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The influence of hydrodynamics on phase segregation is an issue of both 
theoretical and practical importance that has been under intense scrutiny in 
recent years. In order to better understand and model the phase segregation 
of binary fluids we opted for a mesoscopic description that proves to be 
simplifying both conceptually and computationally [l]. 

The system that we studied is a mixture of two kinds of particles. All 
particles interact with each other through strong short-range interactions 
modeled by hard spheres with the same mass m and diameter d. There 
is also a smooth long-range repulsion between particles of different kinds, 
w = Y3wY+Y > 0; V( > r is a so-called Kac potential, J V(r)d3r = 
a! > 0, that has the range and strength controlled by y. This system is well 
described by mean-field theory and is known to undergo a phase transition to 
an immiscible state at low enough temperatures [2]. At low overall densities 
and weak enough repulsion the natural dynamical description for this system 
is given in terms of two coupled, energy and momentum conserving Vlasov- 
Boltzmann equations, making it what we call a dynamical mean-field model: 

fi(r,v, t) are the one-particle distribution functions, Fi(r, t) = --or/i(r), 
K(r) = JV(lr - r/))nj(rl)drl (Vl asov potential), nj(r/) = J fj(r/, v, t)dv, 
with i # j, and J[f,g] is the Boltzmann collision operator for hard core in- 
teractions [3]. The Boltzmann equation properly describes the dynamics of 
dilute gases, while the Vlasov term takes into account the long-range inter- 
action in the spirit of the mean-field approximation: each particle moves in 
the background potential generated by all the other particles it is interacting 
with. Such a description is not only clarifying from a physical viewpoint, 



but opens the door for efficiently simulating the dynamics of the system at 
the particle level. We believe that this model contains the essential features 
of phase segregation in general binary fluids. 

The computational scheme that we used is a combination of direct sim- 
ulation Monte Carlo (DSMC) and particle-in-the-cell (PIC) evolution, that 
inherits the efficiency and robustness of these two algorithms. The DSMC is 
a stochastic algorithm due to Bird [4] that consistently incorporates the as- 
sumptions behind the Boltzmann equation into the particle dynamics. The 
method is essentially the following: the physical space is divided into a net- 
work of cells containing typically tens of particles and the free flow of the 
particles over a small time interval At is followed by representative collisions 
among pairs of particles sharing the same cell. The typical linear dimension 
of a cell is a fraction of the mean free path between collisions. 

The PIC method for integrating the equations of motion was first used 
to deal with the l/r potential in plasma physics [5]. It takes advantage of 
the simple form of the Vlasov potential, which is a product in Fourier space, 
by calculating the densities on a grid through some weighting, then the 
potentials and forces on the same grid, and finally interpolating the forces 
at the position of each particle. 

These two methods can be naturally brought together by replacing the 
free flow of the DSMC procedure by motion in the background, Vlasov 
potential. If the repulsive potential between the two species is sufficiently 
weak and long ranged (so no new inter-particle correlations are introduced), 
such an algorithm contains the essential ingredients of the Vlasov-Boltzmann 
kinetics, and is therefore physically consistent with Eq. 1. To this end we 
used a leap-frog integrator for the equations of motion: 

r(t + At) = r(t) + v(t + e)At (2) 
L 

v(t) = v(t - 9, + --gy; 
f(t) nt f(t)at v(t++(t)+--y (3) 

with the DSMC collisions (note v/) taking place at time t. The natu- 
ral units for lengths and times in this method are the mean-free path, 
X = (23nnd2)-l, and mean-free time, 7 = X/c, where n is the overall particle 
density, c = (2lc~Ta/m)’ 2 and Z’s is the (initial) temperature. The DSMC re- 
quires that the system is dilute, i.e. nd3 << 1, which in turn means that nX3 
is large, while for the Vlasov calculation we need to have a significant num- 
ber of particles in the ‘sphere of influence’ of the potential, roughly meaning 
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Figure 1: Equilibrium interface profile: n(+) is the normalized total particle 
density and cp(*) is the concentration difference between the two species, 
cp = (nr - nz)/(nr + ns). The symbols are the results of simulations (y = 2) 
and the lines are the solution of the Vlasov-Boltzmann equations. 

nyv3 >> 1. We would also like to have a potential range that is much smaller 
than the system size, so that we can efficiently study the phase separation 
kinetics inside the miscibility gap. The idea is that we want to be able to 
follow the growth of the domains of the two phases for a long time, particu- 
larly in the regime where the interface between phases has a thickness much 
bigger that the domain size. Because far away from the critical temperature 
the interface thickness is of the same order as y-r, the system must be large 
enough in units of y -I. All these requirements can generally be met with 
reasonable computational resources. For example, we were able to perform 
simulations with over 2 million particles on a DEC Alpha station with 256 
MB of memory. To insure the stability of the algorithm the potential grid 
should be fine enough, but more important is the use of quadratic spline 
interpolation for the grid quantities and a ten-point finite difference method 
for the forces [5]. This scheme insures very good conservation of the total 
energy and linear momentum with time steps as large as 0.1 - 0.27. 

The structure of the interface separating the two phases coexisting inside 
the miscibility gap is related to the dominating coarsening mechanism [6]. 
We compared the equilibrium interface profiles that result directly from the 
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Figure 2: Domain growth for off-critical quenches: R(t) is the typical domain 
size at time t; straight line fits are drawn. 
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Figure 3: Order parameter (concentration difference) averaged in slices par- 
allel to the attracting wall as a function of the distance to the wall; non- 
wetting case. 
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Figure 4: Decay of a cosine velocity profile (see text) for T/Tc = 1.5 (bot- 
tom) and T/Tc = 0.5 (top); the system is initially homogeneous. 

Vlasov-Boltzmann equations [l] with the profiles obtained in simulations, 
Fig. 1, and found very good agreement. The agreement further improves as 
y is decreased and we conclude that the computational method is consistent 
with the Vlasov-Boltzmann kinetics, Eq. 1. Simulations performed at vari- 
ous volume fractions of the two coexisting phases provide a detailed picture 
of phase segregation in fluid systems with momentum conservation (model 
H) and without externally induced flows [l]. In particular, we found that 
for off-critical quenches but rather large volume fractions of the two phases 
the growth of the domains proceeds at late times as ti, Fig. 2, a result first 
observed in m icrogravity experiments [7], that we attributed to the so-called 
Brownian droplet coalescence mechanism. 

The influence of a wall attracting preferentially one of the species on 
the phase segregation process has drawn much attention in recent years [8]. 
Typically, phase separation waves propagate into the bulk perpendicular 
to the surface, with the resulting anisotropic pattern and growth exponents 
depending on whether or not the preferred component wets the surface. The 
present method is a useful tool for studying this process in binary fluids, Fig. 
3, which have been studied mainly experimentally. 

Our model and computational scheme provide a convenient framework 
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for the study of another important problem, the influence of phase segrega- 
tion on an initially prescribed hydrodynamical flow. A simple relevant case 
is the following: the system is homogeneous at t = 0 with equal numbers of 
the two types of particles and we prescribe a velocity profile on a ‘macro- 
scopic’ scale, 21, = A(O)cos(ky) (k = F, L is the length of the system along 
y), with a small initial amplitude A(0). The time evolution of this profile is 
very different above and below the critical temperature, T,. In the homo- 
geneous region the shape of the profile is preserved and the amplitude A(t) 
decays exponentially, A(t) = A(O)exp(--k2vt), similarly to the case with no 
long range repulsions (V is the kinematic viscosity of the Boltzmann gas), 
while below T, the system segregates and A(t) decays slower tharrexponen- 
tiaily, Fig. 4. (Note that the Ti dependence of the viscosity [3] has been 
scaled out .) 

The approach to phase segregation kinetics described here takes advan- 
tage of an important analytical tool available in nonequilibrium physics, the 
Boltzmann equation, and has a computational simplicity that should make 
it useful for other interesting applications. 
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