Comparision of Limit Load Solutions with Results of a Collapse Tests of Perforated Plates with a Triangular Penetration Pattern

PDF Version Also Available for Download.

Description

Limit load solutions obtained by elastic-perfectly plastic finite element analysis (EPP-FEA) are compared to results of tests of low-alloy steel perforated plate geometries loaded to full plastic collapse. Results are given for two plastic-collapse tests of flat circular disks with circular penetrations arranged in a triangular pattern and drilled normal to the surface of the plate. The ligament efficiency (minimum distance between holes divided by the distance between the centers of the holes) of the pattern is 0.32 and the plate thickness is 2.39 inches (60.7 mm). The tests were designed so that a transverse load generated plastic collapse in ... continued below

Physical Description

vp.

Creation Information

Jones, D.P. & Gordon, J.L. December 13, 2001.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Bettis Atomic Power Laboratory
    Publisher Info: Bettis Atomic Power Lab., West Mifflin, PA (United States)
    Place of Publication: West Mifflin, Pennsylvania

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Limit load solutions obtained by elastic-perfectly plastic finite element analysis (EPP-FEA) are compared to results of tests of low-alloy steel perforated plate geometries loaded to full plastic collapse. Results are given for two plastic-collapse tests of flat circular disks with circular penetrations arranged in a triangular pattern and drilled normal to the surface of the plate. The ligament efficiency (minimum distance between holes divided by the distance between the centers of the holes) of the pattern is 0.32 and the plate thickness is 2.39 inches (60.7 mm). The tests were designed so that a transverse load generated plastic collapse in the outer row of penetrations due to a combination of transverse shear and in-plane bending. Limit-load solutions were obtained using EPP-FEA with small-strain, small-defection linear geometry assumptions. Two FEA models are used: one where the perforated region is modeled using an equivent solid plate (EQS) representation and another where each hole is explicitly modeled by FEA. The results presented in this paper demonstrate that the deformation patterns produced by the EPP-FEA solutions match exactly with the deformation patterns produced by the test. The EQS-EPP FEA solution is about 15% lower than the explicit-hole EPP-FEA solution. Using one-third the actual ultimate strength of the material as the strength parameter in the limit load calculation produces a calculated limit load that is greater than a factor of three less than the mean measured plastic-collapse load obtained in the tests. This paper adds to the qualification of the use of limit-load solutions obtained using small-strain, small deflection EPP-FEA programs for the calculation of the limit load for perforated plates.

Physical Description

vp.

Notes

OSTI as DE00820730

Source

  • 2002 ASME Pressure Vessels and Piping Conference, Vancouver, British Columbia (CA), 08/04/2002--08/08/2002

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: B-T-3398
  • Grant Number: AC11-98PN38206
  • Office of Scientific & Technical Information Report Number: 820730
  • Archival Resource Key: ark:/67531/metadc740823

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 13, 2001

Added to The UNT Digital Library

  • Oct. 18, 2015, 6:40 p.m.

Description Last Updated

  • March 30, 2016, 5:05 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Jones, D.P. & Gordon, J.L. Comparision of Limit Load Solutions with Results of a Collapse Tests of Perforated Plates with a Triangular Penetration Pattern, article, December 13, 2001; West Mifflin, Pennsylvania. (digital.library.unt.edu/ark:/67531/metadc740823/: accessed October 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.