Exploring the Feasibility of Fabricating Micron-Scale Components Using Microcontact Printing LDRD Final Report

PDF Version Also Available for Download.

Description

Many microfabrication techniques are being developed for applications in microelectronics, microsensors, and micro-optics. Since the advent of microcomponents, designers have been forced to modify their designs to include limitations of current technology, such as the inability to make three-dimensional structures and the need for piece-part assembly. Many groups have successfully transferred a wide variety of patterns to both two-dimensional and three-dimensional substrates using microcontact printing. Microcontact printing is a technique in which a self-assembled monolayer (SAM) is patterned onto a substrate by transfer printing. The patterned layer can act as an etch resist or a foundation upon which to build ... continued below

Physical Description

49 pages

Creation Information

MYERS, RAMONA L.; RITCHEY, M. BARRY; STOKES, ROBERT N.; CASIAS, ADRIAN L.; ADAMS, DAVID P.; OLIVER, ANDREW D. et al. June 1, 2003.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM, and Livermore, CA (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Many microfabrication techniques are being developed for applications in microelectronics, microsensors, and micro-optics. Since the advent of microcomponents, designers have been forced to modify their designs to include limitations of current technology, such as the inability to make three-dimensional structures and the need for piece-part assembly. Many groups have successfully transferred a wide variety of patterns to both two-dimensional and three-dimensional substrates using microcontact printing. Microcontact printing is a technique in which a self-assembled monolayer (SAM) is patterned onto a substrate by transfer printing. The patterned layer can act as an etch resist or a foundation upon which to build new types of microstructures. We created a gold pattern with features as small as 1.2 {micro}m using microcontact printing and subsequent processing. This approach looks promising for constructing single-level structures such as microelectrode arrays and sensors. It can be a viable technique for creating three-dimensional structures such as microcoils and microsprings if the right equipment is available to achieve proper alignment, and if a means is available to connect the final parts to other components in subsequent assembly operations. Microcontact printing provides a wide variety of new opportunities in the fabrication of microcomponents, and increases the options of designers.

Physical Description

49 pages

Source

  • Other Information: PBD: 1 Jun 2003

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SAND2003-1964
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/820892 | External Link
  • Office of Scientific & Technical Information Report Number: 820892
  • Archival Resource Key: ark:/67531/metadc740848

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 1, 2003

Added to The UNT Digital Library

  • Oct. 18, 2015, 6:40 p.m.

Description Last Updated

  • April 12, 2016, 6:30 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

MYERS, RAMONA L.; RITCHEY, M. BARRY; STOKES, ROBERT N.; CASIAS, ADRIAN L.; ADAMS, DAVID P.; OLIVER, ANDREW D. et al. Exploring the Feasibility of Fabricating Micron-Scale Components Using Microcontact Printing LDRD Final Report, report, June 1, 2003; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc740848/: accessed October 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.