.33) 

The notation D,  for volume median diameter and D, for area median diameter is 
consistent with Ghosal [l?], but the more general notation E = exp(E+ io:) is used 
here instead. 

As was seen in the previous section the Sauter median diameter, defined in 
Eq. (V.21), can be written as 

(V.34) 

Note that 0 3 2  is larger for distributions with a broader distribution of particle 
diameters (i.e.,larger a,) and has a minimum of D ,  = Do when all particles are 
of a single diameter (;.e., o, = 0). 

Based on the ash samples studied by Ghosal 1171, most fly ashes have a volume 
median diameter in the range 10-15 pm and a geometric standard deviation ranging 
from 2 to 3. Figure V.1 shows a plot of a9 versus 03 for several ash samples. The San 
Miguel ash has a much larger than the other ashes. Ghosal has shown by density 
classification of the ash samples that this abnormality is due to a larger fraction of 
non-solid particles, or cenospheres in this ash. The Eagle Butte ash has the broadest 
distribution, with og E 3.5. Some of the ash samples were collected in a baghouse 
downstream of a cyclone separator, as noted on Fig. V. 1. The ashes sampled from a 
cyclone tend to have smaller cg, although even the baghouse sample of Kentucky #9 
ash has og N 2.3. 

116 



A 

0 
+A 

0 

Volume median diameter, 6 (pm) 

Figure V.l: Geometric standard deviation versus volume median 
diameter for several fly ash samples (from Ghosal,l993). 

V.2.2 Composition Distribution 

In addition to size distribution, Ghosal also presents composition distributions 
which were measured using a computer controlled scanning electron microscope. In 
this technique the elemental compositions of approximately 1000 particles or more 
were measured and tabulated for several fly ash samples. The resulting oxide weight 
fractions were then computed assuming each element was oxidized. 
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Figure V.2: Ternary plots showing the Si02, A 1 2 0 3 ,  and other 
weight fractions for six different fly ash samples. 
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Ternary plots of the compositions for six fly ash samples are presented in Fig. V.2. 
These ternary plots have vertices labeled Si02, Al2O3, and “Other”, where “Other” is 
the sum of all oxide weight fractions except Si02 and Al2O3. For example, particles 
with 50 wt.% Si02 and 50 wt.% A1203 fall at the midpoint between the vertices 
labeled Si02 and Al2O3, while particles with no Si02 or A1203 will fall at the vertex 
labeled “Other”. As we see, the Kentucky #9, San Miguel, Upper Freeport, and 
Illinois #6 ashes all appear similar. Each has a rather dense population of alumino- 
silicate particles throughout the central portion of the ternary diagram. In contrast, 
the Beulah and Eagle Butte ashes have many more particles which have lower levels 
of Si02 and A1203. It is difficult to obtain quantitative information from such ternary 
plots, since one can display only three constituents. 

More quantitative composition distribution information is obtained by plotting 
the volume fraction of ash with oxide composition x versus x. Here x is one of twelve 
measured oxide composition fractions (0 5 x 5 1). Such plots are shown for the 
five ashes Beulah, Eagle Butte, Illinois #6, Kentucky #9, and Upper Freeport in 
Figs V.3-V.7. Consider the composition distributions shown in Fig. V.3. The top 
left plot shows the volume fraction of Si02 versus the weight fraction x = zsioz- As 
illustrated, most of the particles in this ash have less than 40% Si02, with significant 
volume fraction (3.5%) having less than 1% Si02 content. The distribution function 
for Fe2O3 in the Beulah ash shows that most ash particles (by volume) have less than 
5% Fe203. Table V. l  summarizes the results in Figs V.3-V.7. 

Note that for these and all subsequent volumetric quantities it is necessary to 
restrict the data to the smallest 90% of the particles because of the limited number of 
particles found in the larger sizes. For example, it was found that one 30 pm particle 
could significantly change the entire composition distribution, although we have no 
way of knowing if that one particle was representative or an exception. This issue 
will become more apparent in subsequent plots. 

In addition to knowing the distribution of ash particle compositions, it is also 
interesting to plot the average composition versus particle diameter, as illustrated 
in Figs V.8-V.12. Here the average composition is computed for all particles with 
diameter D within d D ,  and the weight percentage of each oxide is plotted versus 
diameter. A thick line indicates diamet,ers which constitute the smallest 90% of 
part i c les . 

A number of observations can be made based on the results shown in Figs V.8- 
V.12. First, most ashes show an increase in average Si02 content with increasing 
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Figure V.3: Composition distributions for Beulah lignite ash. 
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Table V.l: Summary of observations based on composition distri- 
butions. 

Beulah 
Lignite High A1203/Si02 ratio. 
Figure V.3 Low Fe2O3. 

Typically less than 40 wt.% Si02. 

Moderately high CaO(broad range of wt.%). 
Low but significant levels of Na2O 
Very low Si02. Much with no 5 0 2 .  

Moderately high Fe203 (5-10wt%). 
Significant quantities of MgO. 
Average (40-60 wt.%) levels of SiO2. 
Broad range of Si02 content. 
High Fe203 (10-20 wt.%). 
Moderately High K2O ( 0-10 wt.%). 
Average (40-70 wt.%) Si02 levels. 
Broad range of Si02 levels 
Low to moderate Fe203 (0-5 wt.%). 
Moderately high K 2 0  levels (0-8 wt.%) 
Average (40-60 wt.%) Si02 levels. 
Relatively narrow range of Si02 and A1203 levels 
Low to moderate Fe203 (0-5 wt.%). 
Moderately high K 2 0  levels (0-7 wt.%) 

Eagle Butte 
Sub-Bi tuminous Very high CaO. 
Figure V.4 

Illinois #6 
Bituminous 
Figure V.5 

Kentucky #9 
Bituminous 
Figure V.6 

Upper Freeport 
Bituminous 
Figure V.7 

diameter, most notably the bituminous ashes Illinois #6 and Kentucky #9. The 
high iron ash, Illinois #6, shows decreasing Fez03 and SO3 contents with increasing 
diameter, suggesting the presence of smaller pyrite-like particles. The sub-bituminous 
Eagle Butte ash and the bituminous Upper Freeport ash show no significant average 
composition variations with diameter. The Beulah ash (lignite) shows weak compo- 
sition variation with diameter, although Si02 does increase with diameter as CaO 
decreases. 

The extrapolation of these trends in average composition versus diameter to all 
particle diameters is probably not warranted as indicated by the spikiness of the 
curves for the 10% of largest particles. The number of composition measurements 
for larger diameter particles is so small that the statistical confidence in computing a 
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meaningful average composition is low. This is not unexpected since the log-normal 
size distribution predicts so few large particles. 

V.2.3 Summary of Fly Ash Characteristics. 

In this section the size and composition distributions for several fly ashes have 
been reviewed, based on work of Ghosal 1171. Generally it is found that there is 
significant particle-to-particle composition variation, as suggested by the ternary plots 
in Fig. V.2. These results were further quantified by calculations of composition 
distribution functions as presented in Figs V.3-V.7. It has also been observed 
that there may be significant average composition variations with particle size, as 
illustrated in Figs V.8-V.12. Specifically, an increase in Si02 with increasing diameter 
is observed. However, the limited sample size used for these analyses makes it difficult 
to extrapolate these trends to include the increasingly rare large particles in the 
distribution. 

V.3 The Optical Constants of Fly Ash 

In this section the optical constant distributions of the fly ashes are computed 
using the composition distribution data presented in the previous section and the cor- 
relations for computing optical constants from composition developed in Chapter IV. 
The result is an estimate of the optical constants for many hundreds of individual ash 
particles. 

As discussed in Chapter IV, it is necessary to restrict the optical constants 
calculations to compositions that can be reasonably approximated by the range of 
data used to develop the correlations. However, some extrapolation beyond this 
narrow data set is allowed here. Generally the correlation should be expected to 
be valid for alumino-silicate particles with moderate CaO contents and reasonably 
low levels of FezO3. Three tests were established to decide the applicability of the 
correlations. The correlations are used if an ash particle meets these three criteria: 

1. Less than 95 wt.% SiO2. Pure quartz particles are not modeled. 
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2. The sum of 5 5 0 2 ,  Al2O3, CaO, Fe2O3, MgO, and Ti02 should constitute 80 wt.% 
or more of the composition. These are the principal oxides used to estimate the 
refractive index . 

3. The iron content as Fe2O3 should be less than 30 wt.%. This eliminates essentially 
pure pyrite (FeS2), hematite (Fe203), and magnetite (Fe3O4) particles that are 
not modeled by the correlation. 

The application of these acceptance tests allows calculations of the optical 
constants for the preponderance of particles in the five ashes studied here. Table V.2 
shows that for two ashes, Eagle Butte and Upper Freeport, more than 93 vol.% of 
the ash particles passed all three tests. More than 85 vol.% of the Kentucky #9 ash 
particles passed the tests, but less than 70 vol.% of particles in the Eagle Butte and 
Illinois #6 ashes passed. Of the ash particles that failed, most failed to meet criterion 
2, although Illinois #6 had many particles that had more than 30 % Fe2O3. 

Once the ashes were subjected to the three composition criteria, the portion that 
passed was used to compute an average composition. This average is presented in 
Table \'.2. In subsequent sections calculations based on average composition refer to 
t h k  composition, based only on accepted particles. 

The optical constants of all accepted particles were computed using the correla- 
tionii developed in Chapter IV. The results for ashes having the narrowest composition 
distribution, Upper Freeport, and the broadest composition distribution, Eagle Butte, 
are presented in Fig. V.13 and Fig. V.14, respectively. 

It is difficult to learn much from the data presented in Fig. V.13 or Fig. V.14, 
although it is evident that the Upper Freeport ash has a narrower distribution 
of optical constants than does the Eagle Butte ash. This is consistent with the 
corresponding breadths of the composition distributions. 

A better way to illustrate these optical constants distributions is to plot them in 
the (n ,  k) plane for all particles at fixed wavelengths. The resulting (n ,  k) distribution 
plots for the lJpper Freeport and Eagle Butte ashes are shown in Fig. V.15 and 
Fig. V.16. 

The optical constants distributions of Fig. V.15 and Fig. V.16 show much more 
clearly the particle-to-particle variation of n and k. A t  short wavelengths ( A  < 4 pm) 
the absorption index, k, varies by almost 4 orders of magnitude, from low iron particles 
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Table V.2: 
optical constants and radiative properties. 

Properties of fly ash distributions for calculation of 

Ash Upper Beulah Eagle Illinois Kentucky 
Freeport Butte #6 #9 

Average Composition (wt.%) 

Measured Size Distribution 
0 3  I 9.34 I 12.69 1 14.28 I 10.10 I 10.36 
U I 2.76 I 2.98 I 2.80 I 2.85 I 2.33 

where k 5 or larger. The variation in n 
is relatively narrow for the Upper Freeport ash, while n varies from 1.3 to 1.7 for the 
Eagle Butte ash. 

to higher iron particles with IC - 
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Figure V.13: Optical constants for 1496 individual particles of the 
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Figure V.15: Optical constants for 1496 individual particles of the 
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Figure V.16: Optical constants for 1646 individual particles of the 
Eagle Butte fly ash a t  24 discrete wavelengths. 
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In the intermediate wavelength range, from 4 5 X 5 6.5 pm, k does not vary 
much, although the Eagle Butte ash does show significantly more particle-to-particle 
variation than does the Upper Freeport ash. 

At longer wavelengths (A  > 7 pm) the absorption is due to Si02 vibrational 
absorption, as discussed in Chapter 4. In this region a single oscillator model for the 
optical constants is used in which the oscillator parameters depend on composition. 
The distributions of n and k in this wavelength region follow a distinctive contour 
through the (n, k) plane, rather than being scattered about a mean value as seen at 
shorter wavelengths. This contour is predominantly due to variations in the oscillator 
frequency, wo, with particle-to-particle Si02 variations. To illustrate this effect, 
consider the curves shown in Fig. V.17. Here the single oscillator model (Eq.(II.30)) 
was used to generate n and k for n&, = 2.0, ( ~ , , / w ~ ) ~  = 0.65, and y/w, = 0.3. The 
oscillator frequency was varied from 800 5 wo 5 1000cm-l. The resulting contours 
are quite similar to those in Fig. V.15 and Fig. V.16. The contours essentially follow 
a single contour that is traced out by varying w2 - w:. A plot of actual n and k for 
a rea1 ash is not likely to have such a sharply defined contour, but n and k must be 
strongly correlated in this wavelength range, so a similar structure probably exists 
for all coal ashes, insofar as they contain significant fractions of silica. 

As a final step in specifying the optical constants for a fly ash of a given 
composition distribution, it is useful to reduce the amount of data prior to performing 
Mie scattering calculations. Accordingly the (n ,  k) distribution is divided into a finite 
number of discrete classes, with the ( n , k )  space divided into a grid of cells. The 
volume fraction of ash within each (n i ,k; )  class is computed and sorted in order of 
decreasing volume fraction. The list of cells is truncated after 95% of the total ash 
volume is accounted for. Plots of the truncated list of cells are illustrated in Fig. V.18 
and Fig. V.19 for the Upper Freeport and Eagle Butte ashes. Each class (or cell) in 
Fig. V.18 or Fig. V.19 has an associated volume fraction. Similar classifications were 
made for the Kentucky #9, Illinois #6, and Beulah ashes. 

V.4 The  Absorption and  Scattering Propert ies  of Fly Ash Dispersions 

In  this section the radiative properties of dispersions of ash are computed by 
assuming that the  ash particles are spherical, homogeneous, and isotropic with the 
size and optical constant distributions described in the previous sections. This is 
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Figure V.18: 
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Figure V.19: 
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a good model for the vast majority of ash particles because they are formed by 
rapid quenching of molten droplets. These assumptions allow one to use standard 
Mie scattering theory to compute the absorption and scattering characteristics of a 
single particle. Specifically, the absorption and scattering efficiencies, Qa and Q,, are 
computed along with the asymmetry parameter, g, which is the first moment of the 
scattering phase function. 

V.4.1 The Size and Composition Averaged Properties 

The procedure for computing the average scattering properties follows the analysis 
described in the previous sections. For a given ash the scattering properties are 
computed using Mie scattering codes (see Appendix D). The size distribution averaged 
quantities &a, Q,, and g are computed at a single wavelength for a single optical 
constant class (ni, ki). Each class is assumed to have the same size distribution 
since, as shown by Ghosal [17], the changes in composition with particle size are 
generally small for the range of sizes and ash samples studied (approximately 1- 
1Opm). Finally the composition averaged scattering properties are computed using 
the volume fraction of ash in each class (Cv,;/Cv) and the relations 

(V.35) 

and 

Note that the asymmetry parameter, gi(X) is defined as 

(V.36) 

(V.37) 

thus its average is computed by weighting with the scattering efficiency, as is done 

for @A(cL).  

The scattering properties were calculated using the best fit size distributions 
shown in Table V.3 for five ashes studied by Ghosal [17]. Note that the radiative 
properties of the sixth ash, San Miguel, were not computed here since it has a large 
fraction of non-solid particles or cenospheres [17]. While the composition distribution 
(and optical constants distribution) for the San Miguel ash is typical of most fly 
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Table V.3: Parameters of best fit log-normal distributions to data 
for five ashes studied by Ghosal, 1993 

Beulah 0.355 12.69 6.991 2.98 
Eagle Butte 0.594 14.28 8.405 2.80 
Illinois #6 0.376 10.10 5.836 2.85 

Kentucky #9 1.21 10.36 7.244 2.33 
Upper Freeport 0.424 9.34 5.579 2.76 

ashes, the size distribution is exceptionally large (e.g., 
non-solid particles. - 

N 32pm) because of these 

The results of the size and composition-averaged Mie scattering calculations for 
each of the actual size distributions are shown in Fig. V.20. Starting at the bottom, 
the absorption efficiency for all five ashes is less than approximately 0.03 at X = lpm, 
and decreases with increasing wavelength until it begins to rapidly increase near 4 pm 
as k increases. In this wavelength range, 1 _< X 5 4 pm, the absorption efficiency 
depends primarily on the Fez03 content of the ash, with the higher iron Illinois #6 
and Eagle Butte ashes having higher absorption. The decrease in Qa with increasing 
wavelength is primarily attributable to the decrease in the particle size parameter, 
2 = TD/X, with increasing wavelength. As was discussed previously, when 5 is very 
small Qa is proportional to z. If the incident flux (power per unit area) is q, then, 
the power absorbed by the particle is qQarD2. When Qa is proportional to 2 the 
absorbed power is proportional to the volume of the particle. This limit is extended 
to somewhat larger particles provided zk is very small so that the particle remains 
weakly absorbing, but eventually the absorption efficiency will approach a constant 
and the power absorbed by the particle will become proportional to the surface area. 
In this limit the incident radiation is significantly attenuated near the surface and 
does not penetrate the entire volume of the particlet I 

At wavelengths longer than 4 pm the absorption efficiencies of the three bitumi- 
nous ashes (Upper Freeport, Kentucky #9, and Illinois #6) are very similar. The 
lower Si02 ashes, Eagle Butte and Beulah, show the expected shift in the maximum 

t It should also be pointed out that Qa for a particle is a generally monotonic function of I [18]. 
There are surface modes and resonances thatcause “spikes” in QG over narrow ranges of I ,  
but the overall trends are as described here. Many of these variations in Qa are reduced or 
eliminated when one averages over a distribution of particle sizes. 
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Figure V.20: Size and composition averaged scattering properties 
for five fly ashes. 
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of &a to longer wavelengths. In all cases the maximum Qa is near unity, indicating 
that the ash particles absorb essentially all incident radiation. 

The scattering efficiencies for the five ashes are also shown in Fig. V.20. The 
scattering efficiencies of all ashes is approximately 2.5 at X = 1 pm (for which 2 >> 1) 
and have minima near 8-10 pm - the exact wavelength of the minimum Qs increases 
for the low Si02 ashes due to the shift of minimum n to longer wavelengths. The 
scattering efficiency of the Upper Freeport ash is almost identical to that of the 
Illinois #6 ash. Compared to these two bituminous ashes, the lower Si02 ashes, 
Eagle Butte and Beulah, have a higher Qs at wavelengths below their minimum QJ, 
and a somewhat lower QJ at longer wavelengths. The Kentucky #9 ash has a higher 
Q3 than the Upper Freeport ash at all wavelengths shown here, despite their similar 
compositions and optical constants. This difference is attributable to differences in 
their size distributions. While both ashes have comparable volume median diameters 
(03 N 9.34 for Upper Freeport and E 2: 10.36 for Kentucky #9), the Upper Freeport 
ash has a significantly broader distribution of particle sizes (og 2: 2.76, compared to 
2.33 for Kentucky #9). As a result many more of the particles in the Upper Freeport 
ash are very small, and as a result, scatter less. Note also that these efficiencies (Qa 
and Qs) contain no dependence on loading. When we say here that the Kentucky #9 
ash scatters more than the Upper Freeport ash, we are comparing scattered power per 
unit of particle surface area. Since the surface area for a dispersion of ash depends on 
the loading and size distribution, the scattering per unit mass may be significantly 
different. These effects will be described further below. 

The top plot in Fig. V.20 shows the asymmetry parameter for the five ashes. For 
all ashes g lies approximately in the range 0.6 5 g 5 0.8, but there are ash-to-ash 
variations. Note that g = 1 corresponds to pure forward scattering, while g = 0 
corresponds to isotropic scattering. Here g 0.7 indicates that significantly more 
of the scattered power is in the forward direction than is in the backward direction. 
Although not explicitly illustrated here, a significant fraction of the scattering is 
in a relatively narrow forward lobe (due to diffraction), with the remainder being 
somewhat more isotropically distributed. 
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Table V.4: Log-Normal size distribution parameters. 

_. - 
Size Do,Prn D37Pm 0 3 2 ,  pm a!7 

A 0.30 10.79 5.945 2.98 

B 1.00 11.37 7.582 2.46 

C 4.00 15.91 12.64 1.97 

V.4.2 The Effects of Size Distribution on Average Properties 

The effects of the size distribution parameters for constant composition distribu- 
tion were studied using the three log-normal size distributions given in Table V.4. 
The size distributions (designated A, B, and C) were chosen to span the ranges of 
Do, D3, and 0 3 2 ,  measured by Ghosal [17]. The effects of the size distribution on the 
scattering properties are shown in Fig. V.21, Fig. V.22, and Fig. V.23 for the com- 
position distributions of the Upper Freeport, Kentucky #9, and Eagle Butte ashes, 
respectively. Note that 9, Qs, and Qa are dependent only on the optical constants and 
size distribution. The effect of ash loading becomes important when one computes 
the radiative properties for a dispersion of ash in a medium (e.g., see Eq. (V.23) and 
Eq. (V.24)), and is discussed in Chapter VI. In addition to size distributions A, B, 
and C, each figure also contains a distribution D, which is the actual size distribu- 
tion for each particular ash composition distribution. For example, in Fig. V.21 size 
distribution D is that of actual Upper Freeport ash, as determined by Ghosal [l?]. 

-- 

For all three ash composition distributions (Fig. V.21-V.23) the increase in 0 3 2  

from distribution A to distribution C causes an increase in the absorption efficiency, 
although a less pronounced increase occurs near the peak of the Si02 absorption band. 
This result can be explained, qualitatively, as a pathlength effect, as was described 
above to explain the decrease in Qa with wavelength in the 1 < X < 4pm range. If a 

particle is weakly absorbing (kz = knD/X << 1) the absorbed power is proportional 
to the volume of the particle. On the other hand, if the particle is strongly absorbing 
then absorption takes place near the surface of the particle and is proportional to 
the area of the particle. Thus the absorption efficiency (absorbed power/power 
incident on particle area) should be proportional to the diameter for weakly absorbing 
particles and independent of diameter for strongly absorbing particles. Realistic 
ash distributions contain weakly absorbing particles, strongly absorbing particles, 
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Figure V.21: 
properties of the Upper Freeport fly ash. 
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Figure V.22: 
properties of the Kentucky #9 fly ash. 
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Figure V.23: 
properties of the Eagle Butte fly ash. 
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and many between these limits, nevertheless, the majority are weakly absorbing for 
X < 8 pm and strongly absorbing at longer wavelengths. Based on this discussion, one 
should be able to discriminate between volumetric absorption and surface absorption 
by normalizing with a measure of the particle size, for example 0 3 2 .  

Figure V.24 shows a plot of Q a / D 3 2  for the Upper Freeport ash. Similar results 
are obtained for other ashes. The ratio Q s / D 3 2  is independent of the size distribution 
except at long wavelengths where absorption is strong, which is consistent with 
the pathlength effect described above. It is important to note that the absorption 
coeficient for a dispersion of ash is proportional to ax cx CvQalD32. The volume 
fraction C, is approximately constant for a given mass loading of ash; thus, the 
absorption coefficient for fly ash is insensitive to size distribution at wavelengths 
shorter than approximately 8 pm, and decreases with increasing particle size at longer 
wavelengths. 

In the wavelength range from 1-8 pm, or in the case of Eagle Butte, 1-10 pm, in- 
creasing 0 3 2  from distribution A to distribution C causes an increase in the scattering 
efficiency over most of that wavelength range (e.g., see Fig. V.21-V.23). However, the 
scattering coeficient, which is proportional to Q s / D 3 2 ,  does not generally increase 
with increasing 0 3 2 .  For example,Fig. V.25 shows the quantity Q s / D 3 2  for the Upper 
Freeport ash. The scattering coefficient (ox o( & s / 0 3 2 )  decreases with increasing 0 3 2  

at shorter wavelengths because Qs is approximately constant. By contrast, Q s / D 3 2  is 
approximately independent of the ash size distribution in the wavelength range from 
6 < X < 12 pm. It is significant to note that at shorter wavelengths the particle size 
parameter 5 = nD/X for most particles is relatively large. In this limit the scattering 
efficiency approaches a constant (Qs  ---f 2). This is consistent with the results near 
X = lpm where most ashes show Qs N 2.5 independent of the size of the distribu- 
tion. At longer wavelengths these results tend to suggest that the scattered power is 
proportional to the. volume of the particle, although this is rather approximate. 

V.4.3 The Effects of Composition on Average Properties 

The effect of composition on the size and composition distribution averaged 
absorption and scattering properties is studied by comparing results for fixed size 
distributions ( A .  B, and C) but varying composition distributions. Figures V.26- 
V.28 show the effects of changing only the composition. In Fig. V.26 five curves are 
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Figure V.24: Absorption efficiency of Upper Freeport ash normal- 
ized by 0 3 2 .  

shown where the composition distributions appropriate to the five ashes are used but 
each with size distribution A. Figures V.27 and V.28 show similar results for size 
distributions B and C, respectively. 

These results confirm that the differences between the scattering efficiencies of 
lJpper Freeport, Illinois #6, and Kentucky #9 ash are primarily due to differences in 
their size distribution. Apart from the difference in absorption in the 1-4 pm range 
attributable to differences in Fez03 content, these three ashes from bituminous coals 
have very similar radiative properties when their size distributions are the same. The 
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Figure V.25: Scattering efficiency of Upper Freeport ash normalized 
by 0 3 2 -  

radiative properties of the Eagle Butte and Beulah ashes differ from these three ashes 
primarily due to  their low Si02 content. 

V .4.4 The Effects of Part icle-to- Particle Composition Variations 

In all the previous calculations the full composition distribution functions were 
used, thus accounting for particle-to-particle composition variations. Size integrated 
Mie scattering calculations were made for many different optical constants classes 
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Figure V.26: The scattering properties of dispersions of different 
ash compositions, but all having size distribution A. 
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Figure V.28: The scattering properties of dispersions of different 
ash compositions, but all having size distribution C .  
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at each wavelength - a rather time-consuming computation. In general the average 
scattering properties of a dispersion with a distribution of compositions does not 
equal the scattering properties computed using the average of the distribution of 
compositions. In this section the error of using an average ash composition is 
evaluated. 

It has been shown that at many wavelengths, particularly X < 4 pm and 
X > 8 pm, there is significant breadth in the distribution of optical constants. Large 
particle-to-particle variations in n and IC are observed. To understand the effect of 
this composition distribution, radiative properties were computed using the single 
composition class defined by the average Composition shown in Table V.2. This 
average composition is not exactly the same as the average composition of the whole 
ash, but, instead, is computed from the collection of particles which pass all the 
criteria recommended for the optical constants correlations in Chapter IV. 

The comparison between the scattering properties of Upper Freeport ash allowing 
for particle-to-particle composition variations and an ash in which every particle has 
the average composition is shown in Fig. V.29. The agreement is quite close at all 
wavelengths. As shown in Fig. V.30, this close agreement is maintained for the larger 
size C distribution. These results are very encouraging, since they justify using the 
measured average composition of the ash to compute, to close approximation, the 
radiative properties of a polydispersion of composition (at least for fly ashes similar 
to those studied here). 

To further investigate this matter, the effect of higher Fe2O3 content is illustrated 
by comparing the radiative properties of Illinois #6 ash with one of average compo- 
sition (see Fig. V.31). Again, the agreement is quite close, but using the average 
coinposition tends to underpredict Qa in the 1-4 pm range. An ash where some 
particles have higher iron content will have higher absorption efficiency than an ash 
where the iron content is dispersed uniformly among the particles. This seems to be 
particularly significant when the Fe203 content is high, as in Illinois #6. It should be 
noted, however, that this result depends significantly on the form of the correlation 
developed for I; in the 1-4 pm region. Recall that it was assumed that a significant 
fraction of the total absorption by Fez03 in the slag was due to intervalence charge 
transfer: thus there would be a second order dependence of k on the iron content 
( k  - z&,,,J. This dependence implies that a dispersion in which a few particles 
have higher iron content and the remainder have low iron content will absorb more 
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Figure V.29: Comparison between scattering properties of Upper 
Freeport ash and an ash in which every particle has the average 
composition. 
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Figure V.30: Comparison between scattering properties of Upper 
Freeport ash with size distribution C and an ash in which every 
particle has the average composition. 

158 



Illinois #6 (Size D) 
1 .o t' I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 1 1  I I I I I I I I I I I I I I I I I I I j 

- 
- - 

0.8 

0.6 r 

0.4 
distribution of composition 

- - - - - *  average composition 

0.2 

0 I l l  I I I I  I 1 1 1  I l l 1  1 1 1 1  I l l 1  I I I I  I I I I  I I I I  I l l 1  I l l  

3.0 

2.5 

2.0 

a" 1.5 

1 .o 
0.5 

0 

1 

CJ" lo-' 

1 0.2 

Figure V.31: Comparison between scattering properties of Illinois 
#6 ash  and an ash in which every particle has the average composi- 
tion. 
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than a dispersion with the same overall Fez03 content distributed uniformly through- 
out. Ashes formed in reducing environments may have less absorption by intervalence 
charge transfer; thus the second order dependence of IC on Z F ~ ~ O ~  may be reduced. 
This decreased second order dependence would lessen the errors associated with using 
an average composition. 

Finally, the Upper Freeport ash has been shown to have a rather narrow com- 
position distribution, while the Eagle Butte and Beulah ashes have much broader 
distributions. Thus the effect of using the average composition to compute radiative 
properties should produce the largest errors for the latter two ashes. As shown in 
Fig. V.32 and Fig. V.33, the errors introduced by assuming average composition 
are somewhat larger for these two ashes. Eagle Butte is a higher iron ash, hence 
using the average composition underpredicts Qa in the 1-4 pm range as it did for 
the Illinois #6 ash. For both the Eagle Butte and Beulah ashes, the largest error in 
the scattering efficiencies occurs near its minimum, as expected. The minimum Qs 
occurs at wavelengths where n - 1 is small and is therefore sensitive to composition. 
A similar result was observed by Ghosal [17] in transmittance measurements of ashes 
in infrared transparent liquids. 
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Chapter VI. 

Effect of Fly Ash on Radiative Heat Transfer 

In this chapter the effect of fly ash on radiation heat transfer through a planar 
layer of hot COz and H20 is studied. There have been several studies of the effect 
of fly ash on radiation heat transfer in coal combustors [5,6,7,8,9,10,37-38] including 
work on radiative transfer in coal-fired MHD radiant boilers [39]. In the following 
sections the radiative properties derived in the previous chapter are used to estimate 
the effect of fly ash on radiative transfer through a planar layer of ash dispersed in 
infrared active combustion product gases (C02 and H2O). 

VI.l The Radiative Transport Equation for a Planar Layer 

The radiation transfer through a planar layer is governed by Eq. (V.1). If the 
radiation intensity is independent of azimuth then we can write Eq. (V.l)  in the form 

(351 

(VI .1)  

Here p is the cosine of the angle of a ray with the normal to the layer, and x is the 
distance along the normal to the layer. 

The scattering phase function for fly ash dispersions (and for most real scattering 
media) is not isotropic. Instead, it typically has a rather pronounced forward 
scattering lobe. A good approximation to the scattering phase function is constructed 
by assuming that the phase function consists of a delta function in the forward 
direction plus other angular contributions. For example, the scattering phase function 
can be expanded in a series of the form 

(VZ.2) 
i=O 

where P ; ( p )  are Legendre polynomials and Ai are the Legendre coefficients. The con- 
stants Ai can be computed using Mie theory as discussed in Appendix D. Extracting 
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a delta function in the forward direction and truncating the series after N terms 
produces [40] 

N 
(VI.3) 

The constants f and B; are related to the Legendre coefficients, Ai, by the relations 

A; - (22 + 1)f AN+1 and Bj = 
f = 2 N + 3  1-f  

(VI.4) 

The advantages of this approximation (which is exact when N + w) are 1) it requires 
many fewer terms to produce a given accuracy and 2) it uses the Legendre coefficients 
which are readily computed from Mie scattering codes. 

The accuracy of this 6- P,, approximation (Eq. (VI.3)) was evaluated by Gupta [8] 
for N = 0 and found to accurately model the hemispherical fluxes (to within two 
percent). If N = 0 then f = A1/3, which is the asymmetry parameter g.  The 
scattering phase function then becomes 

(V 1.5) 

This approximation is particularly convenient since the resulting scattering integral 
is independent of direction, p. By substituting Eq. (VI.5) into the radiative trans- 
port equation and replacing the scattering coefficient with the effective scattering 
coefficient, 

aA,eff = (1  - ~ ) c A ,  (VI .6)  

the resulting equation has the form of the simpler radiative transport equation for a 
medium with isotropic scattering. 

The largest errors introduced by this approximation are in the reflected and 
directional quantities at the layer boundaries. However, the errors are tolerable given 
the considerable simplification introduced by this approximation (See Appendix E for 
details of the errors introduced by this approximation). 

In subsequent sections the scattering coefficient, a ~ ,  will refer to the eflective 
scattering coefficient defined by Eq. (VI.6) unless otherwise stated. 

The scattering coefficient, UA, and absorption coefficient, ax, for a dispersion of 
ash are 

and 
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as discussed in Section V.l. The scattering and absorption efficiencies, Qs and Qa 
are averaged over composition and size as described previously. Since the Sauter 
mean diameter, 0 3 2  is known for a given size distribution (see Eq. (V.34)) the only 
remaining unknown is the volume fraction, C,, of ash in the gaseous dispersion. 

VI.2 Ash Loading in Pulverized Coal Combustors 

In this section the ultimate (after complete combustion) value of the ash volume 
fraction, C,, is estimated as a function of the mass fraction of incombustible mineral 
matter in the coal before combustion. Composition analyses are presented for a 
number of U.S. coals in Table VI.l. Unfortunately, ash mass fractions were not 
available for the ashes studied by Ghosal. 

The ash loading in a coal combustor is dependent on a number of factors including 
the mineral content of the original coal, the fuel bound oxygen content, and the 
amount of excess air for combustion. Also, since the density of the gaseous products 
is proportional to the ratio of pressure to temperature, PIT, the average ash volume 
fraction is also proportional to PIT. 

The partial pressures of COz, H 2 0 ,  and CO in the combustion products are also 
dependent on the original coal composition, and to a lesser extent on pressure and 
temperature through chemical equilibrium considerations. 

For purposes of determining approximate average values of the ultimate ash 
volume fraction, Cv, and of the H2O and C02 partial pressures in typical coal 
combustion products, the coal combustion reaction is assumed to be 

(ncC+ n~ H +no()) +nairfO2 +nair( 1 - f )Na --f nC02C02 + n H , O H 2 0  +nair( 1 - f ) N 2  
(VI.8) 

where n, is the number of moles of species i and f is the volume fraction of oxygen 
in the “air”, typicaIly 0.21. The elemental composition of coal varies somewhat with 
rank and seam, but is primarily carbon, hydrogen, oxygen, and ash (all the inert 
minerals in coal). Elemental analyses [41] of several coals is presented in Table VI.l.  
For purposes of establishing ash loading the sulfur content of the coal is ignored and 
the coal is assumed to be dry. The ash content varies from 5 to 20 percent for the 
coals listed. Also, since high levels of fuel bound oxygen decreases the air demand, 
the ash volume fraction may be slightly higher for coals with more oxygen. 
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Table VI.l: Coal composition analyses for several U.S. coals (Ar- 
gonne premium coal samples) 

Seam 
' Upper Freeport 

Wyodak-Anderson 
Illinois #6 

Pittsburgh #8 
Pocahontas #3 
Blind Canyon 

Lewiston-Stockton 
Beulah-Zap 

I 

Elemental Weight Percent 
State Rank C H 0 S Ash 

PA Med. Vol. Bit. 86 4.7 8 2.3 13 
WY Subbituminous 75 5.4 18 0.6 9 
IL High Vol. Bit. 78 5.0 14 4.8 15 
PA High Vol. Bit. 83 5.3 9 2.2 9 
VA Low Vol. Bit. 91 4.4 2 0.7 5 
UT High Vol. Bit. 81 5.8 12 0.6 5 
wv High Vol. Bit. 83 5.3 10 0.7 20 
ND Lignite 73 4.8 20 0.8 10 

Notes: 
C, H and 0 are on moisture and ash free bases I S and Ash are on dry bases 

The mole fractions of the products in Eq. (VI.8) are found assuming f = 0.21 
and 10% excess air. The density and mass of the resulting gaseous products (pgas 
and zgas) are computed assuming an ideal gas mixture. The ash volume fraction is 
computed using the relation 

(VZ.9) 

where Lash is the mass of ash (per unit mass of coal), pSlq is the density of the ash 
particles (assumed = 2.5 g/cm3). It is also assumed that the slag density is much 
higher than the gas density. 

Results of the calculations are shown in Fig. VI.1 for a temperature of 1500 K 
and total pressure of 1 atm. The volume fraction, C,, is of the form 

(VZ.10) 

The solid curve was computed for coal carbon, hydrogen, and oxygen weight percent- 
ages of 75, 5 ,  and 10, respectively. The dotted curves show results for coal compo- 
sitions from Table VI.1. In Fig. VI.1, the ash volume fraction, C,, is approximately 
2 x 
It is important to keep in mind that C, is proportional to PIT; thus, high pressure 
combustors (such a coal gasifiers) will have much larger C, values. Also, if the ash 
follows the gas flow without significant redi'stribution, then cooler layers near the 
boundaries of the combustor will have a higher volume fraction of ash. 

for high ash coal (Z& - 20%). Lower ash coals, 5-8%, have C, = 0.5 x 
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Figure VI.l: Ash volume fraction versus mass fraction of ash in 
the coal, S&, at T=1500K and P=latm. The solid curve is for coal 
(C,H,O) mass fractions of (75,5,10) weight percent. The dashed curves 
are for coals in Table VI.l. 

In addition to the ash volume fraction, the partial pressures of C 0 2  and H 2 0  are 
obtained from this analysis. For the dry coals and 10% excess air studied here, the 
partial pressure of C02 is approximately pco2 !x 0.16 atm, and the partial pressure 
of H 2 0  is approximately p ~ ~ 0  z 0.06 atm. If the coal were wet the partial pressure 
of H 2 0  would be higher. 

An example illustrates the significance of the values presented here, and some 
typical values for optical depth resulting from these ash loading calculations. Consider 
the radiative properties of a uniform dispersion of ash at 1500K and 1 atm. The 
ultimate volume fraction for such a dispersion is approximately 2 x for a 

coal ash content of approximately 20-25 wt.%. From the previous Chapter the 
scattering efficiency divided by 0 3 2  is approximately 0.4 x 106m-' at X 'v 1 pm. 
The asymmetry parameter g 'v 0.7 so the effective scattering efficiency divided by 
0 3 2  is approximately Qs(l  - g)/& 'v 0.12 x 106rn-'. The scattering coefficient 
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is approximately ax-1 = (3/2)C,Qs(1 - g ) / &  2: 0.36m-'. A 3-meter thick layer 
of uniformly dispersed ash would have a scattering optical depth, rs = axL E 1.1. 
The transmittance for such an optical depth, ignoring in-scatter, is approximately 
e-'.' = 0.33. A layer 30-meter thick would be essentially opaque ( r  N 1.6 x 
due to scattering by the ash. 

VI.3 Radiative Coefficients for Fly Ash Dispersions 

The radiative coefficients, ax and ax, for the Beulah, Eagle Butte, Illinois #6, 
Kentucky #9, and Upper Freeport ashes studied in Chapter V are presented in terms 
of the absorption coefficient, ax, and extinction coefficient, = ax + a x ,  in Fig. VI.2 
and the scattering albedo, wx 3 a x / P x ,  in Fig. VI.3. Here we have used C, = 1 x 
to compute the coefficients, but one can easily scale the results for any ash loading 
using Eq. (V1.7). 

The results indicate that the extinction coefficient is largest near the Si02 
abwrption band (8-12 pm) where absorption accounts for approximately 70-90% 
of t h e  extinction. At shorter wavelengths the ash is a good scatterer, with wx N 0.95 
or larger. It is also evident from these figures that a band model with just a few 
bands would probably produce reasonably accurate radiation transfer calculations. 
Compared to the large and rapid spectral variations in the extinction for the infrared 
active gases, the ash is relatively gray. However, if one accounts for the exponential 
dependence of the transmittance, say, on PA,  the spectral variation is markedly 
increased. There is approximately a factor of two decrease in PA over the wavelength 
range from 1 _< X 5 7pm. The scattering albedo is not at all gray, but probably 
could be approximated by a three band model ( w 'v 0.975 for X < 5pm, w 2: 0.6 for 
5 < X < i .5pm. and w 2: 0.2 for X > 7.5pm). 
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Figure VI.2: Extinction and absorption coefficients for the five fly 
ashes ( here C,, = 1 x ). 
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Figure VI.3: Scattering albedo for the five fly ashes. 
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VI.4 Wavelengt h-Integrated Propert ies  of Ash Dispersions 

Although the spectral extinction and absorption coefficients presented above 
provide all necessary information for computing radiative transfer through a medium,+ 
it is sometime useful to express the radiative properties in terms of the Planck mean 

quantities. Specifically, the Planck mean absorption coefficient is defined as 

(VI.11) 

Here Ibx(T) is the Planck blackbody function. The Planck mean extinction coefficient, 
@ p ( T )  is defined similarly by replacing a x  with px in Eq. (VI.11). 

The temperature dependence of a p  and p p  is due to both the temperature 
dependence of the radiative properties and the temperature dependence of the spectral 
distribution of blackbody radiation. In this analysis the radiative properties are 
assumed to be independent of temperature; thus the temperature dependence of a p  
and @ p  is due solely to the spectral variation of the radiative properties. 

The Planck mean absorption and extinction coefficients were computed assuming 
negligible radiation outside the wavelength range of interest. That is, the results are 
normalized by the blackbody power fraction within the 1-13 pm wavelength range. 
The resulting mean quantities are illustrated in Fig. VI.4. Note that an ash volume 
fraction of C, = 1 x was used, but that the results scale as usual for any ash 
loading. 

The Planck mean absorption coefficient in Fig. V1.4 is highest at the lowest 
temperature, 1000 K, and decreases with increasing temperature because at the lower 
temperature a larger fraction of the blackbody radiation lies at the longer wavelengths 
where the spectral absorption is greatest due to Si-0 stretch vibrations. The three 
bituminous ashes (Upper Freeport, Illinois #6, and Kentucky #9) have a higher 
o p  than the lower Si02 ashes (Eagle Butte and Beulah). However, at the highest 
temperature (2000 I() crp increases with the Fez03 content of the ashes, as expected. 

The Planck mean extinction coefficient increases with temperature for the Beulah, 
I;pper Freeport. and Illinois #S ashes, but is approximately constant for the Eagle 

t Recall that the scattering coefficient is scaled by (1  - g)  to allow for non-isotropic scattering; 
thus, only two radiative properties are required. 
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Figure VI.4: Planck mean absorption and extinction coefficients for 
five fly ashes. 
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Butte and Kentucky #9 ashes. In all cases the dependence of on temperature is 
fairly small, with typically less than a 10% change for 1000 5 T 5 2000K. This weak 
temperature dependence is a result of the weak spectral variations in p. The increase 
in absorption coefficient at longer wavelengths is somewhat balanced by a decrease in 
the scattering coefficient, with the result being the relatively gray spectrum described 
earlier. 

To determine how the various wavelength ranges contribute to the Planck mean 
quantities, a cumulative Planck absorption function is defined such that 

(VI .  12) 

A cumulative extinction function, p p , o - ~ / p p  is likewise defined by replacing Q with 
B in Eq. (V1.12). The resulting cumulative functions are illustrated for the Upper 
Freeport ash in Fig. VI.5 and for the Eagle Butte ash in Fig. VI.6. The functions 
are plotted for temperatures of 1000, 1500, and 2000 K. Overlaid on the graphs are 
light dashed lines showing the cumulative blackbody fraction, which corresponds to 
the expected result if the radiative properties were independent of wavelength (i.e., 

gray 1 - 
The results in Figures VI.5 and VI.6 show that the contribution to the Planck 

mean extinction coefficient is primarily due to radiative properties for X < 8pm, 
particularly at  the higher temperatures. As the gray properties curves (dashed lines) 
indicate. this is mostly due to the spectral distribution of the Planck blackbody 
radiation. The absorption coefficient is very small at short wavelengths thus most of 
the contribution to the Planck mean absorption coefficient is attributable to properties 
at longer wavelengths ( A  > 5pm). Nevertheless, at 2000 K approximately 35% of 
the total Planck mean absorption coefficient for the higher iron Eagle Butte ash 
(Fig. VI.6) is due to absorption at X < 5pm. 

VI.5 Absorption Coefficients for Gaseous C02 and H2O. 

The gas for the following radiative heat transfer calculations is assumed to be 
at atmospheric pressure with CO:! and H 2 0  partial pressures of pco, 21 0.16 atm 
and p ~ ~ 0  z 0.06 atm, respectively. The absorption coefficients of these infrared 
active gases show complex spectral structures. Generally the spectra consist of bands 
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Figure VI.5: Cumulative Planck mean absorption and extinction 
coefficients for Upper Freeport ash. The light dashed lines are for 
gray properties. 

consisting of many overlapping absorption lines. The line spacings are typically on the 
order of a few cm-'; thus to  resolve a spectrum one requires tabulation or computation 
at thousands of wavelengths. If such a tabulation or computation were possible, one 
would find that the absorption coefficient of the gas depends only on the temperature, 
total pressure, and partial pressures of the participating speciest . Unfortunately, such 
an approach is not only very complicated but computationally impractical. 

Instead, an approximate absorption coefficient is computed using narrow band 
models presented in Ludwig, et.al. [2]. In these models, tabulated average absorption 
coefficient and line density parameters allow calculation of an average absorption 
coefficient over relatively narrow wavelength ranges. However, since the formulation 
must account for overlapping lines, the resulting absorption coefficient is also a 
function of the pathlength. 

There will also be dependence on gas composition since collision broadening depends on the 
collision partners 
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Figure VI.6: Cumulative Planck mean absorption and extinction 
coefficients for Eagle Butte ash. The light dashed lines are for gray 
properties. 

The absorption coefficient versus wavelength was computed assuming a path- 
length L equal to the thickness of the layer. Typical results for T = 1000, 1500, and 
2000 K are shown in Fig. VI.7 for L = 3m, a total pressure of 1 atm, and partial 
pressures of COz and H 2 0  of 0.16 atm and 0.06 atm, respectively. As we see, the 
main absorption features are the 2.7 pm C02 and H 2 0  absorption bands, the 4.3 pm 
CO:! absorption band, and the 6.4 pm H 2 0  band. The dots on the 1500 K curve 
show the 200 wavelength values at which the spectrum was computed. These 200 
wavelength intervals are equally spaced in In X values. 

VI.6 Emission, Transmission, and Reflection by an Isothermal Layer 

Using the properties described above, the radiative transport equation, Eq. (VI.1) 
was solved using the discrete ordinates method (see Appendix E). For the calculation 
the L = 3m layer was divided into 20 equal layers, and the angular radiance was 
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Figure VI.7: Absorption coefficient for 3-meter pathlength of C02 
(0.16 atm) and H 2 0  (0.06 atm) at 1000, 1500, and 2000 K and a total 
pressure of 1 atm. 
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solved for 16 discrete directions (-1 < p < 1) with p chosen for Gauss quadrature 
integration. The radiative properties were evaluated at  200 individual wavelengths, 
uniform in ln(A) over the range 1 5 X 5 13pm. Two separate calculations were 
performed to obtain the hemispherical emittance, transmittance, and reflectance of 
the layer: 

(a) The hemispherical emittance of the layer is obtained by letting the boundaries be 
non-emitting (T = 0 )  and non-reflecting ( e  = 1) and allowing only emission from 
the gas at  a uniform temperature T = 1500 K. The spectral radiative heat flux, 
qx(z) is computed for the layer and the hemispherical emittance is defined as 

(VI .  13) 

Here qx(L)  is defined as the spectral heat flux, 

(VI.14) 

evaluated at z = L. 

(b)  The hemispherical transmittance and reflectance are obtained by letting the 
boundary at z = 0 emit at 1500 K but not reflect ( e  = 1) while the boundary at 
3 = L neither emits nor reflects (T = 0 , ~  = 1). Since only the transmitted and 
reflected radiation are of interest here, the gas emittance is set to zero. This last 
point does not mean the gas does not absorb; instead the radiative properties of 
the medium are computed as if the gas were at 1500 K. Then the gas temperature 
is set to zero to prevent emission. For this calculation the spectral transmittance 
is 

(VI.15) 

The spectral hemispherical reflectance is 

(VI.16) 

The spectral emittance for several loadings (including no ash) of the Upper 
Freeport ash is shown in Fig. VI.$. The effect of ash loading on the emittance is 
a pronounced enhancement at longer wavelengths where the ash is a good emitter, 
but there are several interesting features at shorter wavelengths. First, near the peaks 
of the gas emission lines (e.g., 2.7 pm) the addition of ash reduces the emittance. This 
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Figure VI.8: Spectral emittance of a planar layer of gas and Upper 
Freeport ash at 1500 K. 

is in agreement with the expected trends [42]. Between the absorption bands the ash 
increases the emittance. 

The transmittance for several loadings of the Upper Freeport ash is shown 
in Fig, VI.9. The effect of ash on the transmittance is very significant at all 
wavelengths. At long wavelengths the ash causes extinction by absorption, while 
at  shorter wavelengths the attenuation is due to scattering. 
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Figure VI.9: Spectral transmittance of a planar layer of gas and 
lJpper Freeport ash at 1500 K. 

The total hemispherical emittance, transmittance, and reflectance of the layer are 
computed by integrating over wavelength. For example, 

(VI.17) 

In this calculation the wavelength ranges are truncated so the emittance is computed 
using 

(VI.18) 
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A similar integration is used to compute the total transmittance. The total reflectance 
is simply 

p = 1 - E - 7. (VI.19) 

Note that the reflectance can also be computed by integrating the reflected spectral 
flux at x = 0 in case ( b ) .  Both methods were used and compared to check for accuracy, 
and good agreement was obtained in all cases. 

The resulting total emittance, transmittance, and reflectance are summarized in 
Table VI.2 for several ash loadings and all five ashes. The first column shows the 
results for gas only ( E  = 0.303 and r = 0.697). This result agrees reasonably well 
with that of Goodwin [ll]. As expected, adding ash to the gas causes an increase in 
the total emittance of the layer and a decrease in the total transmittance. A volume 
fraction of C, = 2 x causes a 10-20% increase in the emittance and a 42-47% 
decrease in the transmittance, depending on the ash. The higher iron Illinois #6 ash 
causes the largest increase in the emittance, with a low loading (0.5 x causing 
as much as a 7.5% increase in the emittance. 

The ash-to-ash variations in total hemispherical quantities are typically only a 
few percent for a given ash loading, with the notable exception that high Fez03 ash 
causes a significant emittance increase. The emittance increases due to ash will not 
be significant in regions where there is soot, since the emissivity increase due to soot 
will overwhelm that from ash. The most significant effect of ash on the radiative 
transport through an isothermal layer is the increased extinction due to scattering. 
As suggested in the literature, e.g., Gupta, et a1 [8], a cold layer of ash between the 
walls and flames in a combustor may provide significant radiation shielding and hence 
a marked reduction in heat transfer between the hot core gas and the cooler walls. 

VI.7 Heat Flux through a Layer in Radiative Equilibrium 

In the previous section it was assumed that the medium was at a uniform 
temperature. No justification for this assumption was presented, but such a condition 
would occur in a well-stirred medium where convective and/or conductive heat 
transport are dominant, continually replenishing the radiative losses throughout the 
layer. particularly near the surfaces of the reactor where radiative losses are largest. 

In this section the heat flux through a layer in radiative equilibrium is studied. 
Radiative equilibrium occurs when radiative transport through the medium dominates 
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Table VI.2: Total properties for a 3 m isothermal slab of ash and 
gas- 

L = 3 m  
P =  1 atm 
T = 1500 K 
PCO, = 0.16 atm 
f i a o  = 0.06 atm 

Upper Freeport 032 = 5.579 x 10-6pm 
C v (  x l o6 )  0 0.5 1.0 2.0 0.5 1 .o 2.0 
cu LID32 0 0.269 0.538 1.075 

P 0.000 0.108 0.183 0.282 % Change by adding Ash 
‘I 0.697 0.571 0.486 0.373 -18.1% I -30.3% I -46.5% 
f 0.303 0.321 0.331 0.344 5.9% I 9.2% I 13.5% I 

Illinois #6 037, = 5.836 x lO-‘pm 
c v  ( x IO6) 0 0.5 1 .o 2.0 0.5 1.0 2.0 
CvLlD32 0 0.257 0.514 1.028 

P 0.000 0.098 0.167 0.258 % Change by adding Ash 
T 0.697 0.576 0.492 0.378 -17.4% I -29.4% I -45.8% 

0.303 0.326 0.341 0.364 7.6% I 2.5% I 20.1% 

Beulah 032 = 6.991 x 10-6pm 
C”(X106) 0 0.5 1 .o 2.0 0.5 1.0 2.0 
c v  LID32 0 0.215 0.429 0.858 

P 0.000 0.101 0.173 0.271 % Change by adding Ash 
T 0.697 0.582 0.501 0.391 -16.5% I -28.1% I -43.9% 
c 0.303 0.317 0.326 0.338 4.6% I 7.6% I 11.6% 

Kentucky #9  032 = 7.244 x 10-6pm 
c v  ( x lo6 1 0 0.5 1.0 2.0 0.5 1.0 2.0 
c v  LID32 0 0.207 0.414 0.828 

P 0.000 0.093 0.160 0.253 % Change by adding Ash 

€ 0.303 0.321 0.332 0.347 5.9% I 9.6% I 14.5% 
7- 0.697 0.586 0.508 0.400 -15.9% 1 -27.1% I -42.6% 

Eagle Butte 032 = 8.405 x 10-6pm 
c v  ( x 1 o6 1 0 0.5 1 .o 2.0 0.5 1 .o 2.0 
c v  LID32 0 0.178 0.357 0.714 

P 0.000 0.101 0.174 0.272 % Change by adding Ash 
7 0.697 0.581 0.500 0.388 -16.6% I -28.3% I -44.3% 
I 0.303 0.317 0.326 0.339 4.6% I 7.6% I 11.9% 
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convection and/or conduction. In this limit the temperature of the medium is 
dependent on the radiative flux and absorption coefficient of the medium. This limit 
is closer to the situation in the radiant boiler of a real combustor, where flows are 
predominantly parallel to the walls of the boiler and conduction through the gas is 
poor. 

To construct a model for the following calculations, it is assumed that CO2, H20,  
and fly ash are uniformly distributed between two black walls a distance L apart. 
Initially the walls are at 1500 K and the medium is likewise at a uniform temperature 
of 1500 K. This initial distribution defines the ash volume loading, Cu,1500, from 
which the mass loading of ash is approximately pashCu,i500/pgas, where P&, is the 
average density of the fly ash particles (- 2500kg/m3) and pgas is the gas density. 
The temperatures of the walls at x = 0 and x = L are now changed to 1000 K and 
2000 K,  respectively, while maintaining the same mass loading of ash relative to the 
mass of gas. The resulting radiative transfer causes the gas near the cooler wall at 
x = L to become cooler and the gas near the hotter wall at  x = 0 to become hotter 
than 1500 K. The ash mass loading remains fixed, but the volume loading decreases 
with increasing temperature since the volume of a unit mass of gas increases with 
temperature while the volume of a unit mass of ash remains relatively constant. 
Thus C,, depends on the gas temperature as described in Section VI.2 (Eq. (VI.10)). 

The solution of the radiative transport equation for the planar layer, Eq. (VI.l), 
is now complicated by the fact that T ( s )  is not constant, but instead depends on 
the radiative flux through the medium. To understand this dependence, consider the 
following analysis for the planar medium. 

The radiative transport equation for the planar medium given in Eq. (VI.1) con- 
tains the unknown temperature, T ( x ) ,  explicitly. However, by integrating Eq. (VI.l)  
over -1 5 p 5 1 and multiplying by 27r, one obtains the equation 

Here we define the spectral heat flux, qx ,  as 

and the  spectral incident radiation, gx as 
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(VZ.20) 

(VI.21) 

(VI-22) 



Note that the identity 27r J!l @ x ( p ,  p‘)dp’ = 47r is used to eliminate the scattering 
phase function. The spectral extinction coefficient is ,t?x = q+ax, so that Eq. (VI .20)  
can be written as 

- d9x + axgx = 4 T Q h [ T ( X ) ] .  ( V I  .23) 
d x  

Integrating Eq. (VI .23)  over all wavelengths gives 

( V I . 2 4 )  

Here q ( x )  = JOm qx(x)dX is the total radiant flux. 

Since d q / d x  in Eq. (VI .24 )  is the net heat flux into a control volume of differential 
width d x ,  a heat balance on the control volume specifies it explicitly. If there is 
no internal power generation and one ignores heat flux into the control volume by 
conduction or convection, then the net radiative flux is zero, i.e., 

- d4 = 0,  (Radiative Equilibrium). ( V I . 2 5 )  
d x  

With this assumption about the sources of power in the medium, one can write 
00 Lrn aAgA(x)dX = 47r 1 aAIbA[T(z)]dX- ( V I . 2 6 )  

Suppose one defines a ratio, fx, such that 

IbX f x  = @ (VZ.27)  

in a fashion similar to the “Picket Fence” analysis of Ozisik [35]. Here i? = 
5.67 x 10-8W/m2K4 is the Stefan-Boltzmann constant. Substituting Eq. (VI.27) 
into Eq. (VI .26 )  gives 

(VZ.28) 

Combining Eq. (VI.l)  with Eq. (VI .27 )  and Eq. (VI .28 )  gives 

This equation contains no explicit reference to temperature, although it does contain 
temperature implicitly through fx and through the dependence of the radiative 
properties on temperature. However, Eq. (V1.29)  is suitable for iterative solution, 
where one initially assumes a temperature for the medium and computes g x ( z ) .  
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Using this result for gx(z) one uses Eq. (VI.28) to compute an improved temperature 
which is subsequently used to compute fx(z) and new radiative properties. Using 
these improved temperatures and properties an improved gx(s) is obtained by re- 
solving Eq. (VI.29). This process is continued until the difference between two 
successive temperature calculations is less than some specified tolerance. Typically 
the convergence to within 0.1% is achieved after only a few iterations, but it does 
depend on the radiative properties, with solutions for optically thicker media requiring 
more iterations. 

Note that in practice the spectral solution is obtain only at discrete wavelengths, 
and is commonly referred to as the "picket fence" model. In this model the spectral 
properties and blackbody function are assumed to be constant over a small wavelength 
interval, AX, and each spectral quantity is integrated over this interval. For example, 
the subscript X in the formula above is replaced by integer subscript i, where for 
example 

X;+AA 
$7; = J 9xdX. (VI.30) 

A;-AA 

Similar discretization of X is effected for all spectral quantities, and Eq. (VI.29) 
becomes a system of integro-differential equations for the spectral radiance I i ( x ,  p) .  
Note that Ozisik [35](p.302) mistakenly suggests that this system of equations can be 
solved once for Ii and then Eq. (VI.28) can be used to find T .  As shown here, f; also 
depends on T and thus, in general, T is implicit in the system of equations. 

Further simplification of Eq. (VI.29) is possible if one assumes that the scattering 
is isotropic, or that the scattering can be modeled as a combination of isotropic plus 
forward scattering. This latter approach requires replacing the radiative properties 
with effective radiative properties as discussed in Section VI.l, and is used throughout 
this analysis. For isotropic scattering one obtains 

(VI.31) 

This equation is readily solved using the discrete ordinates technique described in 
Appendix E. 

Again, the gas for this analysis is assumed to be at atmospheric pressure with COz 
and H 2 0  being the only radiatively active gases with partial pressures of 0.16 atm 
and 0.06 atm, respectively. The gas spectral properties are again taken from Ludwig, 
et.al. [2], and are computed at each position, x, in the layer using the local temperature 
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T ( z ) .  Once again the wavelength space is divided into 200 equal intervals in logX 
space but the range is extended through the visible and far infrared to include the 
range 0.1 5 X 5 30pm. Ash properties outside the measured range are extrapolated 
by assuming they are constant outside the range of measurement. This discretization 
of the broad wavelength range was found to provide ample resolution to model the 
narrow band results of Ludwig, et.al. 

The extension of the wavelength range into the visible portion of the spectrum 
was found to be necessary for accurate calculation of the blackbody fraction at the 
higher temperatures (2000 K). While at 1500 K the blackbody fraction at wavelengths 
shorter than 1 pm is only 1.3%, at 2000 K approximately 6.7% of the total blackbody 
power is at wavelengths shorter than 1 pm. While this fraction is still small enough 
that uncertainties in the radiative properties at X < l p m  do not significantly affect 
the total (wavelength integrated) results, neglecting this spectral range unnecessarily 
skewed the spectral heat flux. Extension of the spectral range from 13 pm to 30 pm 
has almost no effect on the results, since less than 0.7% of the blackbody power is 
at wavelengths longer than 1 pm at 2000 K, and less than 4.5% is at wavelengths 
longer than 13 pm at 1000 K. Nevertheless, the additional spectral range did not 
significantly reduce the spectral resolution since divisions were in equal increments of 
In X (only 29 of the 200 wavelength bands were at wavelengths longer than 13 pm). 

As described in Section VI.4, the Upper Freeport and Kentucky #9 ashes have 
Planck mean extinction coefficients that span the range of values for all ashes studied 
here: therefore calculations are only presented for those two ashes. 

The temperature distribution for a planar layer of gas and ash was computed for 
several loadings of ash. The results for a 10 m layer of gas plus Upper Freeport ash is 
illustrated in Fig. VI.10. As expected, the temperature gradient through the medium 
increases as the ash loading increases, but the effect is not particularly large. For 
example, the temperature distribution through the medium for a coal with 20% by 
mass of ash (Cv .1500  - 2 x will be within approximately f l O O  K of that for 
the same medium without ash. Of course, this calculation assumes the boundaries 
are maintained at the same temperatures (1000 K and 2000 K )  independently of the 
heat flux across the layer. 

The most significant effect of ash addition is to reduce the heat flux. Figure VI.ll 
shows the spectral heat flux through the planar layer with various loadings of Upper 
Freeport ash. Clearly, for the assumed boundary temperatures, most of the radiative 
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Figure VI.10: Effect of ash loading on the temperature distribution 
through a planar layer of ash plus CO:! and H20 .  

flux is at  wavelengths shorter than 4 pm and longer than 0.6 pm, while the peak 
spectral flux is at  a wavelength of approximately 1.5 pm. In addition, the peak flux is 
decreased by a factor of almost four due to addition of 20% ash (C,,1500 - 2 x 

The effect of this decrease in heat flux will be very significant in a real combustor 
w i t h  gas flow. The coal combustion products will cool nearly four times more slowly 
as a result of radiation screening due to scattering by the ash. This is the principal 
reason why, for the same heat release, pulverized coal combustors have to be much 
larger than those burning oil or gas. 
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Figure VI.11: 
distribution through a planar layer of ash plus C02 and H20.  

Effect of ash loading on the spectral heat flux 

The integrated total heat fluxes for two layer thicknesses and for two different ash- 
es (Upper Freeport and Kentucky#9) are shown in Fig. VI.12. Here the dimensionless 
flux, 

(VI .32)  

is defined for black walls at temperature To and TI .  As expected, addition of ash 
decreases the total heat flux through the medium. Figure VI.12 also shows that the 
Upper Freeport ash consistently reduces the heat flux more than the Kentucky#9 ash. 

187 



This difference can be attributed to the larger scattering coefficient of the finer, more 
broadly distributed Upper Freeport ash. The effect is not substantially attributabIe 
to differences in Mie scattering (e.g., scattering efficiency), but simply that there 
are many more Upper Freeport particles per unit mass of ash than there are for 
Kentucky #9. Most ash particles have a scattering efficiency, QS, of approximately 
2 or so in the 1-2 pm wavelength range, but the scattering coefficient is proportional 
to Q9/ 032, and distributions with larger particles and/or broader size distributions 
(such as Upper Freeport) have larger 0 3 2  (e.g., See Eq. (V.34)). 

1-01 I I I I I I I I I I I I I I 1 I I I I 1 

0 5 10 15 20 

Figure VI.12: Effect of ash loading on the total radiative heat flux 
through a planar layer of ash plus CO:! and HzO. 
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The effect of ash loading on the heat flux is qualitatively similar to the effect of 
increasing the optical depth of a gray medium. In a gray medium the dimensionless 
heat flux, Q, between black walls at temperatures To and TI is approximately [35] 

Q(70) = - 4’3 , (70 - 0 0 )  
Y + 70 

(vr.33) 

in the limit of large optical depth, 70 = PL -+ 00. Here the constant y N 1.42089. 
An approximate empirical fit to the exact solution for Q(r0) for a gray medium is 

Q ( 7 o )  - 4’3 + 0.06162 exp( -470) 
y + 70 

(VI.34) 

Now one can calculate an effective optical depth, such that the dimension- 
less heat flux Q(qgas) equals the result from the spectral calculation for a medium 
with prescribed thickness with only the participating gas (no ash). For L = 3m we 
find 0.163 and for L = 10m we find z 0.280. For purposes of this 
analysis, suppose the optical depth of the gas plus ash is 

(V1.35) 

where p p  is the Planck mean extinction coefficient for the ash. The radiation 
being extinguished is predominantly that from the hot wall at 2000 K; thus P p  is 
evaluated at 2000 K. By contrast, the gas temperature is between 1000 and 2000 K 
across the layer; thus C, will be evaluated at 1500 K,  which is reasonably close to 
the average medium temperature. This distinction between the temperature of the 
incident radiation that is being scattered and absorbed by the medium and the average 
temperature which determines the volume fraction of particles is significant, and it 
is not clear that the best choices have been made here. However, for the purposes of 
this discussion, these choices are satisfactory. 

For a given ash loading, one can compute the optical depth from Eq. (VI.35). 
Figure VI.13 compares Q from the full spectral calculation with that from this 
simplified model for the optical depth. The light dashed line shows the gray solution 
Q ( Q )  from Eq. (VI.34). The agreement is very good, confirming the notion that the 
primary effect of adding ash is fundamentally the same as increasing the optical depth 
of the layer. 
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Figure VI.13: Effect of ash loading on the total radiative heat 
flux through a planar layer of ash plus CO2 and H 2 0  versus the 
approximate optical depth of the layer. 
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Chapter VII. 

Summary and Conclusions 

An experimental study of the optical constants of molten coal slags has been 
presented. The principal purpose of this work was to improve and extend the database 
on optical constants of coal slags from which one can calculate the effects of fly ash on 
radiative heat transfer in pulverized coal combustors. The measurements quantify the 
effect of composition on the optical constants over a wavelength range from 1-13 pm. 
The range of compositions studied extend the available measurements [ll] to include 
ash particles with much lower Si02 content. These measurements also extend the 
temperature range of Goodwin’s [ 111 measurements to higher temperatures, where 
the slag is molten. Correlations for the complex refractive index, m = n + ik, were 
formulated and fitted to the measured optical constants. The correlations allow one to 
compute n and k for a range of typical ash compositions for the wavelength range from 
1 13 pm and for temperatures to 1600OC. By combining these correlations with the 
size and composition distributions of fly ash samples from representative U.S. coals 
measured by Ghosal [17], the radiative properties of fly ash dispersions were computed 
using hlie theory. Finally, the effects of the fly ash on radiative heat transfer were 
computed for a planar layer of dispersed ash containing the infrared active gases CO;! 
and H :O for both isothermal conditions and for radiative equilibrium. 

The basic approach of this work rests on the observation that the radiative 
properties of fly ash are dependent on the optical constants of the materials that 
constitute fly ash, and that these optical constants (n ,  k) are material properties 
that depend only on the composition and temperature of the material and on the 
wavelength of incident radiation. The optical constants do not depend on the size or 
shape of fly ash particles. 

Another important observation that justifies the approach adopted here in prac- 
tice is that the vast majority of fly ash particles are closely spherical and glassy (Le., 

homogeneous and isotropic) because they are formed by the quenching of liquid slag 
droplets. Therefore, it is valid to use standard Mie theory to calculate the radiative 
properties of dispersions of such particles from measurements of the size and com- 
position distributions for the fly ash in question. It should also be pointed out that 
even for particles that are not spherical and homogeneous (e-g., cenospheres), it is 
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necessary to know the optical constants to estimate the scattering properties of such 
particles. 

To study the effect of composition on the optical constants, synthetic slags were 
produced in a furnace at approximately 1600°C. The technique consisted of mixing 
pure oxides (Si02, Al2O3, CaO, and Fe203) in precise amounts and melting them in 
the furnace. Electron microprobe measurements were made to quantify the resulting 
slag compositions. 

Once a slag of known composition was produced, it was remelted in the furnace 
and its optical constants were measured. An infrared imaging and detection system 
was developed that allowed measurement of either the transmittance or the near- 
normal reflectance of the molten slag. At wavelengths shorter than approximately 
5 pm the slags are relatively transparent ( I C  5 and a transmittance technique 
was used to measure the absorption index, I C .  In this technique a platinum mirror 
was submerged below the molten surface of the slag inside the electric furnace. 
The absorption index, k, was determined directly from double pass transmission 
measurements while precisely varying the depth of slag above the mirror. At longer 
wavelengths the absorption of slag is very high and the submerged reflector technique 
described above is unable to produce films thin enough to allow transmittance 
measurements. Therefore, near-normal reflectance measurements were made and the 
Kramers-Kronig relations were used to determine n and k. 

The results were generally as expected from the earlier work of Goodwin. In the 
wavelength range below 4 pm the absorption index, I C ,  depends on the Fez03 content 
of the slag. Increasing the Fe2O3 content generally increases I C .  The temperature 
dependence of k in this wavelength range generally agrees with the trends found 
in Goodwin’s [ l l]  measurements of k at lower temperatures. For slag produced in 
an  oxidizing environment (e.g., air), k increases with increasing temperature in the 
1-4 pm range. 

At wavelengths in the range from 7-10 pm the absorption index is predominantly 
determined by the concentration of Si02 in the slag, and is attributable to Si-0-Si 
vibrational absorption. Compared to the Si02 absorption band seen in lower tem- 
perature slags and Si02 glasses, this absorption band for molten slag was broadened 
and shifted to somewhat longer wavelengths. A single damped harmonic oscillator 
(Lorentz oscillator) fitted the data reasonably well with errors n - nfit and k - kfit 
typically within fO.l .  
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In the wavelength range from approximately 5-8 pm the absorption index was 
not measured in this study. In this range k is too large to measure using the 
transmittance apparatus, and too small to compute from the Kramers-Kronig analysis 
of reflectance measurements. However, an empirical fit based on a two-phonon 
model of the absorption index was developed using data from Goodwin’s lower 
temperature measurements of transmittance of thin wafers. This correlation matched 
the transmittance results at shorter wavelengths very well. 

The real refractive index was typical of alumino-silicate glasses, with n - 1.6 
at 1 pm and decreasing with increasing wavelength until reaching a minimum near 
7-9 pm, where n - 1 was typically small or negative. This region of normal dispersion 
was fitted very well by a mixture rule that used the composition and density of the 
material to predict n. In the 8-13 pm region the Lorentz oscillator model for the 
optical constants fitted the measured values as discussed above. 

Once correlations for the optical constants were formulated, a computer code was 
developed to compute the optical constants over the wavelength range from 1-13 pm 
for a broad range of compositions. Composition distributions for five real ashes I171 
were used to compute these optical constants distributions. The resulting n and 
k distributions were combined with size distribution data for these ashes and Mie 
theory was used to compute the scattering and absorption properties for dispersions 
of the various ashes in a transparent gas. These results were combined with estimates 
of typical ash loadings in coal combustors and radiative properties were computed. 
Specifically, the spectral scattering coefficient, tq, absorption coefficient, a ~ ,  and 
scattering phase function,@x, for typical ash dispersions were computed. A simplified 
scattering phase function consisting of isotropic plus forward scattered components 
was used to simplify the subsequent radiative transfer calculations. 

The radiative properties of several fly ash distributions were computed. In 
the wavelength range from 1-4 pm the ash dispersion behaves predominantly as 

a scattering medium, with scattering albedo wx = q / ( a x  + ax) 2 0.95. In the 
wavelength range from 8-13 pm the ash is a good absorber, with wx < 0.4. For 
ashes with similar compositions and the same volumetric loading, the extinction 
coefficient, /3x = ax + q, is larger for dispersions with smaller particles and/or a 
broader distribution of sizest . This increase in is primarily due to the fact that 

t Note that Ghosal found that ashes with smaller area median diameters typically also had 
broader size distributions. 
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for typical ash particle sizes of interest the particle size parameter, x = TD/X, is of 
order unity or larger; thus the scattering efficiency, Qs,  for such particles typically 
varies slowly with x about the value Qs + 2. Therefore, the scattered power for 
a uniform incident power flux (power/area) is roughly proportional to the surface 
area of all the particles (- D 2 ) .  An ash dispersion with a broader range of particle 
sizes or with a smaller mean size has a larger total surface area per unit volume of 
ash (;.e., smaller & 2 ) ,  hence a larger scattering coefficient (OX - &s/&2) .  At the 
long wavelengths where absorption is strong (IC5 > 1) the absorption by a particle 
is also roughly proportional to its surface area. At shorter wavelengths where Ex is 
small, the absorption coefficient is proportional to the volume of the particles, but 
this absorption contributes only a small part to the total extinction. 

The effects of particle-to-particle composition variations on the radiative proper- 
ties of an ash dispersion were also studied. It was found that only small errors were 
introduced by neglecting such composition variations and instead using mean ash 
compositions to estimate the optical constants. However, for ashes with higher Fez03 
content, neglect of the particle to particle variations in Fe2O3 content causes slight 
underprediction of the absorption efficiency ( Q a )  in the 1-4 pm wavelength range. 
Most of this effect is attributable to the approximately second order dependence of IC 
on  the iron content (Fe2O3) of the slag. 

Representative radiative transfer calculations were made for dispersions of ash in 
a combustion products gas mixture containing C02 and H 2 0  for both an isothermal 
medium and for one in radiative equilibrium. The geometry was limited to a one- 
dimensional planar layer for simplicity. For an isothermal medium the fly ash increases 
the total emittance of the slab and decreases the total transmittance as compared to 
the same slab without the  ash. The increase in emittance was primarily due to 
emission by the ash in the 1-5 pm wavelength range. In this range the emission by 
the ash increases with increasing Fe2O3 content. The decrease in transmittance due 
to scattering by added fly ash was significantly larger than the corresponding increase 
in emittance. For high ash loadings the transmittance of a 3 m slab of gas and ash 
could be as low as 40%, compared to approximately 70% for the same slab without 
ash. 

A second radiation transfer calculation was made to study the effect of ash on 
heat transfer between black boundaries at  fixed temperatures. In this calculation 
the ash temperature was computed by assuming that the medium was in radiative 
equilibrium. That is, the only mode of heat transfer through the medium is via 
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radiative transfer. The results showed that high ash loadings decrease the heat 
transfer between the walls by as much as a factor of 2-3, and that even moderate 
levels of ash loading significantly reduced the heat transfer. 

The measurements and calculations presented in this study provide a basis 
for a more detailed and accurate understanding of radiative heat transfer in coal 
combustors. It has been demonstrated that the effects of particle composition, 
size distribution, and loading can be computed. Other applications, including 
development of improved diagnostics for gas temperature, ash loading, or particle 
size distribution may also benefit from this work. 

There are several issues which remain unresolved and could benefit from addi- 
tional research. Perhaps the most serious uncertainty in the procedures outlined here 
for computing the radiative properties of ash dispersions from optical constant is the 
presence of cenospheric particles. Ghosal [17] has deduced from density classification 
the fraction of non-solid particles in fly ash samples from six U.S. coals. Some sam- 
ples (e.g., San Miguel ash) contain a very large mass fraction (97%) of particles with 
density less than 2.2g/cm3, indicating that such particles had internal voids. Ashes 
with large fractions of such particles also tend to have very large particle sizes, with 
volume median diameters in the range from 20 to 40 pm common [17]. Further study 
of the effect of these non-solid particles on the radiative properties of ash dispersions 
is warranted. 

Direct measurement of the radiative properties under well controlled laboratory 
condictions to confirm the calculations presented here would also be desirable; how- 
ever, an issue that remains unresolved is how one can produce a suitably uniform 
dispersion of unagglomerated ash particles in a hot gaseous medium which is trans- 
parent to infrared radiation. During combustion the ash loading is low enough that 
particles do not significantly agglomerate; however, once the particles are collected 
(e.g., in a baghouse) the smaller ones tend to  stick to the larger ones. When the 
particles are subsequently dispersed through sonic nozzles or other techniques it is 
found that one cannot completely separate the particles - small particles continue 
to stick to larger ones. Ghosal [17] overcame this problem by dispersing ashes in 
a liquid and providing continuous aggitation, but then one measures the refractive 
index relative to the liquid and at low temperature. The agglomeration problem 
can be overcome by performing direct measurement3 in a coal combustor [14], but 
complications due to radiation from the infrared active gases, soot, and char, and the 
scattered emission from hot regions of the furnace, along with many other practical 
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difficulties of making precise optical measurements in such a hostile environment, 
make such measurments very difficult and subject to great uncertainties. 

Finally, while this work has presented some representative thermal radiation 
transfer calculations for an ideal geometry and conditions, the correlations and 
radiative properties given here should allow one to  extend these calculations to more 
specific three dimensional geometries of interest to designers of coal combustors, 
taking account of heat release, flow, and other real factors such as slag and ash 
coated walls. In connection with such slag coatings, it should be noted that insofar as 
they are compacted solid (or liquid) slag layers (and not loosely compacted fly ash), 
the optical constants data represented here are of direct value in calculating radiant 
transfer through the layers. 
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Appendix A. 

Tabulated Optical Properties of Molten Coal Slags 

This appendix contains tables of results for the transmittance measurements, 
reflectance measurements and the computed real and imaginary refractive indices ( n  
and IC) for the nine slags studied in this work. The first three tables (A.l-A.3) contain 
the results of transmittance measurements. The last nine tables (A.4-A.12) contain 
the results of near normal reflectance measurements and the resulting n and IC found 
through the Kramers-Kronig analysis presented in Chapter 11, Section 11.2.2. 

Table A.l: Absorption index of molten slag SAO1. 

A ( P )  
1 .o 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2 .o 
2.1 
2.2 

k 
4.50 x10-5 
4.11 x10-5 
4.83 x io -5  
4.44 x10-5 
4.08 x10-5 
3.99 x10-5 
3.97 x10-5 
3.96 x10-5 
4.09 x10-5 
3.91 x10-5 

U r n )  
2.3 
2.4 
2.6 
2.8 
3.0 
3.2 
3.4 
3.6 
3.8 
4.0 
4.2 
4.6 

k 
3.98 x10-5 
3.88 x10-5 
3.76 x10-5 
6.40 x10-5 
6-27 x10-5 
6.32 x10-5 

9.44 X ~ O - ~  

1.44 x10-4 
2.04 x10-4 

6.88 xlO-' 

3.51 x10-4 
1.05 x10-3 
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Table A.2: Absorption index of molten slag SA05 

Ycrm) 
1 .o 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 
2.2 
2.4 

k 
3.09 x10-4 
3.15 x10-4 

3.63 x10-4 
3.42 x10-4 

3.46 x10-4 
3.51 x10-4 
3.17 x10-4 
2.88 x10-4 
3.25 x10-4 

3.07 x10-4 

3.23 x10-4 
3.30 x10-4 
3.29 x10-4 

Ycrm) 
2.6 
2.8 
3.0 
3.2 
3.4 
3.6 
3.8 
4 .O 
4.2 
4.4 
4.6 
4.8 
5.0 

k 
3.16 x10-4 
3.51 x10-4 
3.31 x10-4 
3.32 x10-4 

3.28 x10-4 

3.48 x10-4 
3.88 x10-4 
4.89 x10-4 

6.09 x10-4 

8.39 x10-4 

1.29 x 10-3 
1.72 x 10-3 
2.72 x10-3 

Table A.3: Absorption index of molten slag SA4S. 

. 
w - n )  k 

1 .o 1.50 x10-4 
1.1 1.46 x10-4 
1.2 1.42 x 10-4 
1.3 1.38 x 10-4 
1.4 1.29 x10-4 

1.5 1.28 x10-4 
1.6 1.19 x 10-4 
1.7 1.20 x10-4 

1.8 1.17 x10-4 
1.9 1.22 x10-4 
2.0 1.17 x10-4 
2.1 1.17 x10-4 
2.2 1.14 x 10-4 
2.3 1.15 x10-4 
2.4 1.16 x10-4 

2.5 1.24 x 10-4 
2.6 1.25 x 10-4 
2.7 1.22 10-4 
2.8 1.36 x10-4 
2.9 1.43 x10-4 
3.0 1.40 x10-4 
3.1 1.41 x10-4 

w n )  
3.2 
3.3 
3.4 
3.5 
3.6 
3.7 
3.8 
3.9 
4.0 
4.1 
4.2 
4.4 
4.5 
4.6 
4.7 
4.8 
4.9 
5.0 
5.1 
5.2 
5.3 

k 
1.41 x10-4 
1.41 x10-4 
1.48 x10-4 
1.54 x10-4 
1.59 x10-4 

1.71 x10-4 
1.85 x10-4 
1.92 x10-4 
2.03 x10-4 
2.33 x10-4 
2.66 x10-4 

3.89 x10-4 

4.51 x10-4 
6.17 x10-4 
8.01 x10-4 

1.04 x 10-3 
1.39 x10-3 
1.83 x10-3 
2.14 x10-3 
2.68 x10-3 
3.41 x10-3 
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Table A.4: Molten slag SA00 

- 
4P-n) - 

1.10 
1.20 
1.30 
1.40 
1.50 
1.60 
1 .a0 
2.00 
2.20 
2.40 
2.60 
2.80 
3.00 
3.20 
3.40 
3.60 
3.80 
4 .OO 
4.20 
4.40 
4.60 
4.80 
5.00 
5.20 
5.40 
5.60 
5.80 
6.00 
6.20 
6.40 
6.60 
6.80 
7.00 
7.20 
7.40 
7.60 
7.70 

R 
4.207 X ~ O - ~  
4.203 xlO-' 
4.212 xlO-' 
4.165 xlO-' 
4.124 ~ 1 0 ~ '  
4.155 xlO-' 
4.079 xlO-' 
4.043 xlO-' 
4.015 xlO-' 
4.014 xlO-' 
3.987 xlO-' 
3.888 xlO-' 
3.853 xlO-' 
3.851 xlO-' 

3.741 xlO-' 
3.677 xlO-' 
3.589 xlO-' 
3.463 xlO-' 
3.321 xlO-' 
3.298 xlO-' 
3.208 xlO-' 
3.091 xlO-' 
2.967 xlO-' 
2.868 x ~ O - ~  

3.795 x10-2 

2.719 x ~ O - ~  
2.589 xlO-' 
2.515 x ~ O - ~  
2.341 x ~ O - ~  
2.217 xlO-' 
1.995 xlO-' 
1.813 xlO-' 
1.608 x ~ O - ~  
1.371 x lo-' 
1.131 xlO-' 
8.622 x ~ O - ~  
7.385 x ~ O - ~  

n k 
1.52 - 

1.52 - 
1.52 - 
1.51 - 
1.51 - 
1.51 - 

1.51 - 
1.50 - 
1.50 - 
1.50 - 
1.50 - 
1.49 - 
1.49 - 
1.49 - 
1.48 - 
1.48 - 
1.47 - 
1.47 - 
1.46 - 
1.44 - 
1.44 - 
1.43 - 
1.43 - 
1.41 - 
1.41 - 
1.39 - 
1.38 - 
1.38 - 
1.36 - 
1.35 - 
1.33 - 
1.31 - 
1.29 - 
1.27 - 
1.24 - 
1.20 - 
1.19 - 

GT - 
7.80 
7.90 
8.00 
8.10 
8.20 
8.30 
8.40 
8.50 
8.60 
8.70 
8.80 
8.90 
9.00 
9.10 
9.20 
9.30 
9.40 
9.50 
9.60 
9.70 
9.80 
9.90 

10.00 
10.20 
10.40 
10.60 
10.80 
11.00 
11.20 
11.40 
11.60 
11.80 
12.00 
12.20 
12.40 

- 

12.60 

5.940 XIO-3 

4.754 x10-3 
3.738 ~ 1 0 ' ~  
3.158 x ~ O - ~  
3.403 ~ 1 0 ' ~  
5.070 x ~ O - ~  
8.852 ~ 1 0 ' ~  
1.578 ~ 1 0 ' ~  
2.568 xlO-' 
3.784 xlO-' 
5.155 ~ 1 0 ' ~  
6.471 x10" 
7.648 x10" 
8.738 ~10 ' '  
9.684 ~10 ' '  
1.064 x10-' 
1.140 x10" 
1.211 x10-' 
1.271 x10" 
1.316 x10" 

1.16 - 
1.14 - 
1.11 - 
1.08 - 
1.05 1.09 x10-' 
1.02 1.43 x10-l 
0.99 1.87 x10-' 
0.96 2.44 x10-' 
0.94 3.10 x10-l 
0.94 3.80 x10-I 
0.95 4.53 x10-l 
0.98 5.20 x1O-I 
1.01 5.79 x10-1 
1.05 6.33 x10-l 
1.10 6.79 x10-l 
1.15 7.24 x10-' 
1.20 7.60 x10-' 
1.26 7.92 x10-' 
1.33 8.16 x10-l 
1.39 8.31 x10-l 

1.346 x10" 1.46 
1.368 x10" 1.52 
1.384 x 10" 1.59 
1.374 x10" 1.70 
1.334 x 10" 1.79 
1.298 x10" 1.84 
1.252 x10" 1.88 
1.194 x 10" 1.90 
1.142 x10" 1.90 
1.096 x10" 1.90 
1.032 x10" 1.89 
9.589 ~ 1 0 ' '  1.85 
9.038 xlO-' 1.82 
8.542 ~ 1 0 ' ~  1.79 
8.164 ~10 ' '  1.77 
7.905 ~ 1 0 ' ~  1.75 

8.35 x10-' 
8.32 x1O-I 
8.21 x1O-I 
7.68 x10-' 
6.94 x10-l 
6.22 x10-l 
5.44 x10-1 

14-69 x10-1 
4.05 x10-l 
3.46 x10-' 
2.86 x10-' 
2.44 x10" 
2.21 x10-1 
2.07 x10-' 
2.02 x10-1 
2.04 x10-I 
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Table A.5: Molten slag SA01 

V w )  - 
1.10 
1.20 
1.30 
1.40 
1.50 
1.60 
1.80 
2.00 
2.20 
2.40 

R n k 
4.333 xlO-' 1.53 - 
4.318 ~ 1 0 ~ '  1.52 - 
4.287 x ~ O - ~  1.52 - 
4.331 x ~ O - ~  - 
4.299 x ~ O - ~  1.52 - 

4.328 xlO-' 1.52 - 
4.245 xlO-' 1.52 - 
4.191 x ~ O - ~  1.51 - 
4.151 xlO-' 1.51 - 

1.53 

4.384 x ~ O - '  1.53 - 

2.60 
2.80 
3.00 
3.20 
3.40 
3.60 
3.80 
4.00 
4.20 
4.40 
4.60 
4.80 
5 .OO 
5.20 
5.40 
5.60 
5.80 
6.00 
6.20 
6.40 
6.60 
6.80 
7.00 
7.20 
7.40 
7.60 
7.70 

4.077 xlO-' 
3.964 xlO-' 
3.972 x ~ O - ~  
3.930 x ~ O - ~  
3.871 x ~ O - ~  
3.804 xlO-' 
3.742 x ~ O - ~  
3.706 x ~ O - ~  
3.564 x ~ O - ~  
3.430 x ~ O - ~  
3.412 x ~ O - ~  
3.319 x ~ O - ~  
3.195 x ~ O - ~  
3.068 x ~ O - ~  
2.988 x ~ O - ~  
2.871 xlO-' 
2.751 x ~ O - ~  
2.659 x I O - ~  
2.511 x ~ O - ~  
2.288 x ~ O - ~  
2.125 xlO-' 
1.922 xlO-' 
1.738 x 
1.485 x 
1.234 xlO-' 
9.494 x10-3 
8.109 x10-3 

1.50 - 
1.50 - 
1.50 - 
1.49 - 
1.49 - 
1.48 - 
1.48 - 

1.48 - 
1.46 - 
1.45 - 
1.45 - 
1.44 - 
1.43 
1.42 - 
1.42 - 
1.41 - 
1.40 - 
1.39 - 
1.38 - 
1.36 - 
1.34 - 
1.32 - 
1.30 - 
1.28 - 
1.25 - 
1.21 - 
1.20 - 

- 

wn) R n 

7.80 6.737 x ~ O - ~  1.17 
7.90 5.404 x 1.15 
8.00 4.300 x 1.13 
8.10 3.527 x ~ O - ~  1.10 
8.20 3.425 x ~ O - ~  1.06 
8.30 4.696 x ~ O - ~  1.03 

8.50 1.379 x ~ O - ~  0.97 
8.60 2.264 x ~ O - ~  0.95 
8.70 3.430 x ~ O - ~  0.95 

8.40 7.775 x10-3 1.00 

8.80 4.724 xlO-' 0.96 
8.90 6.056 xlO-' 0.98 
9.00 7.234 xlO-' 1.01 
9.10 8.353 xlO-' 1.05 
9.20 9.356 x ~ O - ~  1.09 

k 
- 
- 
- 
- 

1.03 x10-' 
1.36 x10-' 
1.77 x10-' 
2.31 x10-' 
2.94 x10-' 
3.63 x10-' 
4.33 x10-' 
5.01 x10-l 
5.61 x10-' 
6.16 x10-' 
6.64 x10-' 

9.30 1.032 x10-l 1.14 
9.40 1.105 x10- l  1.19 
9.50 1.180 x10-' 1.24 
9.60 1.247 x10- l  1.30 
9.70 1.301 x10-' 1.36 
9.80 1.332 x10- l  1.43 
9.90 1.365 x10- l  1.49 

10.00 1.378 x lo- '  1.56 
10.20 1.384 x10-' 1.67 
10.40 1.360 x10" 1.75 
10.60 1.336 x10- l  1.82 
10.80 1.309 x10-l 1.88 
11.00 1.255 x10-' 1.91 
11.20 1.207 x10-l 1.92 
11.40 1.156 x10-' 1.92 

7.10 x10-' 
7.45 x10-' 
7.79 x10-' 
8.07 x10-' 
8.27 x10-l 
8.34 x10-' 
8.38 x10-' 
8.28 x10-l 
7.91 x10-* 
7.32 x10-' 
6.70 x10-' 
6.01 x10-' 
5.23 x10-' 
4.55 x10-' 
3.89 x10-' 

11.60 
11.80 
12 .oo 
12.20 
12.40 
12.60 
- 

9.704 x ~ O - ~  
9.177 x ~ O - ~  

3.29 x10-' 
2.82 x1O-I 
2.49 x10-' 
2.27 x10-' 
2.15 x10-' 
2.12 x10-' 

I I 
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Table A.6: Molten slag SA05 

- 
U r n )  - 

1.10 
1.20 
1.30 
1.40 
1.50 
1.60 
1 .a0 
2.00 
2.20 
2.40 
2.60 
2.80 
3.00 
3.20 
3.40 
3.60 
3.80 
4.00 
4.20 
4.40 
4.60 
4.80 
5.00 
5.20 
5.40 
5.60 
5.80 
6.00 
6.20 
6.40 
6.60 
6.80 
7.00 
7.20 
7.40 

- 

- 

- 

7.60 
7.70 - 

R 
4.356 x ~ O - ~  
4.359 x10-2 
4.359 x10-2 
4.327 x ~ O - ~  
4.258 x ~ O - ~  

n k 
1.53 - 
1.53 - 
1.53 - 
1.53 - 
1.52 - 

4.265 xlO-' 1.52 - 
4.267 x ~ O - ~  1.52 - 
4.223 x ~ O - ~  1.52 - 
4.203 x ~ O - ~  1.52 - 
4.195 xlO-' 1.51 - 
4.207 x ~ O - ~  1.52 - 
4.086 xlO-' 1.51 - 
4.068 x ~ O - '  1.50 - 
3.993 x ~ O - '  1.50 - 
3.966 x ~ O - '  1.50 - 

3.947 ~ 1 0 ' ~  1.50 - 
3.853 x ~ O - '  1.49 - 
3.813 xlO-' 1.48 - 
3.716 x ~ O - ~  1.48 - 
3.510 x ~ O - '  1.46 - 
3.499 x ~ O - ~  1.46 - 
3.422 xlO-' - 
3.302 xlO-' - 
3.192 x10" - 
3.078 xlO-' - 
2.936 xlO-' - 
2.838 xlO-' - 
2.700 x ~ O - ~  - 
2.623 xlO-' - 
2.426 xlO-' - 
2.222 x10-2 - 
2.057 xlO-' - 
1.847 x lo-' - 
1.601 xlO-' - 
1.342 x ~ O - ~  - 
1.084 y l O - '  - 
9.441 - 

1.45 
1.44 
1.43 
1.42 
1.41 
1.40 
1.39 
1.39 
1.37 
1.35 
1.33 
1.31 
1.29 
1.26 

- 

- 

1.23 
1.21 

GT - 
7.80 
7.90 
8.00 
8.10 
8.20 
8.30 
8.40 
8.50 
8.60 
8.70 
8.80 
8.90 
9.00 
9.10 
9.20 
9.30 
9.40 
9.50 
9.60 
9.70 

- 

- 

- 

9.80 
9.90 

10.00 
10.20 
10.40 
10.60 
10.80 
11 .oo 
11.20 
11.40 
11.60 
11.80 
12.00 
12.20 
12.40 
12.60 

- 

- 

- 
- 

R I n  

6.527 x ~ O - ~  1.17 
5.214 ~ 1 0 " ~  1.15 
4.233 ~ 1 0 ' ~  1.12 
3.649 ~ 1 0 ' ~  1.09 
4.214 ~ 1 0 ' ~  1.06 
6.353 x ~ O - ~  1.02 
1.085 x10" 1.00 
1.850 x ~ O - ~  0.97 
2.826 x ~ O - ~  0.97 
4.065 x ~ O - ~  0.97 
5.280 xlO-' 0.99 
6.479 ~ 1 0 ' ~  1.02 
7.529 ~ 1 0 ' ~  1.05 
8.558 x ~ O - ~  1.09 
9.450 ~ 1 0 ' ~  1.14 
1.031 x10" 1.19 
1.093 x 10'' 1.24 
1.170 x lo- '  1.30 
1.219 x10-l 1.36 
1.261 x10" 
1.282 x10" 
1.316 x10" 
1.326 x1O-I 
1.310 x10" 
1.291 x10" 
1.273 x10-' 
1.222 x10-1 
1.197 x10" 
1.148 x10" 
1.087 x10" 
1.014 x10-' 
9.640 x10'* 
9.024 x10'' 
9.604 ~ 1 0 ' ~  
9.253 ~10 ' '  

1.42 
1.48 
1.54 
1.65 
1.73 
1.80 
1.85 
1.88 
1.91 
1.92 
1.91 
1.88 
1.85 
1.82 
1.79 
1.77 

k 
- 
- 
- 
- 

9.18 x10-2 
1.22 x10-' 
1.60 x10-l 
2.09 x10-' 
2.70 x10-' 
3.34 x10-1 
4.05 x1O-I 
4.70 x10-' 
5.31 x10-' 
5.83 x10-' 
6.33 x10-' 
6.75 x10-' 
7.15 x10-1 
7.42 x10-l 
7.74 x10-' 
7.91 x10-l 
8.02 x10-' 
8.01 x10-' 
8.03 x10-* 
7.67 x10-' 
7.14 x10-l 
6.57 x10-l 
5.94 x10-1 
5.21 x1O-I 
4.63 x10-l 
3.92 x1O-I 
3.28 x1O-I 
2.79 x10-' 
2.47 x10" 
2.23 x10" 
2.14 x10-' 
2.12 x10" 
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Table A.7: Molten slag SA10 

1.20 
1.30 
1.40 
1.50 
1.60 
1.80 
2.00 
2.20 
2.40 

~ 4.830 x lo- ’  
4.802 X ~ O - ~  
4.760 x ~ O - ~  
4.753 x10-2 
4.737 x10-2 
4.649 xlO-’ 
4.615 xlO-’ 
4.558 xlO-’ 
4.542 x ~ O - ~  

2.60 
2.80 
3.00 
3.20 
3.40 
3.60 
3.80 
4.00 
4.20 
4.40 3.846 X ~ O - ~  
4.60 3.838 x ~ O - ~  
4.80 3.734 X ~ O - ~  
5.00 3.622 x ~ O - ~  
5.20 3.474 x I O - ~  
5.40 3.357 x ~ O - ~  
5.60 3.248 xlO-’ 
5.80 3.120 x ~ O - ~  
6.00 3.014 x ~ O - ~  
6.20 2.870 x ~ O - ~  
6.40 2.675 xlO-’ 
6.60 2.500 x ~ O - ~  
6.80 2.276 xlO-’ 
7.00 2.107 x ~ O - ~  
7.20 1.836 x ~ O - ~  
7.40 1.584 x ~ O - ~  
7.60 1.283 x ~ O - ~  
7.70 1.134 xlO-’ 

4.498 xlO-’ 
4.384 xlO-’ 

4.336 xlO-’ 
4.253 X ~ O - ~  
4.232 x ~ O - ~  
4.166 xlO-’ 
4.119 xlO-’ 
3.961 ~ 1 0 ’ ~  

4.344 x10-2 

1.56 
1.56 
1.56 
1.56 
1.56 
1.55 
1.55 
1.54 
1.54 
1.54 
1.53 
1.53 
1.53 
1.52 
1.52 
1.51 
1.51 
1.50 
1.49 
1.49 
1.48 
1.47 
1.46 
1.45 
1.44 
1.43 
1.42 
1.41 
1.39 
1.37 
1.35 
1.34 
1.31 
1.29 

1 1.26 
1.24 

- 

- 

k WCrm) 

7.80 
7.90 

- 8.00 
- 8.10 
- 8.20 
- 8.30 

8.40 
- 8.50 
- 8.60 
- 8.70 
- 8.80 
- 8.90 
- 9.00 
- 9.10 
- 9.20 
- 9.30 
- 9.40 
- 9.50 
- 9.60 
- 9.70 
- 9.80 
- 9.90 
- 10.00 
- 10.20 
- 10.40 
- 10.60 
- 10.80 
- 11 .oo 
- 11.20 
- 11.40 
- 11.60 
- 11.80 
- 12.00 
- 12.20 
- 12.40 
- 12.60 

- 
- 

- 

- 

R n 

9.909 x 10-3 1.22 
8.211 x ~ O - ~  1.20 
6.890 x ~ O - ~  1.17 
5.502 x ~ O - ~  1.15 
4.658 x10-3 1.12 
4.495 x10-3 1.09 
5.659 x ~ O - ~  1.06 
9.024 x 1.03 
1.482 x 1.01 
2.349 x ~ O - ~  0.99 
3.408 X ~ O - ~  1.00 
4.585 X ~ O - ~  1.01 
5.756 X ~ O - ~  1.04 
6.706 X ~ O - ~  1.07 
7.733 x10-2 1.11 
8.650 x ~ O - ~  1.15 
9.437 x 10-2 1.20 
1.012 x10-’ 1.24 
1.089 x10-’ 1.30 
1.124 x10-’ 1.35 
1.180 x10-’ 1.41 
1.189 x10-’ 1.46 
1.235 x10-’ 1.51 

1.259 x10-’ 1.69 
1.258 x10-’ 1.76 
1.242 x10-’ 1.81 
1.221 x10” 1.85 
1.189 x10-’ 1.88 
1.153 x10-I 1.89 

1.258 ~ 1 0 - l  . 1.61 

9.510 x ~ O - ~  
9.169 x ~ O - ~  

k 
- 
- 
- 
- 
- 

1.10 x10-’ 
1.45 x10-’ 
1.91 x10-’ 
2.46 x10-’ 
3.09 x1O-I 
3.75 x10-’ 
4.41 x10-’ 
5.02 x1O-I 
5.51 x10-’ 
6.00 x1O-I 
6.43 x1O-I 
6.78 x1O-I 
7.07 x10-’ 
7.39 x10-’ 
7.49 x10-’ 
7.66 x10-’ 
7.60 x10-’ 
7.69 x10- l  
7.45 x10-1 
7.05 x10- l  
6.62 x10- l  
6.08 x10- l  
5.52 x10- l  
4.93 x10-’ 
4.34 x10-’ 
3.78 x1O-I 
3.34 x10-1 
2.97 x10- l  
2.71 x10-’ 
2.58 x10-’ 
2.49 x1O-I 
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Table A.8: Molten slag SA20 

- 
Y P m )  - 

1.10 
1.20 
1.30 
1.40 
1.50 
1.60 
1.80 
2.00 
2.20 
2.40 
2.60 
2.80 
3.00 
3.20 
3.40 
3.60 
3.80 
4 .OO 
4.20 
4 40 
4 60 
4.80 
5 0 0  
5.20 
5 40 
5.60 
5.80 
6.00 
6.20 
6.40 
6.60 
6.80 
7.00 
7.20 
7.40 

- 

7.60 
7.70 - 

R 
5.055 xlO-’ 
5.051 xlO-’ 
5.096 xlO-’ 
5.001 xlO-’ 
4.971 xlO-’ 
5.015 xlO-’ 
5.014 xlO-’ 
4.945 x10-2 
4.893 xlO-’ 
4.862 xlO-’ 

I n  k 
1.58 - 
1.58 - 
1.58 - 
1.58 - 
1.57 - 
1.58 - 
1.58 - 
1.57 - 
1.57 - 
1.57 - 

4.870 X I O - ’  1.57 - 
4.721 xlO-’ 1.55 - 
4.765 x ~ O - ’  1.56 - 
4.677 xlO-’ 1.55 - 
4.623 x ~ O - ’  1.55 - 
4.580 xlO-’ 1.54 - 
4.535 x ~ O - ~  1.54 - 
4.514 x ~ O - ’  1.54 - 
4.383 x ~ O - ’  1.53 - 
4.241 xlO-’ 1.52 - 

4 163 xlO-’ 1.51 - 
4030 ~ 1 0 ’ ~  1.50 - 
3916 x I O - ~  1.49 - 
3 792 xlO-’ 1.48 - 
3.692 xlO-’ 1.47 - 
3.513 x ~ O - ~  1.46 - 
3.449 x ~ O - ~  1.46 - 
3.278 ~ 1 0 ’ ~  1.44 - 

2.908 x10e2 1.41 - 
2.745 xlO-’ 1.40 - 
2.530 xlO-’ 1.38 - 
2.291 x ~ O - ~  1.36 - 
2.019 x ~ O - ~  1.33 - 
1.750 x lo-’ 1.30 - 
1.601 x10-* 1.29 - 

4.247 x I O - ~  1.52 - 

3.096 x ~ O - ~  1.43 - 

X(urn) I R 
~ 

7.80 1.436 x10-* 
7.90 1.278 xlO-’ 
8.00 1.118 xlO-’ 
8.10 9.531 x ~ O - ~  

8.30 6.823 x ~ O - ~  
8.40 6.341 x ~ O - ~  
8.50 7.052 x ~ O - ~  
8.60 9.540 x ~ O - ~  
8.70 1.413 xlO-’ 

8.20 7.993 x10-3 

8.80 2.182 x ~ O - ~  
8.90 2.967 x ~ O - ~  
9.00 3.917 xlO-’ 
9.10 4.814 xlO-’ 
9.20 5.918 xlO-’ 
9.30 6.582 xlO-’ 
9.40 7.507 x ~ O - ~  
9.50 8.049 x ~ O - ~  
9.60 8.917 xlO-’ 
9.70 9.272 x ~ O - ~  
9.80 9.876 xlO-’ 
9.90 1.011 x10-1 

10.00 1.074 x10-l 
10.20 1.114 x10-l 
10.40 1.149 x10- l  
10.60 1.168 x10-’ 
10.80 1.172 x10-l 
11.00 1.161 x1O-I 
11.20 1.163 x10-I 
11.40 1.142 x10-I 
11.60 1.115 x10” 
11.80 1.067 x10-I 
12.00 1.022 x10-1 
12.20 9.876 x ~ O - ~  
12.40 9.525 x ~ O - ~  
12.60 9.272 xlO-’ 

n l  L 
1.27 - 
1.25 - 
1.23 - 
1.21 - 
1.19 - 
1.16 - 
1.13 1.10 x10- l  
1.10 1.45 x10-I 
1.08 1.88 x10-’ 
1.06 2.39 x10-l 
1.05 3.02 x10” 
1.06 3.55 x10-l 
1.07 4.12 x10-l 
1.09 4.61 x10-l 
1.12 5.17 x10- l  
1.16 5.49 x10-’ 
1.20 5.91 x10-’ 
1.24 6.14 x10-’ 
1.28 6.50 x10-l 
1.32 6.61 x10-l 
1.37 6.81 x10-l 
1.41 6.84 x10-l 
1.45 7.04 x10- l  
1.54 6.94 x10-l 
1.61 6.80 x10-l 
1.68 6.52 x10-’ 
1.74 6.15 x10-l 
1.78 5.74 x10-l 
1.82 5.37 x10-’ 
1.85 4.86 x10-’ 
1.86 4.37 x10” 
1.86 3.87 x10-l 
1.85 3.52 x10-l 
1.83 3.27 x10- l  
1.82 3.09 x10-I 
1.80 3.00 x10-’ 
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Table A.9: Molten slag SA4S 

- 
VPm) - 

1.10 
1.20 
1.30 
1.40 
1.50 
1.60 
1.80 
2.00 
2.20 
2.40 
2.60 
2.80 
3.00 
3.20 
3.40 
3.60 
3.80 
4.00 
4.20 
4.40 
4.60 
4.80 
5.00 
5.20 
5.40 

- 

5.60 
5.80 
6.00 
6.20 
6.40 
6.60 - 

R 
5.037 xlO-’ 
5.013 X ~ O - ~  
5.060 xlO-’ 
5.012 xlO-’ 
4.972 xlO-’ 

4.985 xlO-’ 
4.947 x10-2 
4.946 xlO-’ 
4.900 xlO-’ 
4.874 xlO-’ 
4.955 x10-2 
4.761 xlO-’ 
4.763 X ~ O - ~  
4.748 xlO-’ 
4.652 x ~ O - ~  
4.614 xlO-’ 
4.558 x ~ O - ~  
4.481 x ~ O - ~  
4.330 X ~ O - ~  
4.149 x ~ O - ~  
4.218 x ~ O - ~  
4.127 X I O - ~  
4.037 x ~ O - ~  
3.913 x ~ O - ~  
3.823 x ~ O - ~  
3.728 X ~ O - ~  
3.641 x ~ O - ~  
3.526 x ~ O - ~  
3.417 X ~ O - ~  
3.314 xlO-’ 
3.128 ~ 1 0 ’ ~  

n k 
1.58 - 
1.58 - 

1.58 - 
1.58 - 
1.57 - 
1.57 - 
1.57 - 
1.57 - 
1.57 - 
1.57 - 
1.57 - 
1.56 - 
1.56 - 
1.56 - 
1.55 - 
1.55 - 

1.54 - 
1.54 - 
1.52 - 

- 1.51 
1.52 - 
1.51 - 
1.50 - 
1.49 - 
1.49 - 
1.48 - 
1.47 - 
1.46 - 
1.45 - 
1.44 - 
1.43 - 

6.80 2.928 x ~ O - ~  1.41 
7.00 2.767 x lo-’  1.40 
7.20 2.572 xlO-’ 1.38 
7.40 2.352 xlO-’ 1.36 
7.60 2.124 xlO-’ 1.34 
7.80 1.876 x ~ O - ~  1.32 
8.00 1.617 xlO-’ 1.29 
8.20 1.324 xlO-’ 1.26 
8.40 1.025 x ~ O - ~  1.22 
8.60 7.603 x ~ O - ~  1.18 
8.80 
9.00 
9.20 
9.40 
9.60 
9.80 

10.00 
10.20 
10.40 
10.60 
10.80 
11.00 
11.20 
11.40 
11.60 

- 

6.284 x ~ O - ~  
8.450 x ~ O - ~  
1.626 x 
2.995 x ~ O - ~  
4.837 xlO-’ 
6.689 xlO-’ 
8.392 X ~ O - ~  
9.762 X ~ O - ~  
1.080 x10-l 
1.146 x10-1 
1.190 x10-’ 
1.212 x10-’ 
1.233 x10-’ 
1.230 x10” 
1.211 x10-’ 

1.13 
1.09 
1.05 
1.04 
1.07 
1.11 
1.18 
1.27 
1.36 
1.45 
1.53 
1.61 
1.68 
1.74 
1.78 

- 

- 

11.80 
12.00 
12.20 
12.40 
12.60 

1.181 x10-’ 
1.160 x10-’ 
1.118 x10-l 
1.059 x10-l 
1.019 x10-’ 

1.81 
1.84 
1.85 
1.83 
1.82 - 

k 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

1.10 x10-1 
1.72 x10-’ 
2.58 x10-’ 
3.56 x10-’ 
4.61 x10-l 
5.54 x10-1 
6.32 x10-’ 
6.91 x10-l 
7.28 x10-’ 
7.41 x10-l 
7.37 x10-’ 
7.19 x10- l  
6.96 x10-’ 
6.55 x10- l  
6.08 x10-l 
5.59 x10-1 
5.14 x10-’ 
4.62 x10-’ 
4.17 x10-l 
3.90 x10-’ 
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Table A.lO: Molten slag SA2S 

- 
4P-n) - 

1.10 
1.20 
1.30 
1.40 
1.50 
1.60 
1.80 
2.00 
2.20 
2.40 
2.60 
2.80 
3.00 
3.20 
3.40 
3.60 
3.80 
4 .OO 
4.20 
4.40 
4.60 
4.80 
5.00 
5.20 
5.40 
5.60 
5.80 
6.00 
6.20 
6.40 
6.60 

R I n  I k 
5.405 x ~ O - ~  1.61 - 

5.340 x ~ O - ~  1.60 - 
5.387 x ~ O - ~  1.60 - 
5.293 xlO-’ 1.60 - 
5.267 xlO-’ 1.60 - 
5.270 xlO-’ 1.60 - 
5.188 xlO-’ 1.59 - 
5.165 xlO-’ 1.59 - 
5.138 xlO-’ 1.59 - 
5.093 xlO-’ 1.58 - 
5.051 x ~ O - ’  - 1.58 , - 

4.946 xlO-’ 1.57 - 
4.929 x ~ O - ’  1.57 - 
4.894 xlO-’ 1.57 - 

4.823 xlO-’ 1.56 - 
4.792 x ~ O - ’  1.56 - 
4.648 x ~ O - ’  1.55 - 
4.496 xlO-’ 1.54 - 
4.573 xlO-’ - 
4.463 x ~ O - ’  1.53 - 
4.377 x ~ O - ’  1.53 - 
4.245 x ~ O - ’  1.52 - 

- 4.972 xlO-’ 1.57 

4.848 x ~ O - ’  1.56 - 

1.54 

4.149 xlO-’ 1.51 - 
4.049 xlO-’ 1.50 - 
3.944 xlO-’ 1.49 - 
3.871 xlO-’ 1.49 - 
3.750 x ~ O - ’  1.48 - 
3.666 x ~ O - ’  1.47 - 
3.398 x ~ O - ~  1.45 - 

V P m )  R n 
6.80 3.246 x ~ O - ~  1.44 
7.00 3.098 X ~ O - ~  1.43 
7.20 2.980 x ~ O - ~  1.42 
7.40 2.796 xlO-’ 1.40 
7.60 2.581 xlO-’ 1.38 
7.80 2.418 x ~ O - ~  1.37 
8.00 2.222 xlO-’ 1.35 
8.20 1.972 xlO-’ 1.33 
8.40 1.731 xlO-’ 1.30 
8.60 1.476 xlO-’ 1.28 
8.80 1.193 xlO-’ 1.24 
9.00 9.527 x ~ O - ~  1.20 
9.20 8.618 x ~ O - ~  1.17 
9.40 1.020 xlO-’ 1.14 
9.60 1.535 xlO-’ 1.13 
9.80 2.391 xlO-’ 1.13 

10.00 3.426 xlO-’ 1.15 
10.20 4.505 xlO-’ 1.19 
10.40 5.398 x10” 1.23 
10.60 6.210 xlO-’ 1.28 
10.80 6.877 xlO-’ 1.32 
11.00 7.369 x ~ O - ~  1.36 
11.20 7.962 xlO-’ 1.40 
11.40 8.401 xlO-’ 1.45 
11.60 8.733 xlO-’ 1.48 
11.80 9.076 xlO-’ 1.52 
12.00 9.477 xlO-’ 1.56 
12.20 9.700 xlO-’ 1.59 
12.40 9.847 xlO-’ 1.62 
12.60 1.002 x10-’ 1.65 

1 -  1 

k 
- 
- 
- 

- 
- 
- 

- 
- 
- 
- 
- 
- 

1.10 x10-I 
1.65 x10-I 
2.33 x10-I 
3.07 x10-I 
3.75 x10-I 
4.35 x10-I 
4.77 x10-’ 
5.11 x10-I 
5.35 x10-1 
5.49 x l o - ]  
5.68 x10-I 
5.76 x10-I 
5.78 x10-l 
5.82 x10-I 
5.85 x10-’ 
5.77 x10-I 
5.67 x10-I 
5.58 x10-I 
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Table A.ll: Molten slag SAlS 

- 
U r n )  - 

1.10 
1.20 
1.30 
1.40 
1.50 
1.60 
1.80 
2.00 
2.20 
2.40 
2.60 
2.80 
3.00 
3.20 
3.40 
3.60 
3.80 
4 .oo 
4.20 
4 40 
4 60 
4 80 
5 00 
5 20 
5 40 
5 60 
5.80 
6 .OO 
6.20 
6.40 
6.60 

R I n  
5.414 x10-2 
5.432 x ~ O - ~  
5.418 xlO-’ 
5.413 x ~ O - ~  
5.391 xlO-’ 

1.61 
1.61 
1.61 
1.61 
1.60 

5.329 xlO-’ 
5.325 xlO-’ 
5.238 xlO-’ 
5.203 x ~ O - ~  
5.238 xlO-’ 
5.216 xlO-’ 
5.091 x ~ O - ~  
5.130 xlO-’ 
5.062 xlO-’ 
5.031 x ~ O - ~  
4.970 x ~ O - ~  
4.980 x ~ O - ~  
4.909 x ~ O - ~  
4.860 x ~ O - ~  
4.630 x10” 

1.60 
1.60 
1.59 
1.59 
1.59 
1.59 
1.58 
1.59 
1.58 
1.58 
1.57 
1.57 
1.57 
1.56 
1.55 

- 

4.699 x ~ O - ~  
4.673 x ~ O - ~  
4.538 ~ 1 0 ’ ~  
4.427 x ~ O - ~  

4.231 x ~ O - ~  
4.139 x ~ O - ~  
4.088 x ~ O - ~  
3.966 x ~ O - ~  
3.979 x10-2 

4.353 x10-2 

1.55 
1.55 
1.54 
1.53 
1.53 
1.52 
1.51 
1.51 

- 

I 1.50 1 1.50 
3.715 x ~ O - ~  I 1.48 

7.80 2.835 xlO-’ 
8.00 2.711 x ~ O - ~  
8.20 2.484 x ~ O - ~  
8.40 2.308 x ~ O - ~  
8.60 2.094 x ~ O - ~  
8.80 1.855 X ~ O - ~  
9.00 1.573 x ~ O - ~  
9.20 1.343 xlO-’ 
9.40 1.100 x ~ O - ~  
9.60 9.460 x ~ O - ~  
9.80 1.007 x 

10.00 1.298 ~ 1 0 ’ ~  
10.20 1.806 x ~ O - ~  
10.40 2.432 x ~ O - ~  
10.60 3.091 xlO-’ 
10.80 
11.00 
11.20 
11.40 
11.60 
11.80 
12.00 
12.20 
12.40 
12.60 

3.774 x10-2 
4.403 xlO-’ 
5.203 x ~ O - ~  
6.012 x ~ O - ~  
6.848 x ~ O - ~  
7.783 x ~ O - ~  
8.738 x10q2 
9.568 x ~ O - ~  
1.020 x10-’ 
1.088 x10-’ 

I 

n I  li 
1.47 - 
1.46 - 

1.45 - 
1.43 - 
1.42 - 

1.40 - 
1.39 - 

1.37 - 
1.36 - 
1.34 - 
1.32 - 
1.29 - 
1.26 - 
1.23 - 
1.19 9.64 xlO-’ 
1.16 1.42 x10-’ 
1.15 1.95 x10-’ 
1.15 2.51 x10- l  
1.15 3.03 x10-’ 
1.16 3.49 x10-’ 
1.18 3.91 x10- l  
1.19 4.27 x10- l  
1.21 4.71 x10-’ 
1.23 5.11 x10-l 
1.26 5.51 x10-l 
1.29 5.93 x10- l  
1.33 6.33 x10-’ 
1.38 6.63 x10-’ 
1.43 6.81 x10-’ 
1.49 6.99 x10-’ 

I 
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- 
W m )  - 

1.10 
1.20 
1.30 
1.40 
1.50 
1.60 
1.80 
2.00 
2.20 
2.40 
2.60 
2.80 
3.00 
3.20 
3.40 
3.60 
.).80 
4.00 
4.20 
4.40 
4.60 
4.80 
5.00 
5.20 
5.40 
5.60 
5.80 
6.00 
6.20 
6.40 
6.60 

Table A.12: Molten slag NAEB 

5.697 xlO-’ 

5.633 x10-* 
5.581 xlO-’ 
5.527 xlO-’ 
5.460 xlO-’ 
5.433 x10-2 
5.432 xlO-’ 
5.437 x10-2 
5.330 xlO-’ 
5.275 xlO-’ 
5.269 x ~ O - ~  
5.234 X I O - ’  
5.183 xlO-’ 
5.141 xlO-’ 
5.093 xlO-’ 
4.982 xlO-’ 
4.799 x10-2 

1.62 
1.61 
1.61 
1.61 
1.61 
1.61 
1.60 
1.60 
1.59 
1.59 
1.59 
1.59 
1.58 
1.57 
1.56 

4.862 xlO-’ 
4.794 x lo- ’  
4.689 xlO-’ 
4.570 x ~ O - ~  
4.502 xlO-’ 
4.390 xlO-’ 
4.337 x10-2 
4.255 x ~ O - ~  
4.154 x ~ O - ~  
4.141 X ~ O - ~  
3.766 xlO-’ 

1.56 
1.56 
1.55 
1.54 
1.54 
1.53 
1.52 
1.52 
1.51 
1.51 
1.48 
- 

k 
- 
A(Pm) - 

6.80 
7.00 
7.20 
7.40 
7.60 
7.80 
8.00 
8.20 
8.40 
8.60 
8.80 
9.00 
9.20 
9.40 
9.60 
9.80 

10.00 
10.20 
10.40 
10.60 

- 

- 

- 

10.80 
11-00 
11.20 
11.40 
11 -60 
11.80 
12.00 
12.20 
12.40 
12.60 

- 

- - 
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R n k 
3.685 xlO-’ 1.47 - 
3.511 xlO-’ 1.46 - 

3.395 xlO-’ 1.45 - 
3.147 xlO-’ 1.43 - 
2.957 xlO-’ 1.41 - 

1.074 xlO-’ 
8.769 x ~ O - ~  
9.673 x ~ O - ~  
1.588 xlO-’ 
2.827 xlO-’ 
4.437 x10-2 
6.156 xlO-’ 
7.682 xlO-’ 
8.856 xlO-’ 
9.687 x ~ O - ~  
1.019 x10-’ 
1.055 x10- l  
1.064 x10- l  
1.071 x10- l  
1.058 x10-l 
1.052 x10-’ 
1.048 x10-l 
1.019 x10-1 
1.002 x10-’ 

2.754 xlO-’ 1.40 - 

2.541 xlO-’ 1.38 - 
2.262 xlO-’ 1.35 - 
2.002 xlO-’ 1.33 - 
1.709 xlO-’ 1.30 - 
1.375 xlO-’ 1.26 - 

- 
1.01 x10-1 
1.60 x10-’ 
2.44 x10-’ 
3.43 x10-’ 
4.39 x10-I 
5.26 x10-I 
5.93 x10-1 
6.35 x10-I 
6.53 x10-I 
6.51 x10-’ 
6.37 x10-I 
6.09 x10-I 
5.80 x10-I 
5.43 x10-1 
5.15 x10-I 
4.84 x10-I 
4.47 x10-’ 
4.21 x10-I 

1.22 
1.18 
1.14 
1.11 
1.11 
1.13 
1.19 
1.26 
1.35 
1.43 
1.51 
1.58 
1.64 
1.69 
1.72 
1.75 
1.77 
1.78 
1.79 



Appendix B. 

Composition Analysis by Electron Microprobe 

Results of composition analysis for slag SA05 are presented in this appendix. 
The composition was measured at several positions through the depth of the solid 
slag sample and across the free surface using an electron microprobe. The variation 
in slag composition was found to be small across the horizontal section of the slag but 
significant along the vertical cross section. Estimates of the errors and uncertainties 
in the microprobe analyses are discussed and a summary of the results is presented. 

B.1 Sample Preparation 

The slag SA05 was prepared as discussed in Chapter 3 to produce a dark glassy 
solid. A cylindrical sample, approximately 13 mm diameter and 10 mm long, was 
extracted from the solid slag using a diamond tipped core drill. One end of the 
cylindrical sample was the free slag surface and the other end was parallel to the 
bottom of the alumina crucible. The cylinder was cut vertically along its centerline 
to yield two half-cylinders. The two pieces were arranged in a single epoxy mount, 
one half exposing the vertical cross-section and the other half exposing the free slag 
surface, as illustrated in Figure B.l. 

The sample was prepared for analysis at the Center for Materials Research (CMR) 
polishing laboratory at Stanford University. The sample was polished using 6 pm 
diamond grit until a smooth flat surface was attained. Care was taken to not 
remove more slag than necessary so that the new surface would be very close to 
the original unpolished slag surface. Once a suitable smooth surface was produced, a 
thin conductive layer of carbon was sputtered onto the  sample which was fixed in a 
brass mount. A small dab of carbon paint was used to ensure good electrical contact 
between the sample and the brass mount. 
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SECTION 

B1 B12 

REGION OF 
GROWTH. 

CRYSTAL 

HOMDGENEOUS, ISOTROPIC, 
GLASSY SLAG l L&-d  SLAG SURFACE 

Figure B.l: Arrangement of the SA05 slag samples. Section A 
exposes the vertical cross section of the sample and Section B exposes 
the  top slag surface. 

B.2 Electron Microprobe Setup 

The JOEL 733 electron microprobe, in the CMR microprobe lab, was used for this 
analysis. It is equipped with a standard wavelength dispersive X-ray spectrometer 
having three diffraction crystals (PET, LiF, and TAP) for analysis over a broad range 
of X-ray wavelengths. The sample platform is equipped with computer-controlled X- 
Y-Z translation capabilities. The positions on the sample at which the composition 
is analyzed are programmed into the system by the user and, apart from occasional 
manual focusing, the operation is reasonably automated. 

For this analysis, two data lines were selected. The first data line, on sample 
Section A, is from a point near the surface of the slag to a point near the bottom of 
the slag. In all, there are seven positions along this line that lie in the glassy portion 
of the slag (line Al-A7). These seven positions are equally spaced between A1 and A7 
(see Fig. B.l). A similar data line with 12 positions was selected on sample Section 
B, equally spaced between points B1 and B12. 

209 



Four elements, Si, Al, Fe, and Ca, were analyzed in this study. Element standards 
provided at CMR were used to quantify the elemental compositions. The accuracy of 
the stated compositions of these standards was not verified; however, staff at CMR 
were confident that the standards were suitable for this application. 

For all measurements presented in this study, the electron beam was maintained 
at a current of approximately 10.0 nA and an accelerating potential of 15kV. The 
electron beam, at  the sample position, was focused to a diameter of approximately 
10 pm. The sample period, Le., the duration of X-ray sampling at each sample 
position, was 30 sec. The uncertainty due to X-ray counting statistics is generally 
proportional to a / N ,  and since the count, N’, is proportional to the beam current 
and sampling duration product, these settings were chosen to give an acceptably low 
uncertainty level. An additional restriction is that the beam current be small so that 
the sample and standards are not evaporated (volatilized) . These settings met this 
criterion. 

B.3 Results of Microprobe Analysis in t h e  Two-Phase Region 

As illustrated in Fig. B.l, the vertical section of the sample has two distinct 
regions, a region of glassy slag (bottom of Fig. B.l) and a region containing crystalline 
structures. The glassy region is featureless with no noticeable variations in color. 
However, in the crystalline region there are thin vertical structures which appear to 
be surrounded by an  amorphous glass. The crystals appear to originate near the 
bottom of the  slag, where it was in contact with the alumina crucible t . 

Before performing composition analysis along the “data-lines” , the composition 
was measured at selected locations to help explain the crystalline structure near the 
bottom of the slag (near top of Section A in Fig. B.l). A backscatter electron image 
(Fig. B.2) was taken for a small region, measuring approximately 280 pm by 220 pm, 
near the interface between the amorphous region and two-phase region (see Fig. B.l). 
This image aids in visualizing the structure of the two-phase region and in explaining 
the positions chosen for this first set of analyses. 

t This crystal formation, with apparent growth emanating from the alumina/slag boundaries 
into the amorphous glass was seen in many slag samples. 
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Figure B.2: Backscatter electron image of a small area near the 
interface of the two-phase region in Section A. Magnification is 400 
times and the image is oriented to correspond to the PHOTO label 
in Fig.(B.l) 

The photo in Fig. B.2 shows the structure of the two phase region. A backscatter 
eiectron image (BSI) shows variations in composition in the slag, or rather, variations 
in the local average atomic number. Compositions with higher average atomic number 
appear brighter than less dense compositions. From Fig. B.2 it appears that long thin 
crystals have grown though an otherwise homogeneous medium. 

The compositions at two nearby points in the two-phase region of Section A 
were measured, and results are shown in Table B.l. The “Bright Region” refers to 
a region between two dark structures, but still within the two-phase region. This 
region appears, in the backscatter image, to  be similar in brightness to the bulk slag 
composition, and the results in Table B.l confirm that the composition is very similar 
to that of the bulk slag. 
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The “Dark Region” referred to in Table B.l corresponds to the dark structures 
shown in Fig. B.2. The composition of these dark structures is quite different than 
that of the surrounding slag. Specifically, the crystals are very high in Al2O3, with 
approximately twice the content of the bulk slag. The chemical composition of the 
dark crystalline region is approximately A1203eSi02, with traces of Fez03 and CaO. 
The molar ratio Al/Si is approximately 2.04. This nearly exactly integral molar ratio, 
not found in the bulk slag, is good evidence that the dark structures are crystalline. 

Table B.l:  Compositions at two adjacent points in the two-phase 
region of Section A, wt.% 

It is import 

1 Oxide I Bright Region I Dark Region I 
53.6 
29.9 

CaO 11.7 

35.4 
61.3 

1.7 I 
2.1 

nt to understand the possible limitations of these result Although 
the data presented in Table B.l  are probably accurate, it is difficult to be certain. 
The region in which these data were obtained is inhomogeneous, with obvious small 
scale structure. The microprobe collects X-rays from a finite volume and records 
an average composition. The BSI also results from an average over a finite sample 
volume, but this volume is smaller, in general, than that sampled during conventional 
microprobe analysis. Therefore, even if the BSI shows no structure, there could be 
structure just below the sampling volume(s). It is apparent from the BSI that the dark 
structure is three dimensional, and that only a cross section of a more complicated 
structure is visible. From these arguments it is difficult to know whether the dark 
crystalline structure actually has 2.1 wt.% Fez03 or if some of this iron is due to 
material either just above or just below the crystal. Therefore, the results presented 
in Table B.l should probably be regarded as semi-quantitative; however they may be 
quite accurate. 

212 



B.4 Homogeneity of t h e  Glassy Slag 

Away from the two-phase region the slag appears, in all backscatter images and 
under an optical microscope, to be homogeneous and isotropic. The microprobe 
analyses along the data lines on the two slag sections more accurately quantify the 
homogeneity of the slag. In this section the results of these microprobe analyses are 
presented. 

Table B.2: Composition across slag surface (in 

Pt.# 
B1 
B2 
B3 
B4 
B5 
B6 
B7 
B8 
B9 
B10 
B11 
B12 

x ,mm 
8.93 

10.03 
11.13 
12.23 
13.33 
14.43 
15.53 
16.63 
17.73 
18.83 
19.93 
21.03 

Mean, 3 
2012, % 

CaO 
10.81 
10.59 
10.86 
10.66 
10.84 
10.99 
10.83 
10.82 
10.69 
10.96 
10.65 
10.68 
10.78 
2.26 

Fe203 
4.69 
4.64 
4.89 
4.94 
4.82 
4.66 
4.73 
4.68 
4.56 
4.75 
4.64 
4.87 
4.74 
4.74 

Si02 
56.99 
56.87 
56.69 
56.60 
56.79 
56.73 
56.92 
56.88 
57.16 
56.89 
56.79 
56.63 
56.83 
0.53 

Yt.%). 

27.51 
27.90 
27.56 
27.80 
27.54 
27.62 
27.52 
27.62 
27.60 
27.40 
27.93 
27.81 
27.65 
1.16 

Uncertainty below based on X-ray counts for sample and standarc: 
Uncertainty less than this is not significant. 

2015, % I 2.91 I 5.60 I 0.96 I 1.34 

The electron microprobe is capable of automatically moving the sample to a 
number of predesignated locations - measuring the composition at each location. 
Using this feature, the composition along the two data-lines (Al-A7 and B1-B12) 
was measured. Table B.2 shows the variation of composition along the surface on the 
slag (Section B) and Table B.3 shows the vertical variation of composition (Section 
A). These data apply only to the visibly homogeneous regions of the slag. 

In addition to the composition, the microprobe analysis provides the X-ray count 
from which one can estimate a limiting uncertainty level. For example, the number 
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of counts, N ,  for the Si-K, absorption line peak was measured as 120360 (in 30 sec 
at beam current of 10 nA) .  The standard deviation, a, associated with this finite 
count is approximately * I N ,  or 0.288%. For 95% confidence, the uncertainties are 

approximately 20, or 0.58%. This calculation is repeated for the standard sample 
and combined to give a total minimum uncertainty of approximately 0.96% (with 
95% confidence) for Si02. This calculation was repeated for each of the four elements 
(Al, Si, Ca, and Fe) and the approximate limiting uncertainty is presented at the 
bottom of Table B.2. Since this uncertainty is unavoidable with such X-ray counting 
measurementst , any smaller variations are, to within 95% confidence, not significant. 

From Table B.2, is it apparent that the slag composition does not vary signifi- 
cantly across the horizontal slag surface. The largest variation is in Fe2O3, with a 
2a variation of 4.75%. This variation is still below the fundamental uncertainty of 
the measurement for Fez03 (5.60%). Therefore, based on the information presented 
here we cannot determine whether the measured horizontal composition variation is 
systematic. 

Table B.3: Vertical variation of composition for SA05 

Pt.# 
A I  
A2 
A3 
A4 
A5 
A6 
A i  

Y, mm 
25.00 
25.72 
26.45 
27.17 
27.89 
28.62 
29.34 

Mean,S 
2+,% 

CaO 
10.61 
10.87 
11.03 
11.33 
11.22 
11.05 
11.11 
11.03 
3.96 

4.84 
5.17 
5.08 
5.27 
5.61 
5.47 
5.38 
5.26 
9.04 

Si02 
56.82 
56.29 
56.29 
54.62 
54.24 
54.44 
54.35 
55.29 
3.74 

A 12 0 3  

27.73 
27.67 
27.60 
28.78 
28.93 
29.04 
29.16 
28.42 
4.63 

The vertical variation of composition is presented in Table B.3. This composition 
variation is significant for all four oxides, with 2a being well beyond the fundamental 
2a limits presented in Table B.2 for each oxide. Figure B.3 illustrates this vertical 
variation of composition, where the oxide compositions (in wt.%) are normalized 

t Significant gains in precision are possible by increasing the sampling time. However, since the 
uncertainty is proportional to the square root of the sampling time, such gains are expensive. 
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by the value of each at point A1 (see Fig. B. l )  . Increasing vertical position value 
corresponds to increasing depth into the slag. 
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Figure B.3: Vertical variation of the slag SA05 composition. In- 
creasing vertical position is further from the slag free surface. 

As shown in Fig. B.3, the Fen03 and CaO concentrations increase with increasing 
depth into the slag. Over the 5 mm depth the Fez03 content increases by as much 
as 10-15%. The fact that Fez03 is the heaviest (or densest) constituent in the slag 
probably explains this trend. The CaO content changes much less, with approximately 
a 5% increase across the same 5 mm. The A1203 content also increases with increasing 
depth into the slag, but this change is also moderate (-5%), and is probably due to 
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diffusion of AI203 from the crucible. It is useful to note however, that the overall 
AI203 content is not substantially increased by dissolutioii of the alumina crucible. 
The Si02 content decreases slightly with increasing depth into the slag, and is the 
only ingredient showing this behavior. 

Finally, in addition to the statistical uncertainty associated with a finite count, as 
discussed above, there are several possible sources of error in these measurements, and 
care was taken to avoid them where possible. First, it is known that some elements 
are volatilized, or evaporated, when an excessively powerful electron beam is focused 
on the sample or standard. Of the elements studied in this work, Ca is the most 
susceptible to such effects. To ensure that Ca, or other elements, were not volatilized, 
measurements were repeated at one location, leaving the beam on that location for 
an extended period of time. The results of this test showed that the lOnA beam had 
no noticeable effect on the sample composition. 

Another source of error in these measurements is drift in the position of the 
diffraction crystals. In normal operation, the diffraction crystals are moved along the 
Rowland circle, causing a shift in the detected wavelength. By slowly scanning in 
wavelength, one finds the peak of a desired absorption line. This crystal position 
is recorded and used for measurements at all of the sample positions along the 
data lines. However, if the crystal becomes slightly misaligned during the course 
of the measurements, and is not realigned, the count rates will fall since the detected 
wavelength is shifted away from the peak of the absorption curve. The alternative 
to this procedure is to scan in wavelength at every sample and standard position, 
a process that is very time consuming. Fortunately, since the sample and standard 
count rates are measured at each position, this misalignment is easily noticed since 
the resulting sum of weight percent compositions will likely change, usually falling 
below 100%. For the data presented here, it is clear that there was some minor drift 
in the crystal alignment but it was never large. The smallest total weight percentage 
obtained in any of these measurements was approximately 97%, and more frequently 
was 98% or more. 

The effect of this diffraction crystal drift was studied for one sample position on 
Section B, and the results are presented in Table B.4. These data were taken after 
the initial peak search and after all the data presented above were taken. Therefore, 
it represents the worst case if, as expected, the diffraction crystal drift accumulated 
over the course of the measurements. 
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Table B.4: Effect of peak absorption search in microprobe analysis. 

Referring to Table B.4, the first column of data, labeled “Without peak search”, 
was obtained immediately after measuring the composition along the data-lines. The 
total weight percent for this data is only 96.6%, indicating that some shift in the 
peak positions had probably occurred. The second column is simply the first column 
normalized to give a total weight of 100%. 

After recording the data without a peak search, a peak search was made to correct 
the misalignment of the diffraction crystals. The third column of Table B.4 shows the 
results of this trial. The total weight changed to 101.25%, which is much closer to 
the expected value. Also, the A1203 content increased substantially due to correction 
of the peak wavelength value. The other compounds show less than a 2.52% increase 
from the previous measurements. 

From the results presented above it is evident that some small error was intro- 
duced by failing to do a wavelength scan at each sample position. The errors in the 
SiO2, A1203 and CaO compositions are significant, since they are above the statistical 
uncertainty presented in Table B.2. Nevertheless, it is also evident that the errors 
are within acceptable limits for the purpose of this study, and that the homogeneity 
of the slag sample is well characterized by these data. 

B.5 Summary 

A number of interesting results were obtained from this study of the composition 
distribution in the synthetic slag SA05. The concentrations of four elemental con- 
stituents (Al, Si, Fe, and Ca) were measured at several locations across the surface 
of the slag and through a vertical cross section, leading to the following conclusions: 
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1. The. slag sample was not homogeneous throughout, but had a region near the 
bottom of the crucible containing A 1 2 0 3  rich crystals. Outside of this non- 
homogeneous region the slag was reasonably homogeneous with no visible struc- 
ture, that is, it was an amorphous glass. 

2. The composition across the surface of the slag is constant, to within the uncer- 
tainty limits of this study. This result is expected for a frozen liquid surface. 

3. There is a significant change in the composition of the slag along a vertical cross 
section. The largest relative variation is that of Fe203, which increases by 10-15% 
with increasing depth in the slag, up to a maximum measured depth of 5 mm. 
The variation of the other three constituents is less than 5-10%. 

4. While it is relatively easy to analyse the composition of the synthetic slags to 
within an accuracy of a few percent using the JOEL 733 electron microprobe, 
there are a number of critical sources of error that make analysis to very high 
accuracy or precision difficult. The tendency to use four digit precision (0.01%) 
in quoting composition analyses is probably not justified unless extreme care is 
taken to demonstrate that degree of precision. 
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Appendix C. 

Optical Constants of Water and CCl4. 

Detailed measurements of the optical constants of liquids over the wavelength 
range from 1-13 pm are surprisingly sparse in the literature; however, considerable 
data for liquid water are available. In particular, data from two reviews of the 
optical properties of water, by Hale and Querry (431 and by Irvine and Pollack [44], 
are compared with measured data. In addition, the real refractive index, n, of 
carbon tetrachloride (CCl4) is available over the wavelength range from the visible to 
approximately 9 pm 145). 

Transmittance and reflectance measurements of water, and reflectance measure- 
ments of CCl4 were made using the apparatus described in Chapter I11 and compared 
to published data. The goal of these experiments was to provide an estimate of the 
accuracy of the techniques used for measuring the optical constants of molten slags. 
The primary difference between the molten slag measurements and those described 
here is that these measurements were made at  room temperature, and the slag mea- 
surements were made at  1600' C. Nevertheless, these results provide an approximate 
measure of the accuracy one should expect from the techniques used for molten slags, 
and also provide a good test of the application of the Kramers-Kronig procedure. 

C.l Reflectance Measurements 

The near normal reflectance and transmittance of liquid water was measured 
using the apparatus described in Chapter I11 - the same apparatus used to measure 
the optical properties of molten slag. Approximately 30 me of bottled distilled water 
was added to an alumina crucible and placed inside the furnace (the furnace power 
remained off during these experiments). The nitrogen purge hood was in place and 
the system was purged with nitrogen at a volume flow rate of approximately 45 scfh 
(ft3/hr at STP). The system was allowed to equilibrate for a period of approximately 
1 hour while minor optical adjustments were made. The water reached a steady 
temperature of approximately 16OC while the surrounding room temperature was 
approximately 25OC. The lower water temperature was attributed to  evaporation. 
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The reflectance of the water was measured over the wavelength range from 1 to 
13 pm. The results of this measurement are shown in Fig. C.l, along with previously 
published data. The reflectance is obtained from the ratio 

Isample 

Iref 
R = Rpf- 

where Isample is the signal reflected from the water surface and Iref is the signal 
reflected from the reference surface. In these experiments the reference is a gold 
mirror with a n  assumed reflectance, R,,f, of 0.992, as discussed in Chapter 111. 

The measured reflectance in Fig. C.l is compared 
the Fresnel relation 

( n  - I)2 + k2 
( n  + 1)2 + k2 R =  

with values calculated using 

(C.2) 

where the optical constants, n and k, are taken from published reviews [43,44]. The 
agreement with published data is good over the  entire wavelength range, with the 
largest difference being near the peaks of the absorption bands and at  wavelengths 
longer than approximately 11 pm. The two sets of published data also show the 
largest disagreement in these same spectral regions. 

Once the reflectance is measured over a broad range of wavelengths the real refrac- 
tive index, n, is computed using the Kramers-Kronig (KK) technique, as discussed in 
Chapter 11. The results of this analysis are shown in Fig. (2.2. The comparison with 
published data is very good; however, the measured values overpredict the refractive 
index in the wavelength range from 11 to 13 pm. Note that the disagreement between 
the measured values and the published values is of the same order of magnitude as 
the disagreement between the two sets of published data, but does not lie within the 
expected uncertainty of the experimental data. The source of this disagreement can 
be understood by considering the imaginary refractive index. 

The KK analysis 'allows the absorption index, IC, to be computed if k is large 
enough (> 0.1 or so) and if the reflectance is known over a wavelength range that 
spans all major absorption features near the wavelength of interest. For example, the 
KK technique predicts the absorption index, IC, in the wavelength range from 2.8 to 
3.2 pm very well, as shown in Fig. C.3. The value of k predicted by KK analysis of 
the measured reflectance is in good agreement with data from Hale and Querry (431. 
At most other wavelengths k is less than 0.1 and the KK technique cannot determine 
E ;  however, in the wavelength range from 11 to 13 pm the absorption index is large 
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Figure C.l: The near normal reflectance of liquid water, compared 
with published data. 

and increasing with increasing wavelength. In this spectral range the first criterion, 
E > 0.1, for using the KK analysis is satisfied; however, the absorption features at 
wavelengths longer than 13 pm are not negligible. Since the reflectance was not 
measured at wavelengths longer than 13 pm, the KK technique underpredicts k, as 
shown in Fig. C.4. Since IC is underpredicted, it follows that n must be overpredicted 
to produce the correct normal reflectance. 

It should be noted that despite the fact that the absorption features at  longer 
wavelengths are ignored, the KK method is well-behaved. That is, it does predict the 
correct order of magnitude for k, and even predicts the increase in k with wavelength 
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Figure C.2: The real refractive index of water computed using the 
Kramers-Kronig analysis of measured data, compared with published 
data. 

in the 11 to 13 pm wavelength range. The difference between the published value of 
k and the result of the KK method at 12.8 pm is approximately 25%. 

As another test of the experimental technique, the reflectance of CCl4 was also 
measured. The absorption index of CCl4 is very small over the wavelength range 
from 1 to 9 ,urn, apart from several rather narrow absorption lines. Therefore, the 
refractive index of CCl4 predominantly shows normal dispersion, with n decreasing 
with increasing wavelength. Also, since k is small, the reflectance measurement is a 
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Figure C.3: The absorption index, k, of water in the wavelength 
range from 2.8 to 3.2 pm compared to published values. 

good test for possible problems due to reflected light from the bottom of the alumina 
crucible containing the liquid. 

Since k is small, the Fresnel relation for normal reflectance becomes 

( n  - 1)2 + k2 
( n  + 1)2 + k2 - (n  + 1)2 '  

( n  - 1)2 R =  

This ch . be rearranged to give n as a function of R, such that 

k2 << (n  - 1)2 .  l + d Z  
1 4 3 '  

n ?  
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Figure C.4: The calculated absorption index, I C ,  of water in the 
wavelength range from 11 to 13 pm compared to published values. 

Thus, one can compute n directly from R. The results of this calculation are shown 
in Fig. C.5, along with the published data of Pfund [45]. The figure also shows 
two dashed lines for +l.O% and +0.5% of Pfund’s data. The agreement between the 
current measurements and those of Pfund are very good, with the difference being less 
than 0.5% for most data points. It is interesting to note that Pfund’s measurements 
were not made using reflectance, but by refraction through a hollow prism filled 
with CC4. Thus these measurements provide an independent verification of Pfund’s 
results. 

224 



As a further check of the KK technique, the reflectance data for CC14 were 
reduced using the same procedure as that. used to reduce the water reflectance 
measurements above. This procedure involves averaging multiple measurements 
at  identical wavelengths to produce a single-valued set of R(X) data, which is 
subsequently corrected for the reflectance of the gold reference mirror by multiplying 
by 0.992. The resulting set of reflectance data are analyzed using the KK relations 
presented in Chapter 11. The results of this analysis yield .(A). 

1.50~1 I I I I I I 1 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I - 1.49 F + Pfund (1935) - - - - - - - - - - - - - 
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Figure C.5: The refractive index of CCl4 calculated using the 
measured reflectance and the approximate Fresnel relation, n 21 

(1 + a)/( 1 - a), compared to published data. 

The results of the KK analysis are shown in Fig. C.6,  along with the data from 
Pfund. The results are once again in good agreement with the published data. This 
analysis demonstrates that the “noise” in the reflectance data does not adversely 
affect the KK data reduction procedure. This is expected, in view of the integral 
nature of the KK relations. 
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Figure C.7: The absorption index of water obtained from transmit- 
tance measurements, compared to published data. 
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The measured transmittance is shown in Fig. C.7, along with the difference 
between measured values and published values [43,44]. The agreement with published 
data is good. On average, the difference between the published data and the measured 
values is approximately 20%, with the largest differences being for small IC. At larger 
I C ,  the agreement is somewhat better. 

It should be recognized that the published data used here are from reviews 
of existing literature, and not independent experimental investigations. The two 
published data sets use many of the same references to infer the “best” value for the 
absorption index. The agreement between the most reliable published experimental 
results in the 1-2.5 pm range was generally within 10%-20%, but the agreement was 
regarded as quite good when values from two independent investigations were within 
20% of one another. Therefore, it is reasonable to conclude that the measured values 
above are in disagreement by as much as 20% with the best available data, but that 
the error may be somewhat smaller. 

Limited attempts were made to improve the measured values. It was suspected 
that the purity of the water used here may have caused the high k values, particularly 
since the errors are largest for small k, where impurities would have the largest effect. 
To see if this may have been a large factor, the measurements were repeated using 
ordinary tap water, and with alternative sources of bottled distilled water, but the 
results were not significantly changed. Another possible source of error was that 
air bubbles or particles were present in the water. However, no bubbles or particles 
were apparent either visibly or when the water was illuminated with a HeNe laser. 
Nevertheless, this may have been a problem, since the alumina crucible can out-gas to 
the water and possibly cause bubble formation, and since the nitrogen flow through 
the furnace can carry particles from under the purge hood into the water. Since 
such particles would burn and dissolved in the slag when the furnace is at 16OO0C, a 
redesign to test this effect was not deemed necessary. 
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Appendix D. 

Radiative Properties of Particle Dispersions 

The radiative properties of dispersions of particles can be calculated from more 
fundamental properties of the dispersion, such as the optical constants and size of 
the individual particles. In this Appendix the procedure for computing the radiative 
properties of a polydispersion of particles is presented. 

D.l The Radiative Transport Equation 

The basis for computing the radiative transfer through an absorbing, emitting, 
and scattering medium is the radiative transport equation [20,35] 

Here Zx(r,fZ) is the spectral radiance at position r in direction fZ at wavelength 
A. The spectral absorption coefficient, ax, spectral scattering coefficient, cx, and 
scattering phase function, @,(A,@) are generally functions of position, r, and are 
most often strong functions of wavelength+ . Solution of the transport equation, 
Eq. (D. 1 ), requires knowledge of the scattering coefficient, the absorption coefficient, 
and the scattering phase function. For a polydispersion of particles, such as fly ash, 
these radiative properties can be calculated from more fundamental data. 

t Radiative properties of real materials always vary strongly with wavelength if one considers 
a wide enough wavelength range. However, if the significant radiant energy is confined to a 
narrow wavelength range where the radiative properties are approximately constant , then the 
wavelength dependence may be negligible - the so-called “gray” model. This gray model is 
not generally applicable to fly ash or infrared active gases at typical combustion temperatures. 
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D.2 Size-Averaged Radiative Propert ies  

Most aerosols, including fly ash dispersions, are polydisperse, i.e. composed of 
particles with a wide range of sizes. For fly ash dispersions, particle diameters range 
from below 1 pm to a few with diameters over 100 pm. In such cases, the scattering 
and absorption properties found from Mie theory, for example, must be integrated 
over the broad range of particle sizes. 

Scattering and absorption properties of a single particle are described by the 
scattering efficiency, &,,a, the absorption efficiency, Qabs, and the scattering phase 
function, a, which describes the angular distribution of scattered light. The scattering 
efficiency is defined as- the ratio of the power scattered by the particle to the power 
incident on its projected area (7rD2/4 for a sphere). Similarly, the absorption efficiency 
is defined as the ratio of the power absorbed by the particle to the power incident on 
its projected area. 

A particle illuminated by monochromatic light of wavelength X has scattering and 
absorption properties that depend on the geometry and optical constants, m = n+ik ,  
of the particle. If the particle is a homogeneous sphere of isotropic material with 
diameter D, then the scattering and absorption properties are functions only of m 
and the size parameter 2 = w D / X .  If the particle is not homogeneous, isotropic, or 
spherical, its scattering and absorption properties are still described by &,,a, Qabs, 

and a, but they generally depend on the particle shape and its orientation with 
respect to the incident light. 

We assume that the size of the particle can be described by a single variable, D, 
and that the distribution of particle sizes can be described by a scalar size distribution 
function f (0). More precisely, let the function f (D) be defined such that f (0) dD is 
the fraction of particles with size between D and D+dD. If the optical constants of all 
the particles are the same, then for a given wavelength the scattering characteristics 
for particles of size D can be expressed as &,,a (D), Qabs (D), and @ (0). Of course, 

(D) also depends on the scattering angle 4 measured from the forward direction. 

Now consider the transport equation, Eq. (D.1). The scattering coefficient of the 
medium is defined as the fraction of the power incident at position r that is scattered 
out of the direction fl in traversing distance ds into the direction fi. If the particle 
number density in a differential volume is N ,  then the number of particles with size D 
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is N f (D) dDdAds, where the differential cross sectional area is dA. If power incident 
on the particles with cross sectional area A, is I (s) A,, then the power scattered by 
particles of size D is the product 

The power incident on the volume is I (s) dA, and the power at s+ds  is I (s + ds)  dA, 
thus the change in radiance along distance ds owing to scattering by particles of size 
D is 

dI 
ds - = NQsca (D) Ap (D) f (D) dDI-  

The contribution by particles of all sizes is obtained by integrating over all particle 
sizes, thus the resulting scattering coefficient is 

The volume fraction of particles, i.e., the particle volume per unit volume, is 

roo 

where Vp (D) is the volume of a particle of size D. The Sauter mean diameter,&, 
is defined as 

The Sauter mean diameter is equal to the particle diameter for a monodispersion of 
particles, and typically increases (compared to the median size) for increasing breadth 
of particle sizes. Combining Eq. (D.2) with Eq. (D.3) and Eq. (D.4) one obtains the 
formula 

If the particles are spherical, this equation simplifies to 

Using analysis similar to that above, the absorption efficiency for a sphere can be 
expressed as 
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The mean absorption, scattering, or extinction efficiencies for a polydispersion of 

spherical particles can be written in the form 

The scattering phase function for a polydispersion of particles is found from an 
analysis similar to that above. For example, for spherical particles one finds 

Several interesting results can be deduced from the form of the scattering and 
absorption coefficients above. Suppose the scattering and absorption efficiency are 
constant, independent of the particle size. Such a limit is approximated by very large 
particles (z >> 1) where Qext + 2. If the particles are solid spheres, then the volume 
fraction, Cv, is proportional to the mass fraction, and the scattering and absorption 
coefficient will be proportional to the inverse of 0 3 2 ,  or proportional to the cross 
sectional area of the particles per unit volume. For a fixed mass fraction of particles, 
the optical depth of a medium decreases with increasing particle diameters. In the 
(Rayleigh) limit of very small particles (5  << 1) the scattering efficiency is proportional 
to D4, and the absorption efficiency is proportional to D. Therefore, the scattering 
coefficient is typically very small, and is dominated by scattering from the largest 
particles in the dispersion. In contrast, the absorption efficiency is independent of 
size of the particles, with ax a C,. 

D.3 Averaging with General Distribution Functions 

In general, the optical constants of a material depend on the composition, 
temperature, and wavelength, and a polydispersion of fly ash particles will have a 
distribution sizes. Therefore, since the scattering properties depend on the optical 
constants, the fly ash dispersion will have a distribution of size, composition, and 
temperature at a given wavelength. In addition, the size of a particle could be 
generalized to include the geometry of the particles, so that non-spherical or otherwise 
complicated particles are included. In this section this general formulation of the 
average radiative properties is presented. 
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In general, a distribution function could be defined such that f ( D ,  C, T )  dDdCdT 
is the fraction of particles with size (or geometry) D within dD, composition C 
within dC, and with temperature T within dT. The scattering efficiency would be 
QsC- = QsCa (D, m),  where the complex refractive index, m = n + ik = m (C, T ) .  
The derivation of average radiative properties would follow in a fashion similar to 
the derivation presented above for distribution function f (D). For example, the 
scattering coefficient would become 

OX = lm J, J, NQsca [D, m (C, 7’11 Ap (D) f (D, C, T )  dDdCdT (D.lO) 

Alternatively, a distribution function could be defined such that f ( D ,  n ,  I C )  dDdndk 
is the fraction of particles with size D within dD,  refractive index n within dn, and 
absorption index k within dk.  This model is likely to be less complicated since it 
more directly represents the important variables - the scattering properties do not 
directly depend on composition, but rather depend on the optical constants which in 
turn depend on the  composition. Particles with very different composition may have 
similar optical constants. Unfortunately, the high level of detailed knowledge required 
to determine f ( D ,  C, T )  or f (D, n, I C )  for most real dispersion, and specifically for 
fly ash, is not available. Therefore, such a detailed formulation is currently of little 
practical use. 

As a final alternative, the polydispersion can be approximated as a combination of 
classes of particles, where each class has similar optical constants. In this formulation 
it is assumed that each class of particles has size distribution f ( D ) ,  and that particles 
within each class have identical optical constants. If we assume that the particles are 
spherical then the scattering coefficient is 

( D . l l )  

Here Cv,i, Q S C a , i ,  and D32,; are the volume fraction, average scattering efficiency, and 
Sauter mean diameter for particles in class i. Similarly, the absorption coefficient 
becomes 

(D.12) 

Finally, the scattering phase function is 

(D.13) 

- 
Here Qabs,j and 9x,j are the average absorption efficiency and average scattering phase 
function for particles in class i. 
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D.4 Mie Scattering 

The scattering and absorption of a plane electromagnetic wave by a single 
spherical, isotropic, and homogeneous particle can be calculated using Mie theory [18]. 
The scattering efficiency, Qsc,, and absorption efficiency, Qabs of a single particle are 
defined as the power that is scattered and absorbed, respectively, normalized by the 
power incident on the particle's projected area. To compute these quantities, as well 
as other scattering properties of a spherical particle, one must know the refractive 
index, m = n+ik ,  of the particle relative to the surrounding medium, and the particle 
size parameter, z E nD/A.  If the surrounding medium has refractive index n,, and 
the particle has refractive index mp = np + i kp ,  then m = np/n,  + ikp/n,. For most 
gases the refractive index nm is approximately unity. The size parameter, x, is the 
size of the particle relative to the wavelength of the incident monochromatic light, 
that is, the particle size parameter, x = ?rD/X. Here D is the particle diameter and 
X is the wavelength of light in the surrounding medium. If the wavelength in vacuum 
is Ao, then X = Xo/nbo7 and the size parameter is 

n D n ,  
A0 

x=- (D.14) 

From Bohren and Huffman [18], the scattering efficiency is given by the infinite 
series 

Do 

(D.15) 2 
5 2  

and the extinction efficiency is given by the series 

Qsca= - - (2n+ 1) ( l a n ( x , m ) I 2 +  I b n ( x , m ) I 2 )  
n=l 

The absorption efficiency is simply 

(D.16) 

(D.17) 

In .addition, the asymmetry parameter, 9, is given by the series 

Here a, = a ,  (z,rn) and b, = b, ( z ,m)  and the superscript ()* denotes complex 
conjugate. The asymmetry parameter describes the asymmetry of the scattering, 
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with g ranging from g = 1 for completely forward scattering to g = -1 for completely 
backward scattering. For symmetric forward and backbard scattering, including 
isotropic scattering, g = 0. Very large dielectric particles have g - 1 while very 
small particles (Rayleigh scattering) have g 2: 0. 

The complex Mie amplitudes a n  ( z , m )  and bn (2,m) can be computed from the 
relations 

[Dn (mz )  / m  + n / z ]  d n  (2) - dn-1 (z) 
[Dn (mx) / m  + n/z] t n  (x) - [n-1 (x) 
[man (mx) + n/z]  d n  (z) - dn-1 (x) 
[mDn (mx) + n / z ]  &z (x) - tn - l ( z )  

a n  (2,m) =- 
(D.19) 

bn (2, m) = 

where the functions Dn ( p )  satisfies the recurrence relation 

(D.20) 

The functions $n(z) and tn (x )  are the Riccati-Bessel functions and are both 
computed by the upward recurrence relation 

(D.21) 

where [n (z) = $n (z) - i X n  (2). Note Xn (t) also obeys the recurrence relation in 
Eq. (D.21). The starting conditions for the upward recurrence are 

(D.22) $-I (s) = cost,  + 0 ( 4  = sin x, 
X-1  (z) = -sins,  x ( ) ( x )  = cosx. 

A critical aspect of the Mie calculation is truncation of the series after a finite 
number of terms. Bohren and Huffman [18] indicate that approximately N N 

z + 4x1I3 + 2 terms are required to accurately compute Qext and Q,,,, where N is the 
integer nearest to  the real value of x + 4 ~ ’ / ~  + 2. Also, since +n and tn are computed 
by upward recurrence, as described above, only N values must be computed. This 
estimate of N is in close agreement to that of Wiscombe [46] where the required 
number of terms, N ,  was carefully examined. Wiscombe found that 

x + 4z1I3 + 1 

x + 4x1I3 + 2 

; 

; 

0.02 5 z 5 8 
N = { x + 4 . 0 5 ~ ~ 1 ~  + 2 ; 8 < z < 4200 

4200 5 x 5 20,000 
(D -23) 

very accurately predicted the required number of terms. Wiscombe’s choice of N ,  
Eq. (D.23), is adopted in this work. 

The function Dn (ms) is computed by downward recurrence, where DN,, (mz )  is 
assumed to be 0 + io for some large value of n = ND, and Dn (ms) for smaller n is 
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computed from the relation Eq. (D.20). As was stated above, the number of terms 
in the series for &,,a and Qext is N ,  thus at least the lowest IV values of Dn must 
be accurate. Therefore, ND must be sufficiently greater than N so that the value 
of DN ( m z )  is independent of the initial choice DN,, (mt), and of course accurate. 
Bohren and Huffman suggest using 

N + 15 

lrnzl-k 15 

; N > lmzl 

; IV < lmzl 
N D =  { (D .24) 

where again N D  is the integer value nearest the real value. Upon careful examination, 
one finds that using Eq. (D.24) leads to significant errors in DN (ms) when t is 
large (>loo),  but choosing ND approximately 10% larger provides accurate results. 
Therefore, we choose ND as 

1.1 ( N  + 15) 

1.1 (Imzl+ 15) 

; N > lmzl 
N D = {  (D .25) 

; N < fmzl. 

The formulae presented above can be used to  compute the complex Mie ampli- 
tudes, an ( 5 ,  m )  and bn (z, m), and the efficiencies Qext and &,,a. From these values 
one can compute the absorption efficiency from Qabs = QeXt - &,,a, which leads to 
calculations of the spectral scattering and absorption coefficients ( a x  and a x ) ,  as will 
be shown. 

The remaining calculation of the spectral scattering scattering phase function, 
@A, is facilitated by expressing Ox as a series of Legendre polynomials, i.e. 

00 

The Legendre coefficients, Ak, are calculated directly using the values of a, (z, m)  and 
b, ( 5 ,  rn) above. The procedure for computing Ak is taken directly from Dave [47] and 
is presented here without derivation. Only those formulae required for calculation of 
the Legendre coefficients, Ak, are presented. 

The Legendre coefficients Ak are for randomly polarized incident monochromatic 
light, and are the average of the parallel and perpendicular polarizations of the 
scattered light, i.e., 
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Here L k ( ' )  and L k ( 2 )  are real values obtained from the series 

and 

(D.28) 

( D  -29) 

The superscript (*) denotes complex conjugate and Re[ ] denotes the real part of a 
complex quantity. The integer k' and A ; , k  are defined as 

1 i = O ,  odd k 

2 
and Ai,k z 2 i >O,odd k , (D .30)  

i 2 0, even k 

respectively. Thus k' = (O,O, 1 , 1 , 2 , 2 , .  . .) for k = ( 1 , 2 , 3 , 4 , 5 , 6 , .  . .), respectively. 
The subscripts p and g are defined as 

p = j - i + l  and g = j + i + 1 + 6  (D .31)  

where 6 = 0 for odd IC and 6 = 1 for even k .  

The coefficients ctj(k-l) and b;('-') are real constants - unrelated to the complex 
Mie amplitudes a, (z, m) and b, (z, m). For a fixed value of IC, the series of values of 

(k- l )  and b;("-') are determined from the recurrence relations 

( D . 3 2 ~ )  

and 

(odd k and i > 0) .  ( k  - 2i + 1) ( k  + 2i - 2) 
( k - 2 i ) ( k + 2 i - l )  

b .  ( k - l )  b i ( k - l )  = (-1 (D.32b) 

The starting values of aj(k-l) and bi('-') for j = E' = ( k  - 1 )  / 2  and i = 0, 
respectively, are also given by recurrence relations, but with recurrence on the 
superscript ( k  - l ) ,  not the subscript. For odd k (where k' = ( k  - 1 )  /2) these 
starting values for the sums over j and i are given as 

; k = l  
(D.33a) 
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and 
I 1  : k = l  

(D.33b) 

For even values of k, the recurrence relations analogous to Eq. (D.32) are 

a j ( k - l )  = a j - ~ ( ~ - ' )  (even k and j > k') (D.34a) (2j - k + 1) (2j + 
(2j + k + 1) (2j - IC + 2) 

and 

p-') = (even k and i > 0 ) .  (D.34b) 
Pi + k + 1) (22 - I C )  b .  ( k - 1 )  

1 - 1  (22 - k + 1) (22 + k) 
The starting values for these two recurrence relations, i.e., for j = k' = ( k  - 2) /2 
and i = 0, respectively, are given by the recurrence relations 

and 

; k = 2  
(D.35~)  

-3) ; k = 4 , 6 , 8 ,  ... 

; k = 2  

; k = 4 , 6 , 8 , . .  
(D.35b) 

x , r n ) ,  where is either p or q in The complex functions Ce (2, rn) and Dp 
Eq. (D.28) or Eq. (D.29), are determined from sums over the complex Mie amplitudes 
a,  (5, n) and b, ( x , r n ) .  Again, from Dave [47], 

1 cp (x, m)  =- (24 - 1) (e  - 1) be-1 (2, rn) e 

( D . 3 6 ~ )  
and 

1 Dp (5, m) =- (22 - 1) ( e  - 1) at--1 (z, m )  e 

(D.36b) 
Here n = e + 2i - 2 in Eq. (D.36). Note here that n 2 1. 

Finally, the infinite series in Eq. (D.28), Eq. (D.29), and Eq. (D.36) are truncated 
after N terms as prescribed by Eq. (D.23). Dave [47] shows that for a size parameter x 
the  series in Eq. (D.26) can be truncated after approximately 22+ 10 terms. However, 
if one is interested in radiative heat transfer, it is possible to obtain accurate results 
with far fewer terms (see Appendix E). 
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Appendix E. 

Solution of the Radiative Transport Equation 

This appendix describes the formulation and solution of the radiative transport 
equation for a planar medium using the discrete ordinates method. The discrete 
ordinates method is relatively simple to program and easily extensible to  multi- 
dimensional domains in which radiative properties depend on position and/or tem- 
perature. The technique for a one-dimensional participating medium is described 
here. 

E.1 The Radiative Transport Equation For a Planar  Layer 

The radiative transport equation for a one dimensional planar medium is [35] 

' dl (I, = - [a (z) + CY (z)] I (x, p )  + CY (z) Ia [T (43 dx 

where r is the coordinate normal to the infinite planar layer, p is the cosine of the angle 
measured from the  positive x-direction, and T (x) is the temperature distribution in 
the medium. The radiance, I (x,p), and all the radiative properties are spectral 
quantities but the subscript X is dropped for brevity. The scattering phase function, 

(PO) depends only on the angle between incident and scattered radiation which is 
given by 

/!lo = 52 * st = pp' - d c p d G - & o s  (4 - t$), ( E 4  

where the azimuthal angle q5 lies in the range 0 5 # 5 2n. 

I t  is convenient to introduce the dimensionless optical depth, 7, 

as the new independent space variable and the dimensionless scattering albedo 
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For a layer with thickness P the total optical depth is simply T = Ji (Q + 0) ds. With 
this change of variables the radiation transport equation,Eq. (E.l) ,  becomes 

(E.5a) 

Solutions of equation (E.5) are obtained using the discrete ordinates method [48- 
491. In that method, Eq. (E.5) is approximated by evaluation of the direction cosine, 
p,  at a finite number of discrete directions, p m ,  and integrals over p become finite 
summations. For example, an integral is approximated by the quadrature formula 

where the ordinate, p,  has been divided into M discrete values pm with w m  being 
the weight associated with pm. 

E.2 Quadrature Formula 

An important aspect of the discrete ordinates method is selection of the directions,p,. 
I t  is useful to understand quadrature formulae so that “good” choices for p, are made. 

Following the development from Chandrasekhar [48], consider the general integral 

where f ( z )  is some general function and w ( z )  is a weight function. The goal is 
to construct a suitable quadrature formula (approximate summation) which closely 
approximates I using a finite number, M, of discrete abscissas, xj. 

Letting zj be one of the set ( ~ 1 ~ x 2 , .  . .,zM), where a 5 zj 5 b, we construct a 
poiynomial using Lagrange’s formula 

(E.7a) 
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where 
M M 

( E . 7 b )  
j =  1 

From this formula it is clear that 4 (x) = f (x) at the quadrature points xj. Moreover, 
if f (x) is a polynomial of order M - 1 or less, 4 (x) is exactly equal to f (z) for all X. 

Substituting the polynomial approximation, 4 (x), for the function f (z) in the 
integral I gives 

we obtain 
M 

The error introduced by approximating Eq. (E.6) with Eq. (E.9) is 

M 
(E.lO) 

Since 4 ( ~ )  was an Mth order polynomial passing exactly through M points of the 
function f (z), the error, EM, vanishes if f (z) is a polynomial of order M - 3 or less; 
so long as the M zj 's  are unique, any zj's will do. The question arises: can the xj  be 
chosen in a "smart" way to make the error vanish for cases when f (s) is a polynomial 
of order higher than M - l?  Carl Friedrich Gauss showed that x j  can be chosen in 
such a way. 

Consider the case when f (z) is a polynomial of order 2M - 1. Define the moments 
of the weight function w (z) as 

b cq=l z'w(z)dz.  ; ( e=O, l ,  ..., 2M-1)  (E.11) 

For the approximate quadrature formula to be exact, the moments must satisfy the 
equations 

M 
CY' = ujz; ; ( e  = 0, 1, . . . , 2 M  - 1) (E.12) 

j = 1  
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which gives 2M equations for the 2 M  unknowns ( a ] , .  . . , U M )  and (x i , .  . . ,zM). 

Chandrasekhar [48] carefully outlines a method for finding the aj and xJ using 
Eq. (E.12), thus demonstrating that one can construct an M point quadrature formula 
that will exactly evaluate integrals of weighted polynomials of order 2M - 1. This 
result is very important and not at all intuitive a priori. 

Now that it is established that there are “good” choices for xj, reconsider 
the original approximating polynomial, 4 (z), which is a polynomial of order M .  
Recall that 4 (z) is equal to f (z) at  the z-values (51,. . . , z ~ )  and the function 
F (z) = n,”=, (x - zj) is also a polynomial of order M .  If f (z) is a polynomial of 
order 2M - 1 it can be written as 

e=o 
(E.13) 

where q p  are known constants for a given polynomial f (x). Using this expression for 
f (5) the error, Eq. (E.10), of the quadrature formula is 

,h M 

M-I 
= go J b  F (z) w (z) z‘dz 

k 0  a 

Since all the gp are not necessarily zero, the error, EM, vanishes only if 

(E.14) 

9 ( l = O ,  ..., M -1). (E.15) 

This condition determines F ( z )  and the ordinates xj, which are simply found from 
F ( z j )  = 0. Once zj are known, the weights, aj are determined from Eq. (E.8). 

Consider the special case of w = 1 and the limits a = -1, b = 1. For this special 
case the integral, I, is defined as 
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and the-condition determining the function F ( p )  becomes 

I 
J _ ] P ( P ) P L O  , ( 4 = 0  ( . . . (  M - I ) .  (E.16) 

A function F ( p )  which satisfies Eq. (E.16) for all P < M is the Legendre polynomial 
Pn(r ( p ) .  Therefore, the choice of p3 as the roots of the Legendre polynomial 

( p )  = 0 yields a quadrature formula with M terms that is capable of exactly 
evaluating integrals of polynomials of order 2 M  - 1. The weight factors wJ (previously 
termed a3)  are determined from Eq. (E.8) to be 

(E.17) 

This choice of p, and wj is known as the Gauss quadrature and the “Gauss quadrature 
formula” is simply 

(E.18) 

Press, et. al. [50] discusses algorithms that quickly compute pj  and wj for a given 
order M .  

E.3 The Discrete Ordinates Method 

The Gauss quadrature formula developed in the previous section is used to 
approximate the radiative transport equation, Eq. (E.5), as M equations for the 
“discrete ordinate” directions ( P I , .  . . , p ~ ) .  Integrals in p are replaced by quadrature 
summations and the resulting system of equations is 

where 

and 

( m =  1,2, ...,M) (E. 1 s a )  

(E.19b) 

(E. 1 9c) 

The scattering albedo, w,  and Plank blackbody function, I b ,  are both general functions 
of position r ,  as could also be the scattering phase function ip (pm, p j ) .  
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The scattering phase function, @ ( p m ,  p j ) ,  is evaluated by expanding (PO) as a 
series of Legendre polynomials, 

i=O 
(E.20) 

where p is in the range -1 5 p 5 1. Using the orthogonality relation for Pm ( p )  

where Sij = 0 if i # j and 1 if i = j ,  one can determine the expansion coefficients, 
Aj, from the relation 

1 

Aj = 1, Q, ( p )  Pj ( p )  dp. (E.21) 

Once the Aj are determined for a given @ ( p ) ,  it remains to compute Q ( p ,  p')  from 
Eq. (E.19c). In practice the infinite Legendre series expansion is truncated after a 
finite number of terms, N ,  so that 

(E.22) 

Mie calculations indicate that for large particles, choosing N as approximately twice 
the particle size parameter, x, is sufficient to resolve the phase function with adequate 
accuracy. The Legendre polynomials are computed using upward recurrence from the 

The next step in the discrete ordinates method is to finite difference the spatial 
derivative using a non-uniform grid in T .  Dividing the layer into L planar layers with 
L + 1 surfaces at (TO, 71 . . , TL) ,  and using central differences (2nd order accurate) 
about ( i  + i), one can approximate Eq. (E.19a) as 

(E.23) 

where 
ATj z Tj+l - Ti and I;" E I (Ti,pm). 

The values at half intervals (i + f )  are evaluated by averaging on the two interfaces 
bounding the interval, i.e., 

(E.24) 
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Finally, rearranging terms in Eq. (E.23) and substituting Eq. (E.24), the difference 
formula is written as 

t h  > 0) (E .25~)  

This difference equation is evaluated only in the forward direction, (pm > 0 ) ,  by 
starting with boundary values at 7 = 70 and stepping forward in 7. A similar equation 
is formulated for stepping in the backward direction, pm < 0. Following a procedure 
similar to that above, one can write 

(E.25b) 

Note that S;“ depends on the radiance, I! at Tj in all directions pj ( j  = 1,. . . , M )  
through Eq. (E.19b). However, one can overcome this complication by using iteration. 
That is, we assume initially that the S;” are known for all m and i, then compute 
the radiance I? using Eq. (E.25). Next, we recompute Sy using the newly acquired 
radiance, 17. This iteration is repeated until subsequent calculations of IT produce 
negligible change. 

E.3.1 Boundary Conditions 

For unique solutions to exist, one must specify the boundary conditions at T = 0 
and 7 = 70. Since the analysis thus far has been restricted to azimuthally symmetric 
radiation in a plane layer (1-D), azimuthally symmetric boundary conditions are also 
used. Consider the boundaries to be diffusely emitting, partially diffuse reflecting, 
and partially specular reflecting. Thus 

(E.26a) 

( p  < 0) (E.26b) 

where c is the diffuse emissivity, pd  is the diffuse reflectivity, p” is the specular 
reflectivity, and subscripts “0” and “L” denote the boundaries at T = 0 and T = 70 

respectively. 
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.The integrals in the boundary conditions are replaced with Gauss quadrature 
formulas to give 

i 
r j > o  

Note that the radiation incident on the layer boundaries 

( p m  0) (E.27b) 

is coupled to the emergent 
radiance if the boundaries are reflecting. However, by iterating as described for ST, 
the solution can be obtained without solving any time-consuming matrix equations 
for the boundary intensities. 

E.3.2 Convergence Criterion 

Iteration is used as discussed above to avoid the implicit dependence of the source 
function S;" and the boundary conditions on the radiance, I T .  Convergence of the 
iterative process is presumed when the heat flux at each optical depth, Ti,  changes 
from one iteration to the next by less than some prescribed small amount. The 
heat flux through the layer can be computed at each optical depth, ~ i ,  and for each 
iteration using the quadrature approximation 

m=O 

E.3.3 Solution Procedure 

The formulation presented above was implemented in a computer program. The 
algorithm is relatively simple, since all equations are solved explicitly and iteration is 
used to find the solution. The following summary outlines the necessary steps of the 
computation: 

1. Input layer thickness and number of divisions L, number of ordinates M ,  absorp- 
tion coefficient cr (z), scattering coefficient cr (z), temperature distribution T (z), 
Legendre coefficients (Ao, . . . , A,v), and boundary conditions. 

246 



2. Compute optical depths ( T O , .  . . ,q), albedo (00,. . . , w L ) ,  ordinates (PI. .  . . , p ~ )  
and weights ( ~ 1 , .  . . , WM), and scattering phase function @ ( p i ,  p i ) .  

3. Set initial values for 17, ST, and QT. 

4. Compute from Eq. (E.25). 

5 .  Using new IT from step 4, compute Sy from Eq. (E.19b). 

6. Compute boundary intensities from Eq. (E.27). 

7. Compute Qj at all Ti and compare with previous Qi. If change is greater than 
some error, c, repeat steps 4-7. 

8. Print results. 

E.4 Results and Code Evaluation 

A number of computations were made to  check the validity and accuracy of the 
codes. In all cases the codes produced the expected results when compared to  exact 
calculations [35] for isotropic and anisotropic scattering. No significant accuracy or 
convergence problems were encountered. 

All the calculations presented here are for monodispersions of singlecomposition 
partides at a singIe wavelength. We assume that the medium is composed of 
single-sized spheres with complex refractive index, m = 1.5 + The size 
of the spheres, the layer thickness or particle number density, and the absorption 
coefficient of the surrounding medium is varied to allow investigation of the effect 
of anisotropic scattering, optical depth, and scattering albedo on the heat flux and 
emergent radiance. 
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. j  - 
- 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 - 

x = 0.5 
1 .ooooo 
0.14660 
0.50398 
0.02760 
0.00064 

A j 
x = 9  

1 .ooooo 
1.94672 
2.99090 
2.95185 
3.72708 
3.73798 
4.23 106 
4.07042 
3.91514 
3.59674 
2.93476 
2.43094 
1.76028 
1.24217 
1.08177 
0.92934 
1.19935 
0.9 1896 
1.13655 
0.21873 
0.82504 
-0.00477 
0.00940 
0.00228 
0.00042 

x = 36 
1 .ooooo 
2.43076 
3.64363 
4.09975 
5.11313 
5.56431 
6.59476 
7.26245 
8.26331 
8.97579 
9.65623 

10.32 124 
10.92715 
11.54660 
12.1203 1 
12.76528 
13.45026 
14.04943 
14.76339 
15.28887 
15.92009 
16.33683 
16.84643 
17.1 1450 
17.48682 
17.59325 
17.83077 
17.80505 

x = 36 cont ... 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 - 

17.92965 
17.83307 
17.84446 
17.74673 
17.61 028 
17.54370 
17.23547 
17.17773 
16.71310 
16.62407 
16.07435 
15.90400 
15.34633 
15.0605 1 
14.46099 
14.01492 
13.28404 
12.69559 
11.811 17 
11.20362 
10.29457 
9.78790 
8.93928 
8.47910 
7.81775 
7.55318 
7.26440 
7.43740 

56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
7’7 
78 
79 
80 
81 
82 
83 - 

7.37375 
7.65716 
7.43930 
7.40488 
6.67121 
6.03762 
4.60609 
3.68276 
2.99628 
2.96285 
2.9 1504 
2.47309 
2.28324 
1.60334 
1.44967 
0.44679 
0.30244 

0.25306 
0.07880 
0.05265 

0.02366 
0.00478 
0.00333 

-0.02195 

-0.07277 

-0.00447 
0.00 107 
0.00013 

E.4.1 The Scattering Phase Function 

The scattering phase function was computed for particles sizes ranging from 
5 = 0.5 to x = 100. The Legendre expansion coefficients, A,, were computed using 
Eq. (E.21) and Mie scattering theory to determine @ ( p ) .  Table E.l shows some 
typical sets of expansion coefficients for particle size parameters x = 0.5, x = 9, and 
x = 36. The series was truncated when the coefficients became smaller than loe3, 
which generally corresponded to two or three times z for large x. 

When x is large, the scattering phase function is very complicated with approx- 
imately x scattering lobes. Therefore, many terms in a Legendre expansion are re- 
quired to accurately fit the phase function. Moreover, if the scattering phase function 
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requires N terms to be accurately modeled, then the discrete ordinates method will 
require at least A4 = ( N  + 1) /'2 .ordinates (directions) if accurate integrations of the 
phase function are to be performed (recall that the Gauss quadrature integration 
rule can exactly integrate polynomials of order 2M - 1 using only M abscissas). If 
scattering is very important (w ---f l),  as it is in fly ash dispersions, then this problem 
is considerably more troublesome. 

Number of Directions, M 

Figure E.l: 
number of ordinates. 

The transmittance of a scattering layer versus the 

Figure E.l shows the effect of choosing too few ordinate directions on the 
transmittance, 0 5 T 5 1, of a plane layer of particles of size t = 50. The limiting 
value at large M is correct, but when scattering is important (u = 0.9) the results 
are only reasonable for the two points A4 = 64 and M = 128. Figure E.1 also shows 
that if scattering is not very important (u = 0.1) then an M as small as 16 gives 
reasonably accurate results. 
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E.4.2 Scaling Anisotropic Scattering 

It is now evident why an alternative to solving the anisotropic equations is 
desirable. Even though it is plausible to use very large M values in the one- 
dimensional radiative transport problem, solutions for two or three dimensional 
geometries and at many discrete wavelengths would require tremendous amounts of 
computer memory and time. One solution is to model the scattering phase function as 
partially isotropically scattering with the remaining scattered radiation in a forward- 
directed delta function, i.e., 

where g is the asymmetry parameter, the ratio of the forward scattered light to the 
backward scattered light. 

By substituting Eq. (E.29) into the radiative transport equation, the forward 
directed portion of the scattering phase function vanishes and we are left with an 
isotropically scattering problem with an efective scattering coefficient 

I 
d = ( 1  - g ) a ,  

which translates into an effective optical depth, T;, and effective scattering albedo, 
u', given by 

I 
To = (1 - gw) To 

a' = (1 - g ) w / ( l  -sa). 

The asymmetfy parameter, 9, is unity for purely forward scattering, zero for 
symmetric scattering (e.g. Rayleigh scattering), and -1 for purely backward scatter- 
ing. For compositions similar to most fly ash particles, the asymmetry parameter 
is generally greater than zero, i.e., the scattering is predominantly forward. The 
asymmetry parameter is defined as the first moment of the scattering phase functions 
and is therefore related to the Legendre expansion coefficient A1 by 

Lee and Buckius [51] and Gupta et al. [SI have shown that scaling anisotropic 
scattering using this model scattering phase function leads to good accuracy for 
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0.0489 
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20.0 
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0.7452 
0.7890 
0.7123 
0.7795 
0.7762 
0.7732 
0.8103 
0.7880 
0.8016 
0.8045 
0.8082 
0.8196 
0.8088 
0.8224 - 

hemispherical quantities such as heat flux. To verify this scaling rule and also to 
check the correctness of the computer code, the hemispherical transmittance and 
reflectance was computed for a range of particle sizes, z, with complex refractive 
index rn = 1.5 + i10-4. 

Table E.2 shows the z-values for which calculations were performed and their 
corresponding asymmetry parameters, g. Notice that the asymmetry parameter 
increases from approximately 0.05 at  z = 0.5 to a maximum value of 0.82 at z = 100. 
The general trend is for g to increase with increasing z as the forward scattered 
lobe associated with diffraction becomes more pronounced. However, owing to the 
complicated nature of Mie scattering, the function g (5 )  is not strictly monotonic. It 
is beyond the scope of this discussion to fully explain this phenomenon, but in large 
particles it can be explained by considering the interference between the forward 
dz’ructed light and the forward refracted light (the light transmitted through the 
particle). Small particles require a more complicated explanation since refraction is 
not very meaningful for small z. 

Figures E.2 - E.4 show the hemispherical emittance versus particle size, z, for 
various optical depths, TO, and scattering albedos, w. The results for anisotropic 
scattering, with A4 = 128, show excellent agreement with the results using “scaled” 
isotropic scattering, with the largest discrepancy occurring for w = 0.9 and TO = 5.0 
in the range 1 < < 5. As expected, when the influence of multiple scattering is 
low (TOW << 1) the  scaled isotropic results are very accurate, but it is also evident 
that even when there are significant levels of multiple scattering (T = 10,w = 0.9) 
the scaled isotropic model predicts the hemispherical emittance very well. 
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Figure E.2: The hemispherical emittance versus particle size for 
scattering albedo, w = 0.1, and various optical depths, TO 

Figure E.5 shows the computed hemispherical reflectance for w = 0.9. The 
scaled isotropic model does not predict reflectance quite as accurately as it predicts 
emittance, with errors on the order of 5-8% for TO = 0.5 and less than approximately 
1% for 70 = 10. This small error is acceptable in most engineering situations. 

The scaled isotropic model predicts hemispherical quantities very accurately, but 
does not predict directional emergent radiances as accurately. Figure E.6 shows 
the directional reflectance for three different particle sizes. The scaled isotropic 
solution predicts the directional reflectance very accurately for x = 0.5, which is 
to be expected since the scattering phase function is very symmetric and is closely 
represented by isotropic scattering. However, for larger z, the model phase function 
does not approximate the real phase function so well, and higher order models are 

252 



1 .o 

0.8 
0 c a 
t= 

E 0.6 w 
.- 

- 
.- 8 
L 
Q) 

v) 

Q) 

0.4 
.- 

- - -  Scaled Isotropic Scattering 
E 

= 0.2 Oz0 = 0.5 O f o  = 1 .O 
v Z o  = 5.0 oT0 = 10 

0 
1 10 102 

Particle Size, x 

Figure E.3: The hemispherical emittance versus particle size for 
scattering albedo, w = 0.5, and various optical depths, TO 

required. The model phase function (isotropic plus a delta function) causes under- 
prediction of the reflectance at angles far from the normal and over-prediction near 
the normal (0  = 0). Similar trends (not presented) are seen for directional emittance 
and transmittance. 

E.5 The 6 - PN approximation 

The simple scattering phase function model presented in the previous section 
can be generalized to give improved accuracy. As discussed in the previous section, 
the phase function can be expressed as a series of Legendre polynomials where the 
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Figure E.4: The hemispherical emittance versus particle size for 
scattering albedo, w = 0.9, and various optical depths, TO 

Legendre coefficients, Aj,  become small for large j. For a spherical particle with 
size parameter 5 ,  the number of terms required to model the phase function using 
Eq. (E.20) is approximately 22 + 10 [47]. 

For the following calculations the average scattering properties for a dispersion of 
particles is studied. To narrow the scope of this calculation, only radiation at 4pm 
is considered and the optical constants are assumed to be m = 1.49 + 21-95 x 
(similar to slag SA05). The distribution of particles is assumed to be log-normal with 
volume median diameter of 5 = 9pm and geometric standard deviation as = 2.0. 
See Chapter V for a description of how the average properties are computed. 

As discussed in the previous sections, the scattering phase function for a single 
particle is characterized by a large forward directed lobe (if the particle is moderately 
large) and a number (approximately = x) of smaller lobes spread approximately 
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Figure E.5: The hemispherical reflectance versus particle size for 
scattering albedo, w = 0.9, and various optical depths, 70 

uniformly in 8. As x is increased the number of lobes increases and more terms in the 
Legendre series are required to describe the additional complexity. However, when 
the scattering is averaged over many particle sizes, as is the case for radiation heat 
transfer in an ash dispersion, the lobes average out, and 9 (6) becomes a relatively 
smooth function in 8 .  A plot of 9 (6) is shown in Fig. E.7 for the model dispersion 
described above. 

Although the complicated lobe structure in CP (0) is removed by averaging over a 
distribution of particle sizes, the Legendre series still retains many significant terms. 
The averaged scattering phase function still has a strong forward scattering lobe that 
is not accurately modeled with a few orders of Legendre polynomials. However, if 
the forward lobe is modeled as a delta function then the remaining portion of the 
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Figure E.6: The directional reflectance for w = 0.9, TO = 1, and 
x = 0.5, 9, and 36 

curve is reasonably modeled by only a few orders of Legendre polynomials. This 
approximation is the basis for the S - PN model. 

Consider the phase function expansion [40] 
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Figure E.7: Average scattering phase function, @(e) for a log-normal 
polydispersion of particles with & = 9pm and as = 2 and optical 
constants rn = 1.49 + 21.95 x at a wavelength of 4pm. 
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where f and B; are constants. As N approaches infinity f -+ 0 and Eq. (E.30) is 
equivalent to Eq. (E.20). Using Eq. (E.20) and the orthogonality relation 

(E.31) 

the constants in Eq. (E.30) are determined in terms of the Aj in Eq. (E.20)) i.e., 

(E.32) 

The approximate scattering phase function, Eq. (E.30), is shown in Fig. E.7 for 
N = 1, N = 5 ,  and N = 9. The high accuracy of this S - PN model is evident for 
even relatively small N .  

E.5.1 Evaluation of 5 - PN model for a planar layer 

The b - PN model for (0) was evaluated using a computer code developed for 
computing the radiative transfer through a planar layer. The layer is assumed to 
have the particle size distribution and optical properties described previously. The 
scattering albedo, w a/ (a + CY) = 0.9979, was computed from the size-averaged 
scattering and absorption efficiencies. 

The reflected and transmitted directional radiance is shown in Figs.E.8 and E.9 
for various optical depths, T~ = a L ,  where the layer thickness is L and the absorption 
coefficient is a. The angle, 0, on both plots is measured from the outward normal. 
We see that the error in the small N approximations to @(e) is largest when T~ is 
small. However, for N = 5 or N = 9 the error is very small for all T~ shown. 

The hemispherical transmittance, T, and reflectance, R, are shown in Table E.3, 
along with the associated error for each phase function model. The results are 
consistent with Fig. E.8 and Fig. E.9 in that the error is largest for small T ~ .  However, 
it is significant that except when either T or R is small, even the N = 0 solution is 
reasonably accurate. Furthermore, for N = 5 the error is less than 0.55% for all 
the cases shown. Using N = 9 gives essentially exact solutions for the hemispherical 
transmittance and reflectance. 

From this analysis, it is evident that using the 5 - PN model for the scattering 
phase function is quite accurate for N > 5. If errors on the order of a few percent 
can be tolerated, N = 2 or less can be used. Also, if only the hemispherical fluxes 
are of interest, the N = 0 solution is probably adequate. 
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Figure E.8: Reflected radiance versus direction for a planar polydis- 
persion of particles with various optical depths and a 6 - PN model 
of @(e)  with N = 0,1 ,2 ,5 ,9  and 00. 
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Figure E.9: Transmitted radiance versus direction for planar poly- 
dispersion of particles with various optical depths and 6 - PN model 
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- 

0.67 
0.40 
0.13 
0.02 
0.00 

ro = 0.5 I Percent Error 
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I 
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- 
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- 
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0.2 160 1 
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Table E.3: continued.. . 

7 

ro = 2 Percent Error 
Order R T R T 
Exact 0.33 752 0.65422 - - 

0 0.33114 0.66060 - 1.89 0.97 
1 0.33420 0.65754 -0.99 0.51 
2 0.33725 0.65449 -0.08 0.04 
5 0.33749 0.65424 -0.01 0.00 
9 0.33752 0.65422 -0.00 0.00 

Order 
Exact 

To = 5 
R 

0.53624 
0.53451 
0.53507 
0.53612 
0.53622 
0.53623 

T 
0.44332 
0.44505 
0.44448 
0.44344 
0.44333 
0.44332 

Percent Error 
R T 
- - 

-0.32 0.39 
-0.22 0.26 
-0.02 0.03 
-0.00 0.00 
-0.00 -0.00 

70 = 10 Percent Error 
Order R I T R I T 
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0 
1 
2 
5 
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0.67825 
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0.67776 
0.67819 
0.67823 
0.67824 
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0.28236 
0.28224 
0.28185 
0.28180 
0.28179 

- 
-0.08 
-0.07 
-0.01 
-0.00 
-0.00 

- 

0.20 
0.15 
0.01 

-0.00 
-0.01 
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E.6 Summary 

The discrete ordinates method for calculating radiative transport through a planar 
layer with scattering and absorption has been presented. Considerable attention was 
given to the effect of anisotopic scattering on the accuracy of the solution. Using the 
full Legendre series expansion for the scattering phase function was shown to be very 
expensive in computation time. A simple approximation in which the scattering phase 
function was assumed to be a delta function plus isotropic scattering was shown to 
give accurate estimates for total hemispherical quantities, but the error in directional 
quantities was significant. A generalized form of this simple approximation to the 
scattering phase function, the S - P, model, was found to be suitable for accurately 
computing both hemispherical and directional quantities while only using a few terms 
(5  5 )  for the phase function series. 
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Appendix F. 
Glass Structure and Optical Properties 

A large fraction of the fly ash produced in a coal combustor is in the form of 
glassy particles [52] produced by rapid cooling of molten droplets of inorganic oxides 
(clays). Based on Raman studies of melts of aluminosilicate glasses, it is expected 
that the structure of these molten droplets is closely related to the structure of the 
quickly cooled glassy particles [53-541, and that this structure will affect the optical 
properties of both the molten droplets and the solid glassy particles in very similar 
ways. To understand optical absorption by Si02 glasses it is necessary to understand 
the structure of the glass. - 

The most commonly accepted model for the structure of the glass is the random 
network model first developed by Zachariasen (551 and is discussed in introductory 
texts (e.g., Holloway [25]) on glass. The most common glasses are based on silica 
(Si02) with varying amounts of metal oxides such as Al2O3, CaO, MgO, NaaO, 
and Fe203, to name a few. The random network model assumes each Si4+ ion is 
surrounded by four 02- anions in a tetrahedral arrangement about the Si4+ cation. In 
pure Si02 these tetrahedral units are bound at the vertices to form a three dimensional 
network of Si-0-Si chains, or polymers. The 0 in this bond is called a bridging oxygen. 
In crystalline quartz the arrangement of the tetrahedral units is regular, producing 
long range order throughout the material. However, in glass the angle of the Si-0-Si 
bonds and the azimuthal angle between two neighboring tetrahedral units varies. 
Thus, the glass has short range order, within the range of the tetrahedral unit, that 
is similar to that of quartz, but the bond angles between tetrahedral units is not 
regular. There is a distribution of bond angles and bond strengths associated with 
the disorder of the glass. Figures F.l and F.2 illustrate the structure of silica glasses. 

Consider the tetrahedral structure of the basic silica glass. For pure Si02 the 
chemical arrangement for a pair of Si atoms is 

0 0 

-0-Si-O-Si-O- 
I I 

I I 
0 0 

where the central oxygen is the bridging oxygen. Here the bond angles are not shown 
since the true structure is 3-dimensional. A more realistic geometrical illustration 
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Figure F. l :  Two dimensional representation of silica network for (a) 
crystalline silica, (b) glassy silica, and (c) silica network modified by 
calcium and sodium. 

is presented in Fig. F.1 and Fig. F.2. The absorption of photons incident on such 
an atomic structure depends on the bond strengths and angles of the Si204 network 
structure. 

The addition of metal oxides to silica glass causes structural changes which affect 
the optical properties of the glass. The most significant effect of the addition of other 
oxides is on the bonds between adjacent tetrahedral units. Since these bonds are 
responsible for the optical properties at the restrahlen wavelengths (A  > 8pm) the 
addition of oxides mostly affects these longer wavelength optical properties. 

Some oxides introduce cations that are capable of replacing a silicon ion in the 
network, and are called network formers. For example, A1203, introduces an A13+ 
cation that can replace a silicon cation to form a chain, for example, Si-0-A1-0-. 
However, to achieve local charge neutrality it is necessary to have an additional 
cation (e.g., 0.5Ca2+ or Na+) in the vicinity of the A13+ cation. Note that these 
lower valence cations, Ca2+ or Na+, have coordinations 2 6. 
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Non-Bridging Oxygen 

Silicon 

Figure F.2: Examples of silica random network model structures for 
glasses. 

Some oxides introduce cations that do not form networks, but instead balance 
the charges of the vertices of would-be tetrahedral units, thus breaking the bridging 
oxygen bonds. Examples of such ions are Ca2+ and Na+. The addition of these 
network breaking ions causes an increase in the number of non-bridging ozygens, or 
NBO’s. If sufficient quantities of network-breaking ions are added, the glass becomes 
depolymerized so that the predominant silicon bond is Si-0-. 
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For example, Ca and Na cations are bond breakers. Their presence reduces the 
number of bridging oxygens. If one adds such network breaking metal cations, (Ca2+ 
or Na+) then the network is modified to the forms 

0 0 0 
I 

Ca2+ I 
- 0-Si-0- 

I I 
I I 

-0-Si-0-Si-0- 

0 0 0 

0 0 0 
I 

Na+ I 
- N a+ 

0-Si-0- 
I I 

I I 
-0-Si-0-Si-0- 

0 0 0 
Here we represent the three-dimensional network as a two-dimensional form; thus 
bond angles are not correctly represented. 

Network forming metal cations (i-e., those which allow tetrahedral coordination) 
such as A13+ and Fe3+ can replace silicon ions in the network, provided there are 
available metal cations (M+) to charge balance the tetrahedral site. For example, in 
the schematic below two tetrahedrally coordinated A1 atoms are charge balanced by 
a single nearby ea2+ cation. 

0 0 
I I 

I I 
-0-Si-0-Al- 0 - 

0 0 
ea2+ 

0 
I 
I 

- 0 -Al-O- 

0 

Here the bridging oxygens above and below the Ca2+ cation are connected to a 
continuing network of Si-0-Si. Alternatively, Hemmings and Berry [52] suggest that 
while aluminum can replace a silicon atom in tetrahedral coordination, the result is 
a non-bridging oxygen that is then charge balanced by a metal cation, such as 

0 0 0 
I 

ea2+ I 
-0-AI-0- 

0 

I I 

I I 
-0-Si-O-A1-0- 

0 0 
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The difference between these two alternative models is notable, and perhaps both 
situations occur in real glasses. Finally, if there are insufficient available charge 
balancing metal cations to allow A1 to be tetrahedrally coordinated, then A1 may 
also act as a network breaker, such as 

0 0 

-0-Si-0-Si-0- 
I I 

I I 
0 0 

0 
I 

I 
- 0-Si-0- 

0 
~ 1 3 +  

0 
I 

I 
- 0-Si-0- 

0 

From this model we can qualitatively understand the effect of silica content and 
temperature on the strong absorption band of silica glasses. Sweet and White [56] and 
Crozier and Douglas [57] studied sodium silicate glasses with varying concentrations of 
Si02 and Na2O. As mentioned above, the N a  metal cation is a network breaker in silica 
glasses, thus the studies provide an estimate of the frequency for the bridging Si-0-Si 
bond and the non-bridging Si-0- bond. Both studies find that the bridging bond for 
room temperature sodium silica glass produces a peak absorption at a frequency of 
approximately 11 00 cm-I and a peak absorption for non-bridging Si-0 near 950 cm-'. 
Another absorption peak near 760 cm-*, weak in high silica glasses, but becoming 
stronger as more sodium is added is not explained by Sweet and White [56] or Crozier 
and Douglas [57], but Simon [34] suggests that it may be due to ring groups in the 
glass. Simon admits that this explanation is not rigorously substantiated but it is 
known that the occurrence of this absorption band is highly structure-sensitive. 

Finally, Sweet and White [56] made reflectance measurements on the glasses 
at  molten temperatures (900-980°C). The effect of temperature was to shift the 
absorption peaks to lower frequencies (longer wavelength). This shift was attributed 
to the increased bond length associated with thermal expansion of the glass. This 
result is quite significant since it implies that there is no significant structural 
difference between the cold solid glass and hot liquid glass. Simon [34] suggests that 
the broadening and shift to lower frequencies associated with increased temperature 
is explainable in terms of the level of disorder in the glass structure. Increasing the 
temperature of the glass causes the bond structures to be less regular, with a broader 
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distribution of bond angles and distances. The result is similar to that of adding 
cations (either network formers of network breakers) to the silica glass. 

From the above discussion it is clear that the structure of glass is complex. There 
is a considerable body of literature on the subject, but recent work by Hemmings 
and Berry [52] provides a good discussion of the subject as it relates to glassy fly-ash 
particles. 
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