NEXT-GENERATION PLASMA CONTROL IN THE DIII-D TOKAMAK

PDF Version Also Available for Download.

Description

OAK A271 NEXT-GENERATION PLASMA CONTROL IN THE DIII-D TOKAMAK. The advanced tokamak (AT) operating mode which is the principal focus of the DIII-D tokamak requires highly integrated and complex plasma control. Simultaneous high performance regulation of the plasma boundary and internal profiles requires multivariable control techniques to account for the highly coupled influences of equilibrium shape, profile, and stability control. This paper describes progress towards the DIII-D At mission goal through both significantly improved real-time computational hardware and control algorithm capability.

Physical Description

13 pages

Creation Information

WALKER, ML; FERRON, JR; HUMPHREYS, DA; JOHNSON, RD; LEUER, JA; PENAFLOR, BG et al. October 1, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

OAK A271 NEXT-GENERATION PLASMA CONTROL IN THE DIII-D TOKAMAK. The advanced tokamak (AT) operating mode which is the principal focus of the DIII-D tokamak requires highly integrated and complex plasma control. Simultaneous high performance regulation of the plasma boundary and internal profiles requires multivariable control techniques to account for the highly coupled influences of equilibrium shape, profile, and stability control. This paper describes progress towards the DIII-D At mission goal through both significantly improved real-time computational hardware and control algorithm capability.

Physical Description

13 pages

Notes

INIS; OSTI as DE00813651

Source

  • THIS IS A PREPRINT OF A PAPER PRESENTED AT THE 22ND SYMPOSIUM ON FUSION TECHNOLOGY, HELSINKI (FI), 09/09/2002--09/13/2002; Other Information: THIS PREPRINT WILL BE PUBLISHED IN FUSION ENGINEERING AND DESIGN

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: NONE
  • Grant Number: AC03-99ER54463
  • Office of Scientific & Technical Information Report Number: 813651
  • Archival Resource Key: ark:/67531/metadc740700

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 1, 2002

Added to The UNT Digital Library

  • Oct. 18, 2015, 6:40 p.m.

Description Last Updated

  • April 19, 2016, 12:48 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

WALKER, ML; FERRON, JR; HUMPHREYS, DA; JOHNSON, RD; LEUER, JA; PENAFLOR, BG et al. NEXT-GENERATION PLASMA CONTROL IN THE DIII-D TOKAMAK, article, October 1, 2002; United States. (digital.library.unt.edu/ark:/67531/metadc740700/: accessed November 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.