GEOLOGIC SCREENING CRITERIA FOR SEQUESTRATION OF CO2 IN COAL: QUANTIFYING POTENTIAL OF THE BLACK WARRIOR COALBED METHANE FAIRWAY, ALABAMA

PDF Version Also Available for Download.

Description

Sequestration of CO{sub 2} in coal has potential to reduce greenhouse gas emissions from coal-fired power plants while enhancing coalbed methane recovery. Data from more than 4,000 coalbed methane wells in the Black Warrior basin of Alabama provide an opportunity to quantify the carbon sequestration potential of coal and to develop a geologic screening model for the application of carbon sequestration technology. This report summarizes stratigraphy and sedimentation, structural geology, geothermics, hydrology, coal quality, gas capacity, and production characteristics of coal in the Black Warrior coalbed methane fairway and the implications of geology for carbon sequestration and enhanced coalbed methane ... continued below

Physical Description

209 pages

Creation Information

Pashin, Jack C.; Carroll, Richard E.; Richard H. Groshong, Jr.; Raymond, Dorothy E.; McIntyre, Marcella & Payton, J. Wayne January 1, 2003.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Sequestration of CO{sub 2} in coal has potential to reduce greenhouse gas emissions from coal-fired power plants while enhancing coalbed methane recovery. Data from more than 4,000 coalbed methane wells in the Black Warrior basin of Alabama provide an opportunity to quantify the carbon sequestration potential of coal and to develop a geologic screening model for the application of carbon sequestration technology. This report summarizes stratigraphy and sedimentation, structural geology, geothermics, hydrology, coal quality, gas capacity, and production characteristics of coal in the Black Warrior coalbed methane fairway and the implications of geology for carbon sequestration and enhanced coalbed methane recovery. Coal in the Black Warrior basin is distributed among several fluvial-deltaic coal zones in the Lower Pennsylvanian Pottsville Formation. Most coal zones contain one to three coal beds that are significant targets for coalbed methane production and carbon sequestration, and net coal thickness generally increases southeastward. Pottsville strata have effectively no matrix permeability to water, so virtually all flow is through natural fractures. Faults and folds influence the abundance and openness of fractures and, hence, the performance of coalbed methane wells. Water chemistry in the Pottsville Formation ranges from fresh to saline, and zones with TDS content lower than 10,000 mg/L can be classified as USDW. An aquifer exemption facilitating enhanced recovery in USDW can be obtained where TDS content is higher than 3,000 mg/L. Carbon dioxide becomes a supercritical fluid above a temperature of 88 F and a pressure of 1,074 psi. Reservoir temperature exceeds 88 F in much of the study area. Hydrostatic pressure gradients range from normal to extremely underpressured. A large area of underpressure is developed around closely spaced longwall coal mines, and areas of natural underpressure are distributed among the coalbed methane fields. The mobility and reactivity of supercritical CO{sub 2} in coal-bearing strata is unknown, and potential exists for supercritical conditions to develop below a depth of 2,480 feet following abandonment of the coalbed methane fields. High-pressure adsorption isotherms confirm that coal sorbs approximately twice as much CO{sub 2} as CH{sub 4} and approximately four times as much CO{sub 2} as N{sub 2}. Analysis of isotherm data reveals that the sorption performance of each gas can vary by a factor of two depending on rank and ash content. Gas content data exhibit extreme vertical and lateral variability that is the product of a complex burial history involving an early phase of thermogenic gas generation and an ongoing stage of late biogenic gas generation. Production characteristics of coalbed methane wells are helpful for identifying areas that are candidates for carbon sequestration and enhanced coalbed methane recovery. Many geologic and engineering factors, including well construction, well spacing, and regional structure influence well performance. Close fault spacing limits areas where five-spot patterns may be developed for enhanced gas recovery, but large structural panels lacking normal faults are in several gas fields and can be given priority as areas to demonstrate and commercialize carbon sequestration technology in coalbed methane reservoirs.

Physical Description

209 pages

Notes

OSTI as DE00811455

Source

  • Other Information: PBD: 1 Jan 2003

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: NONE
  • Grant Number: FC26-00NT40927
  • DOI: 10.2172/811455 | External Link
  • Office of Scientific & Technical Information Report Number: 811455
  • Archival Resource Key: ark:/67531/metadc740714

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • January 1, 2003

Added to The UNT Digital Library

  • Oct. 18, 2015, 6:40 p.m.

Description Last Updated

  • Jan. 3, 2017, 12:38 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 8

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Pashin, Jack C.; Carroll, Richard E.; Richard H. Groshong, Jr.; Raymond, Dorothy E.; McIntyre, Marcella & Payton, J. Wayne. GEOLOGIC SCREENING CRITERIA FOR SEQUESTRATION OF CO2 IN COAL: QUANTIFYING POTENTIAL OF THE BLACK WARRIOR COALBED METHANE FAIRWAY, ALABAMA, report, January 1, 2003; United States. (digital.library.unt.edu/ark:/67531/metadc740714/: accessed August 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.