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This final report discusses major accomplishments of a 3-year project (#DE-PSO7-99ID13730) 
under the DOE’S NEER Program. The project has developed innovative and automated 
algorithms, codes, and tools for solving the discrete ordinates particle transport method 
efficiently in parallel environments. Using a number of benchmark and real-life problems, the 
performance and accuracy of the new algorithms have been measured and analyzed. 

The project has been performed by Prof, Haghighat and Dr. Sjoden and four graduate students in 
nuclear engineering, and resulted in 2 completed and 1 in-progress PhD dissertations, 1 MS 
thesis, and 21 publications. Further, two of the publications received awards: i) “Development of 
the Regional Angular Refinement and its Application to the CT-Scan device,” 2002 A N S  
Meeting, Hollywood, FL, June 2002, by G. Longoni and A. Haglughat; ii) “Development of An 
Expert System for Preparing an Effective Mesh Distribution for the Sn Method in the Parallel 
Environment,” 1 1 th International Symposium on Reactor Dosimetry (ISRD), August 2002, by A. 
Patchimpattapong and A. Haghighat. 

Over the past three years, following tasks have been completed: 

i) 

ii) 

iii) 

iv) 

Demonstration of the effectiveness of the adaptive differencing strategy in 
conjunction with the Taylor Projection Mesh Coupling (TPMC) 
Development of new multigrid algorithms for acceleration of solution convergence, 
and tested these algorithms for benchmark and real-life problems. 
Development of new schemes for generation of angular quadrature sets for being able 
to simulate highly angular dependent problems 
Development of a general 3-D parallel Simplified PL (SPL) algorithm for acceleration 
of the SN method. (Utilized special numerical formulation for reducing the 
computational cost of the SPL formulation.) 
Development of an acceleration algorithm which uses the SPL solution to increase the 
rate of convergence of the SN method. 
Development of an expert system for mesh generation and for selection of an 
appropriate domain decomposition algorithm in a parallel environment. 

v) 

Vi) 

Chapters 11-VI1 provide some discussions on each task, and refer to our publications which 
provide further detail on each task. Finally Chapter VIII provides an overall conclusion for this 
study. 
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11- Demonstration of the effectiveness of the adaptive differencing strategy in conjunction 
with the Taylor Projection Mesh Coupling (TPMC) 

11.1 Introduction 
Numerous studies have been devoted to developing differencing schemes for SN method. These 
schemes may or may not possess desirable properties including positivity, accuracy, efficiency, 
and fiee of non-physical oscillations [Alcouffe and O'Dell, 1986; Alcouffe et al., 1979; Rhoades 
and Engle, 1977; Petrovic and Haghighat, 1996; Petrovic and Haghighat, 1998; Sjoden and 
Haghighat, 1997a; Sjoden, 19971. Often a single differencing formulation cannot satisfy all the 
properties in all physical situations. Since most real-life problems are composed of different 
materials of various optical path lengths and dimensions, the use of a single differencing scheme 
may result in solution inaccuracy, or redundant meshing and computational ineficiency. 

We have developed an adaptive differencing strategy (ADS) [Sjoden and Haghighat, 1996a1, 
Ref.) which allows for variation of the differencing scheme throughout a physical model. 
Moreover, to conserve the computational time and memory, we have developed a projection 
formulation (Le. Taylor Projection Mesh Coupling, TPMC [Sjoden and Haaghat,  1996bl for 
accurate projection of angular flux across regions with fine- and coarse-grid densities. These 
algorithms have been incorporated and tested within the PENTRAN (Parallel Environment 
Neutral-particle TRANsport) code which is a three-dimensional parallel discrete ordinates code 
designed for solving large and complex radiation transport problems in distributed-memory and 
distributed-computing environments [Sjoden and Haghighat, 1997bl. 

To examine the effectiveness of the new formulations, we use the Kobayashi 3-D simple 
benchmarks [Kobayashi, 19961. The standard discrete ordinates method, with its limited number 
of directions, generally yields erroneous results that may differ fiom the true solutions by several 
orders of magnitude. This is especially true for deep penetration in a purely absorbing or low 
scattering shield, or at the interface of void and shield. With this study, we demonstrated that 
new formulations including variable meshing along all axes, ADS and TPMC can be very 
effective for solving such problems. Since the benchmarks had a simple one-group cross-section 
with Po anisotropy, we used the serial version of PENTRAN on a single processor of the Penn 
State LIONX PC-Cluster. 

For the current problems, since we are interested in determining flux values at positions 
separated fiom the source by several mfp of a purely absorbing or low scattering material with 
void regions, the current ADS uses either DTW [Petrovic and Haghighat, 19981 or EDW [Sjoden 
and Haghlghat, 1997al schemes. For the most part, DTW is used in the void region and the 50% 
scattering shield, and the EDW scheme is used in the pure absorber. To overcome the limited 
number of directions available in a level-symmetric quadrature set, we design a discrete model 
with a variable mesh arrangement that provides "smearing" of angular fluxes over the large 
interval meshes. To preserve solution accuracy as we increase the mesh size, the ADS and 
TPMC are used. 

To estimate the accuracy, we compared PENTRAN (Le., new formulations) fluxes to the 
analytical solutions in the pure absorber case, and to the Monte Carlo solutions in the 50% 
scattering case [Kobayashi et al., 19991. In this report, we only discuss the results obtained for 
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the pure absorber cases. Haghighat and Sjoden, 1999c, and Haghighat et al., 2001 provide 
detailed discussions on both pure absorber and 50% scattering problems, and demonstrate the 
impact of the TPMC and ADS formulations on the solution accuracy. The reminder of this 
Chapter is allocated to discussions on the three Kobayashi benchmark problems and the 
comparison of PENTRAN solutions to the reference solutions provided in Kobayashi et al., 
1999. 

1.1 PENTRAN MODELS AND SOLUTIONS FOR THE KOBAYASHI 
BENCHMARKS 

The three Kobayashi problems [Kobayashi, 19961 are parallelepiped or cubic in shape and 
contain three r egions: s ource, v oid, and s hield. Problems are s olved for t wo s ituations: i ) the 
material in the source and shield regions is a pure absorber; ii) the material in the source and 
shield regions has a 5 0% s cattering ratio. T he total cross-section o f t his m aterial i s 0.1 cm-', 
while the total cross-section of the void is 1 O4 cm-' . 
To develop the PENTRAN models, we utilized the PENMSH [Haglughat, 19981 code for 
preparation of mesh, material and source distributions, and the PENINP [Haghighat, 1999al code 
for automatic preparation of a PENTRAN input file. For post-processing, we used the 
PENDATA code [Sjoden, 19991 for preparation of tables of 3-D flux values, and the PENPRL 
code [Haghighat, 1999bl for extracting flux values at specific positions for which we have 
analytical or Monte Carlo solutions [Kobayashi et al., 19991. 

All the calculations except when indicated are performed using an S20 level-symmetric 
quadrature set and a single processor of the Perm State PC-Cluster. This machine has an i686 
processor and 1 Gbyte of memory. As mentioned earlier, here we only show the results for the 
pure absorber case; the 50% case results are presented in Haglughat et al., 2001. 

PROBLEM 1 - SHIELD WITH SQUARE VOID 
Figure 1 shows problem 1, referred to as the "shield with square void,'' is made of three cubic 
regions: source, void, and shield. The problem size 
is lOOxlOOxl00 cm3, and the source region is 
10~10x10 cm3. The void region is between 10 and 
50 cm along x, y, and z axes. 

The PENTRAN model is comprised of seven coarse 
z-levels. The axial widths of levels 1 to 7 are 10, 10, 
20, 10, 10, 20, and 20 cm, respectively. Each level is 
partitioned into 5 axial fine meshes. The x-y planes 
are partitioned into 7x7 coarse meshes. These 
meshes are further refined, resulting in a total of 
31550 meshes for the whole model. This same mesh 
distribution is used for both the pure absorber and 
the 50% scattering cases. 

100 

v 
Figure 1 Kobayashi Benchmark Problem 
1; shield with square void. 
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PENTRAN results are compared to the analytical or Monte Carlo solutions for three sets of 
positions. First set (case 1A) includes positions along the y-axis for every 10 cm interval between 
y=5cm and y=95 cm, at x= 5 cm and z= 5cm. The second set (case 1B) includes positions along 
the main diagonal (x = y = z positions) of the physical model between points (5 ,  5,  5 )  and (95, 
95, 95). The third set (case 1C) includes positions at z= 5 cm, y=65 cm, and along the x-axis at 
10 cm intervals between 5 and 95 cm. 

A PENTRAN calculation was performed for the 
purely absorbing shield in -207 sec. Figure 2 shows 
the 3-D flux distribution projected onto the 3-D 
mesh cells. 

Comparison of the PENTRAN and analytical fluxes 
for the three sets of positions (cases 1A to 1C) I 

P 
the y-axis, the maximum diffkrence is 9%; For m 

case 1B positions, along the main diagonal, the 0 

maximum difference of +37% occurs at position of 
(65,65, 65) that is adjacent to the comer of the void 
region; For case lC, along the x-axis, the maximum 
difference of <27% occurs at x=55 cm that is located 
adjacent to the outer comer of the void region. 

indicate the following: for case 1A positions, along 

U 

Figure 2 Flux distribution in Problem 1 
with pure absorber shield 

PROBLEM 2 - SHIELD WITH VOID DUCT 
Figure 3 shows problem 2, referred to as the shield with a void duct, 
consisting of three regions: source, void duct, and shield. The 
problem size is 60x100~60 cm3, the source region is lOxlOxl0 cm3, 2 
and the void duct is along y-axis between y=10 and 100 cm, x=O.O 2 

and 10.0 cm, and z=O.O and 10.0 cm. 

PENTRAN results are compared to the analytical solutions for two 
Sets Of positions. The first Set (case 2A) includes positions along the 
y-axis at every 10 cm between 5 and 95 cm, at x= 5 cm and z= 5cm. 
The second set (case 2B) includes positions along x-axis at every 10 
cm between 5 and 95 cm, at z= 5 cm and y=95 cm. 

Figure 3 Kobayashi 
Benchmark Problem 2; shield 
with void duct. 

1 ,,sal 
7s. I," 

The PENTRAN model has only one z-level of thickness 10 cm, I:: gg 
which is partitioned into 5 axial meshes. The x-y plane is 
partitioned into 6x10 coarse meshes. These meshes are refined 
further into a total of 1617 meshes. Note that mesh refinement is 

A 

done only along the diagonals between the source and positions of 
comparison. The PENTRAN calculation is completed in 17.3 sec. 
Figure 4 shows the 3-D flux distribution projected onto the 3-D 
mesh cells. Comparison of the PENTRAN and analytical fluxes for Figure 4 Flux distribution in 

Problem 2 with pure absorber. 
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the two sets of positions (cases 2A and 2B) indicates: For case 2A positions, along the y-axis, the 
maximum difference is < 8%. For case 2B positions, along the x-axis, a maximum difference of 
<-24% occurs at x=25 cm. 

PROBLEM 3 - SHIELD WITH DOGLEG VOID 
DUCT 
Figure 5 shows problem 3, referred to as the shield with 
dog-leg void duct, composed of three regions: source, void 
ducts, and shield. Problem size is 60x100~60 cm3, source 6 

region is lOxlOxl0 cm3, and void duct penetrates through 
model. 2 

PENTRAN results are compared to the analytical and 
Monte Carlo solutions for three sets of positions. The first 
set (case 3A) includes positions along the y-axis at every 10 
cm between 5 and 95 cm, at x = 5 cm and z =  5cm. The 
second set (case 3B) includes positions along x-axis at every 
10 cm between 5 and 55 cm, at z = 5 cm and y =55 cm. The 
third set (case 3C) includes positions along x-axis at every 10 
cm between 5 and 55 cm, at y = 95 cm and z =35 cm. 

Figure 5 Kobayashi Benchmark 
Problem3; dog-legvoidduct. 

The PENTRAN model has four z-levels of thickness 10 cm each, which in turn are partitioned 
into 5 axial meshes. The x-y plane is partitioned into 6x7 coarse meshes. These meshes are 
refined M e r  into a total of 12581 meshes. Note that the mesh refinement is done mainly along 
the diagonals between the source and positions of 
comparison. 

Figure 6 shows the 3-D flux distribution as projected onto 
the mesh distribution. Comparison of the PENTRAN and 
analytical fluxes for the cases 3A to 3C positions indicates: 
Along the y-axis, case 3A, the two solutions differ by < 
6%. Along the x-axis, case 3B, a maximum difference of 
<-9% occurs at x = 55 cm; Along the x-axis, case 3C, a 
maximum difference of <26% occurs at x =15 cm. 

11.3 SUMMARY AND CONCLUSIONS 

Figure 6 Flux distribution in Problem 3 
with pure absorber. 

This report presented PENTRAN solutions for the Kobayashi simple 3-D benchmark problems. 
These problems are simple in energy dependency ( i.e., one group), and s cattering anisotropy 
( k ,  PO), but they are challenging for the discrete ordinates method because fluxes are needed in 
the void, and a purely absorbing or 50% scattering shield that can extend several mfps from a 
localized fixed-source. Considering the limited number of directions of an S20 level-symmetric 
quadrature set, PENTRAN results are in excellent agreement with the reference analytical or 
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Monte Carlo solutions. The largest difference between the PENTRAN and reference solutions 
occurs at large distances (7-8 mfps) fiom the source (<27%), and at corner discontinuities 
between the shield and void regions (< 37%). 

The excellent agreement of the PENTRAN results with the reference solutions can be attributed 
to the u se o f u nique numerical formulations and features available i n P ENTRAN, a long w ith 
selection of an appropriate spatial mesh to allow for the “smearing” of angular fluxes. Note that 
simple mesh coarsening in order to provide “smearing” does not lead to “good” solutions; 
appropriate numerical formulations are needed in order to preserve the solution accuracy. For 
example, we have demonstrated for the selected mesh arrangement and highest level-symmetric 
quadrature order of S20, accurate solutions are achieved only when both adaptive differencing 
and TPMC formulations are coincidentally applied. In problem 3, with the pure absorber shield, 
the solution deviates from analytical values by a factor of 2 when the TPMC formulation is not 
applied. 

Finally, this study indicates that the PENTRAN’S numerical formulations can significantly 
reduce the “ray-effect” with a relatively low quadrature order of S20. 

3 
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I11 DEVELOPMENT OF NEW MULTIGRID ALGORITHMS FOR 
ACCELERATION OF SOLUTION CONVERGENCE, AND TESTED THESE 
ALGORITHMS FOR DIFFERENT REAL-LIFE PROBLEMS. 

111.1 Introduction 

In problems with optically thick regions and high scattering ratios (c-ratio=a,oi), particles that 
are making a large number of scattering collisions in a single energy group contribute 
significantly to scalar flux distribution. Consequently, the convergence of the source iteration 
(SI) method can become very slow. Several techniques such as Rebalance [Miller, 19781, 
diffision synthetic acceleration @SA) [Alcouffe, 19771 and multigrid (MG) [Barnett, 19891 
methods have been devised to remedy the slow convergence of the SI method for both shielding 
and criticality problems. 

Rebalance techniques (System Rebalance (SR) and Coarse Mesh Rebalance (CMR)) use the fact 
that the converged solution must satisfL the neutron conservation (or balance) equation. By 
imposing this balance condition on the unconverged solution over coarse regions of the problem 
domain, it is possible to obtain an iteration procedure that may result in faster convergence to the 
correct solution. Rebalance techniques are effective for deep-penetration problems, however two 
difficulties are associated with them: i) They suffer from convergence instability; ii) Selection of 
an optimum coarse-mesh in the rebalance methods is usually difficult, especially in parallel 
computing environments where spatial domain decomposition is imposed. The Partial Current 
Rebalance (PCR) [Sjoden and Haghighat, 1996al method reduces this instability by introducing 
a damping parameter. 

Unlike the rebalance methods, the DSA method works well in eigenvalue problems with high C- 
ratios. However it is not as effective in low c-ratio shielding problems. In the DSA method, 
transport solution is used to correct terms in the diffision equation, and the diffision solution is 
used to obtain an improved source for the transport equation. In this method, a diffision 
formulation consistent with the SN formulation is required. This means that if the differencing 
scheme of the transport equation is changed, a new formulation has to be derived for the 
diffision solver. Derivation of consistent d i h i o n  formulations becomes difficult especially in 
three-dimensional (3-D) geometries and with an adaptive differencing strategy [Sjoden and 
Haghighat, 19971. 

In the remaining of this Chapter, we present: i) a discussion on the general multigrid methods, ii) 
the new angular multigrid methods implemented in the PENTRANTM code [Briggs, 19871, iii) 
numerical tests using a 3-D benchmark problem, and v) results and analysis. 

111.2. GENERAL MULTIGRID METHODS 

In multigrid methods, a sequence of coarse andpne-grids is used to remove different modes of 
error from the estimate of the solution. The problem converges when the error remaining in the 
solution estimate is less than some predefined tolerance. We can express the solution (i.e. 
angular flux) and the associated error as a function of frequency rather than space or direction by 
applying the Fourier transform [Now& et al.,1988]. This representation facilitates the 
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and a fine discretization of the same domain as shown in Figure 7. 
The error modes behave differently on the two grids. The low- 
frequency error on the fine-grid becomes a high-frequency error on 
the coarse-grid. If we were to solve the transport equation on this 
comer grid, then we would have a good approximation to the low- 
frequency components of fine-grid solution. If we can couple the 
come- and fine-grid solutions, then the convergence rate on the fine- 
grid will be governed only by the high-frequency errors. Since the 
high fiequency errors are attenuated more rapidly than the low- 
fiequency errors, we have effectively accelerated the overall 
convergence. 

Figure 7 High and low 
frequency errors on fine- and 
t-norcm-m;A 

Several different types of multigrid methods have been developed [Kucukboyaci and Haghighat, 
2OOOb1, [Kucukboyaci and Haghighat, 19991, [Kucukboyaci and Haghighat, 2001a,b] and tested 
in different disciplines. Few of the examples are V-cycle, W-cycle, Nested iteration and /-cycle. 
Multigrid methods have been applied to transport calculations by using it directly for the SN 
equations [Barnett, 19891, [Sjoden and HaghighatYl996b], andor for the DSA equations 
[Alcouffe, 19911. Many of these applications have been limited to one or two-dimensional 
problems due to large memory requirements. Recently, an angular multigrid formulation has 
been developed for highly anisotropic scattering, especially for charged-particle transport 
problems, both in l-D and 3-D geometries [Morel and Manteuffel, 19911, [Pautz et al., 19991. 
Our method described in this report is different in the sense that it is more general and can be 
applied to any shielding and criticality calculations. 

111.3. ANGULAR MULTIGRID SCHEMES 

Simplified Angular Multigrid ( S A M )  

The first angular multigrid scheme we have developed is a /-cycle, which is called the Simplified 
Angular Multigrid (SAM) scheme. In the S A M  scheme, a global approximate solution (i.e., 
angular fluxes) is obtained on a come angular grid (e.g., Sq/ Po, PI), and then this solution is 
projected onto a fine angular grid (e.g., Slo/ Ps) filtering out the low frequency error components. 
Effectively, the calculation on the coarse-grid provides preconditioning for the fine-grid 
iterations. 

Using a two-grid approach, PENTRAN first performs a group source iteratiodsweep over a 
coarse angular grid denoted by QZh. The zeroth moment balance equation is given by: 

where q2h includes scattering, external and fission sources. Inner iterations on QZh are 
continued until convergence is achieved (Note that, convergence on the coarse-grid is less strict 
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compared to fine-grid (ah)). Then, all the coarse angular fluxes are projected onto the fine 
angular grid: 

Here, P 2hjh is the projection operator (coarse angular grid to fine angular grid). For this 
projection, we select the angular flux on a particular direction on R~~ that is closest to a direction 
on ah. The angle between direction vectors of R2h and Rh can be written in terms of direction 
cosines: 

2h h 2h h 2h h 1 = P m  P n  + Vm Vn + t m  t n  
where n = 1, ... N ( N  + 2) E Rh 2h-h cos(am,n 

m = 1, .M(M + 2) E R~~ ,M < N 
(3) 

By finding the minimum of these angles 
In case there is more than one minimum angle, the angular fluxes are determined by performing 
simple arithmetic mean of the fluxes in these directions. 

we determine the closest direction. 

In order to conserve particles, we must guarantee that the integral quantities (Le., scalar fluxes) 
rendered on both coarse and fine angular grids are equal. In order to achieve balance we 
normalize the projected angular fluxes: 

M ( M + 2 )  
2h 2h C wm Ym 

Using the projected angular fluxes, the scattering source and the boundary angular fluxes (in case 
of spatial domain decomposition) on the fine-grid are updated. Then, the iterationdsweeps are 
continued on the fine angular grid (ah) until convergence is achieved. 

Nested Iteration (NI) 

A variation of the SAM scheme is the Nested Iteration, in which we use successively refined 
multiple angular grids (e.g., Rgh, dh, R4h, R2h, ah). We start on the coarsest angular grid (e& 
Rgh) and solve for angular fluxes within certain convergence tolerance. These angular fluxes are 
then used as the initial solution for the next finer grid. This process is continued until we 
converge on the finest grid (ah). Note that the convergence tolerance for the comer grids should 
not be as small as the finer grids. This issue is examined later in this paper. 

Both S A M  and Nested have the following features: 
Edciency: The number of operations per mesh is significantly lower for the coarse 
angular grid compared to the fine angular grid. 
Memoly requirement: S A M  and Nested Iteration are not cyclic algorithms; all angular 
flux arrays are overwritten when iterations upgrade to a finer grid. Therefore, no extra 
memory is required. 

V-C ycle 
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The V-cycle algorithm uses a two-grid scheme. We, first perform an iteration on the fine angular 
grid, and compute the difference between the previous and the current iteration scattering sources 
for each cell and direction. This difference is called the residual. Residuals are then expanded 
into moments to be used as source on the coarse angular grid. We then perform a sweep on the 
coarse angular grid to render the error terms. Using the dosest direction approach, these error 
terms are projected back to the fine-grid to update the angular fluxes and the scattering source. 
We, then proceed to the next iteration with the updated source. We cycle between the two grids 
until a converged solution on the fine angular grid is obtained. The following algorithm 
summarizes the angular multigrid V-Cycle: 

0 Sweep H h Y h  = qh on ah with the initial guess Y h  

0 Compute residual r = qh - &, 
0 Sweep H2he2h = Ph-'2hqh on Qh with the initial guess eh = 0 

0 Update fluxes $ h  = Y h  + P2h-'he2h and scattering source qh + g h  
0 Sweep H ~ Y '  = f h  on nh with the initial guess F h  

where Hi s  the transport operator, r is the residual, e is the error, P is the projection operator. h 
and 2h represent fme- and coarse-grids respectively, and tiZde represents the updated values. 

Unlike the SAM and Nested Iteration schemes, in the V-cycle scheme, the angular fluxes on the 
fine-grid are saved, since they are updated with the error terms computed on the coarse-grid. 
Saving the angular fluxes imposes extra memory requirement, which can be compensated by the 
possible increase in the rate of solution convergence. It is important to note that all the angular 
multigrid algorithms described are compatible with the parallel memory structure and the 
adaptive differencing strategy of the PENTRANm code. Fig. 8 depicts the V-cycle and its 
combinations with S A M  and NI. 

nzh na QZh 

V-Cycle 
QZh 

SAM+V-Cycle ns J N I  + V-Cycle 

Figure 8 V-cycle and its combination with S A M  or NI. 

11 



B 

Region Q (an-') Ax-Ay-Az 
Source l.e-O1 1 .Ocm 
Void 1 .e-04 1 O.Ocm 

Absorber 1 .e-0 1 10.0cm 

IIIANUMERICAL TESTS 

Differencing Scheme 
DTW 
DTW 
EDW 

9 

In this section, we measure the performance of the angular multigrid schemes for different 
problem parameters such as c-ratio, coarse and fine angular grid quadrature orders, and 
convergence tolerances. We utilize problem 1 of the Kobayashi 3-D deterministic transport 
benchmark problems [Kobayashi, 19961. For this study, we have used an S ~ O  level-symmetric 
angular quadrature set. Scattering is isotropic, and we have analyzed cases with different c-ratios 
ranging fkom 0.6 to 0.99. Table 1 shows the total cross sections, fine mesh thickness, and 
differencing schemes used in different regions of the problem. Detailed studies [Haghigat and 
Sjoden, 19991 on this benchmark problem have demonstrated that the Directional Theta 
Weighted (DTW) differencing scheme is adequate for the source and void regions (small flux 
gradients), while the Exponential Directional Weighted (EDW) differencing scheme is adequate 
for the absorber regions (large flux gradients). 

For parallel processing of this problem, we have partitioned the angular domain into four sub- 
domains (2 octantd processor) and processed them on 4 processors of the LIONX parallel Pc 
Cluster at Penn State University. 

D 
111.5 RESULTS AND ANALYSIS 

3 

Here, we investigate how convergence tolerances, c-ratio, and quadrature order on the coarse and 
fine-grids affect the performance of the S A M ,  NI, V-cycle and the combined algorithms. We 
also compare the effectiveness these new algorithms to that of PCR. We measure the 
performance by iteration and CPU speed-up. Note that 

Number of fine grid iterations without acceleration Iteration Speedup = 
Number of Jine grid iterations with acceleration ' 

while 
CPU time without acceleration 

CPU time with acceleration 
CPU Speedup = 

Effect of Coarse- and Fine-grid Tolerances 

In this test, we have determined the effect of coarse- and fine-grid tolerances for the S A M  
scheme. For a fixed c-ratio of 0.9, Sz0 for fine-grid and Slo for coarse-grid, we have varied the 
coarse-grid convergence tolerance in a range of 1.e-01 to 1.e-06 and the fine-grid tolerance in the 
range of 1.e-03 to 1.e-06. For all fine-grid tolerances, we observe that S A M  scheme becomes 
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more effective with a tighter coarse-grid tolerance. However, note that for the coarse-grid 
tolerances below 2.e-04, no further speed-up is obtained. We also observe that as the tolerance 
becomes tighter on the fine-grid, SAM becomes less effective, regardless of the coarse-grid 
tolerance. It is also concluded that in order to obtain the maximum CPU speedup, the coarse-grid 
tolerances should be in the range of 2.e-03 - 2.e-04. 

Effect of e-ratio 

Using a fixed line-grid convergence tolerance of 5.e-04, SZO for the fine-grid and Slo for the 
coarse-grid, we have performed tests for S A M  with different c-ratios ranging from 0.6 to 0.99. 
The coarse-grid convergence tolerance is varied from 5.e-01 to 5.e-04. It is demonstrated that 
S A M  becomes more effective with the increasing c-ratio, resulting in a significant acceleration 
as high as -7.8. Further, SAM outperforms PCR by a factor of -2.6 in iteration speed-up, 
however it performs similar to PCR for CPU speed-up. 

Our results indicate that using PCR with S A M  decreases the number of coarse-grid iterations, 
thereby increasing the overall efficiency of the angular scheme. This combination accelerates the 
calculation by a factor of -4 while PCR alone achieves a speedup -2.9 for c-ratio of 0.99 and the 
coarse-grid tolerance of Z.e-03. We have repeated this test using the NI scheme combined with 
PCR. In NI, we have started the calculations on Sq grid, progressing to Slo and applied PCR on 
each grid. These analyses yielded similar results as the SAM and PCR combination for large C- 
ratios, but the effectiveness decreases for small c-ratios and the small coarse-grid tolerances. 
Further, our results suggest that the performance of NI is less sensitive to the coarse-grid 
tolerance. 

Effect of Coarse- and Fine-grid Quadrature Orders 
For a fixed c-ratio of 0.9 and S ~ O  for the fine-grid, we have performed tests for the S A M  scheme 
using a range of coarse-grid quadrature orders and convergence tolerances. Examining the 
iteration speed-up behavior, we observe that there is a relation between the iteration speed-up, 
coarse-grid quadrature order and tolerance. As we either increase the quadrature order or 
decrease the tolerance, we get better speedups. The behavior of the CPU speed-up is rather 
different. Beyond sa and tolerances below 5.e-03, the efficiency of S A M  decreases due to a 
higher computational effort on the coarse-grid. 

Table 2 provides information on relation between the coarse- and the fine-grid quadrature orders 
in terms of the CPU speed-up. This test has been performed for a c-ratio of 0.6, and coarse and 
fine-grid convergence tolerances of 5.e-02 and 5. e-04, respectively. Table 2 indicates that for an 
effective acceleration for problems with fine-grid quadrature orders up to SIO, the coarse-grid 
quadrature order should be close to fine-grid quadrature order. Beyond Si0 for the fine-grid, the 
coarse-grid quadrature orders should not be greater than s8 or SIO. 

Combinations of Angular Multigrid Formulations 

In Table 3, we summarize various combinations of the angular multigrid formulations and the 
PCR acceleration. This test has been performed for a c-ratio of 0.6, coarse and fine-grid 
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s14 

SI6 

SI8 

D 

- - - - - 1.24 1.30 1.28 
- - 1.25 1.21 
- - - 1.14 

- - - - 
- - - - 

L 

ITERATION 
SPEED-UP 

NO ACCELERATION 1 .oo 
PCR 2.43 
S A M  2.76 
SAM+PCR 5.41 

Table 2 Relation between coarse- and fine-grid quadrature orders for the SAM scheme a 

CPU 
SPEED-UP 

1 .oo 
2.38 
1.52 
3.24 

NI 
NI+PCR 

tolerances and quadrature orders of 5.e-O2/5.e-O4, and SldS~o, respectively. For the Nested 
Iteration (NI), we have started on Sq, gradually upgrading to S ~ O .  Table 3 indicates that angular 
multigrid formulations combined with PCR become very effective. S A M  combined with PCR 
reduces the CPU by a factor of -3.43, while PCR alone reduces by a factor of -2.38. The 
combination of V-cycle, SAM and PCR can significantly reduce number of fine-grid iterations, 
however, because of the high cost of V-cycle, is not as effective in reducing the CPU time. 

~~ 

1.83 1.37 
5.62 3.39 

V-cycle 
V-c ycle+PCR 
v-c ycle+S AM 
V-cycle+SAM+PCR 
V-c ycle+NI 
V-c ycle+NI+PCR 

- ~~ 

1.74 1.28 
4.87 3.43 
3.24 1.57 
7.30 3.39 
2.76 1.58 
6.95 2.45 
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111.6 USE OF THE NEW MULTIGRID ALGORITHMS FOR A REAL-LIFE BWR 
PROBLEM 

Kucukboyaci and Haghighat (2000a) have successfully used the new angular multigrid 
algorithms for a BWR core shroud problem. It is concluded that the angular multigrid algorithms 
become more effective with increasing values of C-ratio. Using the S A M  and NI provide better 
initial solutions for the V-Cycle algorithm. Moreover, the use of PCR with both SAM/NI with V- 
Cycle results in significant reduction in the number of iteration and CPU time. The combination 
of NI, V-Cycle, and PCR yields the lowest number of iterations and the highest value of 
speedup. For example, for the BWR problem, the number of fine-grid iterations reduces by a 
factor of -7.5 and the CPU time reduces by a factor of -4.1. Further detail on timing and 
iteration analyses are provided in Kucucboyaci, 2001. 

D 

D 
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IV 
QUADRATURE SETS FOR BEING ABLE TO SIMULATE HIGHLY ANGULAR 
DEPENDENT PROBLEMS 

DEVELOPMENT OF NEW SCHEMES FOR GENERATION OF ANGULAR 

IV.l Introduction 

A major issue affecting the accuracy of the SN method is selecting an appropriate set of 
directions. In order to preserve the physics, the general criteria for generating quadrature sets, are 
preserving symmetry and the moments of the direction cosines. 

In the level-symmetric quadrature set (LQN), the discrete directions are chosen to be fully 
symmetric with respect to all coordinate axes. There is a total of N(N+2) directions on the unit 
sphere, where N is the SN order. The weight associated to each direction is evaluated by 
satisfying the moment conditions for direction cosines, The LQN technique, however, is limited 
to order 20, because beyond which some of the weights become negative [Carlson and Lathrop, 
19651. 

In order to prevent this difficulty, B.G. Carlson proposed the Equal Weight Quadrature set 
(EQN), which is characterized by positive weights for any SN order [Carlson, 1971bl. In the EQN 
technique, all the direction weights are set equal to w=l/[N(N+2)]. 

Other quadrature sets have been derived, by relaxing the constraints imposed by the LQN 
method. For this purpose, the Gauss quadrature technique has been used to derive quadrature sets 
based on the Legendre and Chebyshev polynomials, which yield positive weights. In a recent 
study, two new quadrature sets (UEN and U G )  have been derived. The UEN quadrature set is 
derived by uniformly partitioning the unit sphere in the number of direction defined by the SN 
order [Carew and Zamonsky, 19991. The U G  quadrature set selects the ordinates along the Z- 
axis as roots of Legendre polynomials. 

In this study, we investigate other techniques which allow generation of quadrature sets of orders 
higher than 20 [Longoni and Haghighat, 2001bl. 

IV.2 THE LEGENDRE EQUAL-WEIGHT (PN-EW) QUADRATURE SET 

In order to develop a quadrature set which is not limited to order S20, we have investigated the 
Gauss-Legendre quadrature technique. In this quadrature set we utilize the same arrangement sf 
directions as the LQN, but the directions and weights are evaluated differently. Given the SN 
order for the discrete set of directions, we obtain the Legendre polynomials applying the 
following recursive formulation: 

( j  + l )q+l  = (2 j + l)cP, - jP,.-l forj = O...N 

-1 < 6 < 1 P-,({) = 0 P,(g) = 1 
The ordinates, i.e. 6, along the z-axis are the roots of the Legendre polynomials given by Eq. 5.  
Once we have evaluated the ordinates along z-axis we obtain the weights associated to each level 
with the following recursive formula: 
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And the weight associated with each direction is given by: 
Wi N 

i = l...- 
j 2 

Pi,j = - 

3 N where j = 1,- + 1 - i is the number of directions with equal weights on the ith level. 

In order to evaluate the azimuthal angle on each level, we equally divide a 90 degrees angle by 
the number of angular intervals (Le., N/2-i+2) between directions. In Fig. 9, we show the 
directions selected by PN-EW technique for a S16 quadrature set. 

2 

D 

Figure 9 Discrete directions selected on one octant with S ~ ~ P N - E W  quadrature set 

@ IV.3 THE LEGENDRE-CHEBYSHEV (PN-TN) QUADRATURE SET 

In the PN-TN methodology, similar to PN-EW, we set the 6 levels on the z-axis equal to the roots 
of Legendre polynomials, but for the azimuthal angles on each level we use the roots of the 
Chebyshev TN polynomials of first kind. The Chebyshev polynomials of first kind have the 
following formulation: 

The Chebyshev polynomials are orthogonal and satisfy the following condition: 
q [cos(0)] = cos(l0) (8) 

L 

O , l #  k 
z,l = k = 0 
z /2,1= k f 0 
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Again, using the ordering of the LQN quadrature set, we set the azimuthal angles on each level 
using the following formulation: 

21-2i+1 n 
0 I . i  = ( 21 )T 0 1 , i  E (0,;) 

(10) , i = I ... I 
In Eq. 10,l is the level number. The level and point weights are generated in the same way as for 
the PN-EW. Both PN-EW and PN-TN sets do not present negative weights for SN orders higher 
than 20. Fig. 10 shows an example for a PN-TN quadrature set of order 30. 

B 

Figure 10 Discrete directions selected on one octant with S30 PN-TN quadrature set 

P 

D 

IV.4 
The RAR technique has been developed for those problems where the angular flux and/or source 
are highly peaked. The RAR technique differs fi-om OS, rather than splitting an ordinate, a 
subdomain inside a PN-TN quadrature set is partitioned into a large number of solid angles 
[Longoni and Haghighat, 2002a, b, c]. Inside the subdomain we fit an additional PN-TN 
quadrature set. One of the main advantages of the RAR technique is the conservation of the 
moments of the direction cosines, with consequent increased accuracy. The PN-TN is derived by 
setting the 5 levels, on the z-axis of the unit sphere, equal to the roots of Legendre polynomials 
(PN). The azimuthal angles on each level are set equal to the roots of the Chebyshev polynomials 
(TN) of first kind. The Chebyshev polynomials of first kind have the following formulation: 

THE REGIONAL ANGULAR REFINEMENT (RAR) TECHNIQUE 

(11) q [cos(w)] E cos(2w) 

The Chebyshev polynomials are orthogonal and satisfy the following condition: 
0,l f k 1, dyT, (y)T, (y)(l - y2)-'/' = w,l  = k = 0 
1~ I 2,1= k f 0 

(12) 
I 

y = cos(w) 

By using the ordering of the LQN quadrature set, we set the azimuthal angles on each level using 
the following formulation: 
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21-2i+l  K 
*Id =( 21 )y @,j +;) 

, i = 1 ... 1 (13) 
In Eq. 13, I is the level number. The PN-TN set does not present negative weights for SN orders 
higher than 20. In Fig. 11 we show a Slz PN-TN quadrature set biased with RAR [Longoni and 
Haghighat, 2002bl. 

Figure 11 SI2 PN-TN biased with RAR 

IV.5 APPLICATION OF THE NEW QUADRATURE SETS 

We implemented the new quadrature sets into the PENTRAN code, and simulated a simplified CT-Scan 
model. The model is composed of a highly directional source (“fan” beam), a large region of air and a 
detector, as shown in Fig. 12. 

74.0 c m  
I ‘I 

Air region 
X-ray source Detector 

Figure 12 Simplified CT-Scan model. 

Because of the presence of large void regions and a directional source, the solution of the transport 
equation is affected by ray-effects. One remedy is to use higher order quadrature sets with biasing such as 
ordinates splitting (OS) [Longoni and Haghighat, 2001al and RAR technique [Longoni and Haghighat, 
2002al. For the purpose of this manuscript, we compare the results to a reference solution obtained with a 
SSO PN-TN quadrature set. The RAR technique has been applied to a SI2 PN-TN quadrature set; the biased 
region on the octant extends from z = 0.0 to z = 0.3 and the azimuthal angle spans from 0 to 25 degrees. 
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In the biased region, we used a s26  PN-TN quadrature set. The Slz PN-TN biased with s26  PN-TN resulted in 
110 directions per octant. The Sso PN-TN quadrature set yielded 820 directions per octant. The S ~ O  LQN 
quadrature set yielded 55 directions per octant. We have chosen these parameters based on the knowledge 
of the X-rays fan-beam. In Fig. 13, we show the scalar flux at x = 30.0 cm from the source, along the y- 
axis. 

12.0 

10.0 

g 8.0 
L 

Y 

Figure 13 Scalar flux at x = 30.0 cm from the source. 

It is clear that RAR technique is in agreement with the Sso PrTN quadrature set, while the solution 
obtained with the S20 L& quadrature set is inaccurate and affected by ray-effects. In Fig. 14 we show the 
scalar flux at x = 40.0 cm along the y-axis. At these positions, the RAR technique still yields accurate 
results compared to the Sso PN-TN solution. 

t S20 LQn - S80 Pn-Tn 4- S12 Pn-Tn with RAR (S26) 

Figure 14 Scalar flux at x = 40.0 cm from the source. 

In Fig. 15, we show the scalar flux at the detector position along the y-axis. As shown in Fig.15, the SIZ 
PN-TN biased with s26 shows excellent agreement with Sso PN-TN. Fig. 15 also demonstrates that the S20 

LQN quadrature set underpredicts the flux distribution at the detector position by more than one order of 
magnitude. It is worth noting that the range of oscillation occurring in the predicted flux distributions 
from Sgo and Slz with RAR is less than 10%. 

20 



3 

p 1  .!.. 

Figure 15 Scalar flux at detector position. 

In Table 4, we show a comparison of the computational time involved in the simulation. 

Table 4 Computational time and memory required for the simulation'. 
I---- 

, Quadrature Set ! I-CPU Time(sec) ] 
I 

I &o PN-TN j 6560 1 682.9 I 

We can observe that the RAR technique greatly reduces the computational time, by more than one order 
of magnitude compared to s80, while resulting in accurate solution. 

Fig. 16 shows a 3-D plot of the scalar flux obtained with the LQN quadrature set; the ray-effects increase 
as we move far away from the source. 

Figure 16 

. S I  

Diagram of the scalar flux calculated with Szo LQN quadrature set. 

D ~~ 

These results have been achieved on a PC-Workstation with 1 GHz Pentium III processor and 256 

Total number of directions on the unit sphere. 

1 

MBytes RAM. 
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Fig. 17 shows the scalar flux calculated with the S12 with s 2 6  RAR. In these case the solution exhibits 
small ray-effects, even far away from the source. 

Figure 17 Plot of the scalar flux calculated with SI2 PTTN quadrature set biased with s26 RAR. 

IV.5 SUMMARY AND CONCLUSIONS 

We have developed new techniques for generation of angular quadrature sets and biasing for local 
refmement. We have concluded that for problems with highly localized angular dependencies, the PN-TN 
algorithm with RAR yields the most accurate solutions in a rather short time. 

3 
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V. DEVELOPED A GENERAL 3-D PARALLEL SIMPLIFIED PL (SPL) 
ALGORITHM FOR ACCELERATION OF THE SN METHODOLOGY. 

b 

6 

V.l Introduction 
The SPL equations were initially proposed by Gelbard [Gelbard et al, 19591 in the early 1960s. 
Following their introduction, they did not receive much attention due to weak theoretical 
support. Recently, the SPL equations have received more attention because they have been shown 
to provide more accurate solutions compared to the diffision equation. Moreover, the theoretical 
foundations of the SPL equations have been significantly strengthened in recent years using a 
variational analysis approach in the derivation [Lewis and Palmiotti, 19971. 

In a previous paper, we derived the 3-D SP3 equations, starting from the 1-D P3 equations and by 
applying the Gelbard procedure; we implemented these equations in the PENSP3 (Parallel 
Environment Neutral-particle SP3 code) [Longoni and Haghighat, 2002dl. The structure of these 
equations is characterized by a second order elliptic operator, which makes them amenable to a 
solution with standard iterative techniques, such as preconditioned conjugate gradient methods. 
In this paper, we will derive the SPL equations, starting from the even-parity form of the 1-D SN 
(N=L+l) transport equations. Morel, Larsen and McGhee obtained the SPL equations in a similar 
fashion [Morel et al, 19961. The derivation of the SPL equations starting from the even-parity 
form of the SN equations presents many advantages that are shared by the alternative derivation 
we presented in our previous work [Longoni and Haghighat, 2003aJ. However, we note a 
distinctive property in the new derivation; the fluxes are mathematically decoupled on the 
boundary. This property allowed us to easily modify the PENSP3 code to accommodate an 
arbitrary SPL order. 

V.2 NUMERICAL TESTING OF THE SPL FORMULATION 

We have selected the NEACRP-L-330 problem 1 fiom a collection of 3-D benchmark problems 
[Takeda and Ikeda, 19881, proposed by T. Takeda and H. Ikeda. The purpose of these problems 
is to validate the accuracy of present transport codes for criticality calculations. Problem 1 
consists of a 3-D model of the Kyoto University Critical Assembly (KUCA). The core is 
composed by 93 w/o enriched U-A1 alloy and natural uranium metal plates; the average U-235 
enrichment is 9.6 w/o and the moderator is polyethylene. The core is symmetric about the origin 
and the dimensions are, in one octant, 15cm x 15cm x 15cm. A control rod (CR) is introduced 
outside of the core in the reflector region. The model cross sections over x-y plane and x-z plane 
are shown in Figs. 18 and 19 respectively (dimensions are in centimeters). 

The characteristics of this problem make it challenging for the SPL equations; the presence of the 
void region involves 1 ong streaming p aths, while the control rod produces steep thermal flux 
gradients at the interface. We compare the results obtained using the SPL and SN methods with 
those presented in the benchmark using the Monte Carlo method. 
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Figure 18 Model cross section on the x-y plane (left - z=O.O.. .15.0cm; right - 
z=15.0.. .25.0cm) 
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Figure 19 Model cross section on the x-z plane. 

Two cases have been considered, with different configurations of the control rod; in the first 
case, the control rod is filly withdrawn and region is left empty (voided); in the second case, the 
control rod is fully inserted into the system. Hence, we evaluated the control rod worth, defined 
by Eq. 14. 

We have used the two-group cross sections provided in the benchmark problem; note that the Pi 
scattering effect has been included by using the transport cross section in place of the total cross 
section. Table 5 gives the convergence criteria for the inner and outer iterations for the SN and 
SPL calculations. 
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Methodology Inner Tolerance Outer Tolerance 
. SN 1 .OE-4 1 .OE-5 
SPL 1 .OE-3 1 .OE-5 

Methodology 
P1 
sp3 
SP5 

Monte Carlo 
s8 

The model is divided into two coarse z-levels; the first z-level spans fkom H . 0  cm to ~ 1 5 . 0  
cm, while the second z-level ranges from z=15.0 cm to z=25.0 cm. We used the linear Diamond 
diffmencing with zero fixup (DZ) in PENTRAN [Sjoden and Haghighat, 19971, and a linear 
averaged formulation in PENSPL. The model is consistently discretized with a l-cm Uniform 
mesh along the three axes for each method. 

Control Rod Worth 
-7.96e-3 
-7.75e-3 
-7.79e-3 
1.57e-2 
1.66e-2 

In Table 6, we show the criticality eigenvalues and the errors relative to the Monte Carlo 
solution for both cases, when the control rod is inserted and withdrawn from the reactor. 

Table 6. Criticalit 

In Table 7, we show the calculated control rod worth. 

The c ontrol rod worth c alculated with the S PL methodology i s n egative, a s  reported b 3 ther 
authors [Morel and et al.,1996] and P. Kotiluoto. The SPL calculations yield accurate results for 
the Control Rod-In case, but when the control rod is replaced with the void region, the k- 
effective is underestimated by -2.2% with SPS. These results contradkt the physics of the 
problem, because a higher k eigenvalue is expected when the control rod is Withdrawn. The s 8  
transport calculation provides good accuracy compared to Monte Carlo, with an error of -0.01%. 
These results are consistent with the SN results presented in the Takeda Benchmark. We observe 
that the SPL methodology yields more accurate criticality eigenvalues in the Control Rod-In case, 
compared to the Control Rod-Out case. Hence, we conclude that the SPL methodology is more 

Percentage relative error compared to Monte Carlo. 
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accurate in representing the transport physics of highly absorbing materials as compared to void 
regions with long streaming mean free paths. 

3 6.00E-01 - z 
E a 

4.00E-01 - 

In Fig. 20, we show the scalar flux 
(normalized) at ~ 8 . 0  cm and ~ 2 . 5  cm 
in group 1 for the Control Rod-Out case 
(with the void region in place of the 
control rod). We observe a steeper 
gradient of the flux obtained with PI, 
SP3, and SP5 in the proximity of the 
void region, compared to the Sg 
solution. This can be attributed to the 
inability of the SPL leakage operator to 
represent the streaming of particles in 
void regions. For this problem, SPL 
overestimates the particle leakage in the 
void, which consequently leads to the 
underestimation of k-effective, and 
therefore yields a negative control rod 
worth. 

\. 

".u 
\, , 
'r 

1-20E+00 1 
- 8.00E-01 w 
$ 6.00E-01 
E. 

4.00E-01 

2.00E-01 (77 
1 - Phi(P-1) - Phi(SP-3) Phi(SP-5) -+ Phi(S-8) I 

Figure 20 Control Rod OUT - Normalized Flux 
at z=8.0cm y=2.5cm (Group 1) 

The maximum error, obtained with P1 method and compared to the S g  solution is -10% at x=15 
cm, inside the control rod. In this case, the SPL equations cannot resolve the angular dependency 
introduced by the void region when the control rod is withdrawn, even with SP5 treatment. 

In Fig. 2 1, we show the flux distributions 
obtained with PI, SP3, SP5 and S g  at 
~ 2 . 5  cm and ~ 8 . 0  cm, for the case with 
the Control Rod-In. The SPL 
methodology yields accurate flux 
distributions compared to the Sg solution. 
For the Control Rod-In case, the PI, SP3 
and SP5 equations yield maximum 
relative errors equal to 15.3%, 4.5% and 
3.4% respectively. 

Figure 21 Control Rod IN - 
Normalized Flux at z=8.0cm 

y=2.5cm (Group 1) 

2.00E-01 //TI 

I --c Phi(P-I) + Phi(SP-3) Phi(SP-5) --- Phi(S-8) ] 
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Method # processors Calc. Time Total time (s) Speedup 
(S) 

sp3 1 72 73 - 
SP5 1 120 121 - 2 56 57 1.29 

2 69 70 1.74 

V.3 PARALLELIZATION OF THE SPL EQUATIONS 

Efficiency 
(%) 

64 

58 

- 
- 

b 

Method # processors Calc. Time Total time (s) Speedup 
(S) 

sp3 1 57 76 - 
sp5 1 96 123 - 

2 46 57 1.33 

2 57 68 1.80 

u 

Efficiency 
(%) - 
66 
- 

60 

The PENSPL code has been implemented in a distributed memory architecture using the MPI 
parallel libraries, based on the moment decomposition strategy [Longoni and Haghighat, 2003a, 
b]. The PENSPL code allocates automatically the arrays containing the matrices for the even- 
parity angular fluxes on the available processors. During the decomposition phase, we try to 
preserve load balancing in order to achieve maximum efficiency. 

The solution for each moment is computed, and at the end of each iteration, the necessary 
information is exchanged among the processors. The parallel computer utilized is the PCPEN 
cluster. The s ystem has 8 processors, with 2 G Byte RAM e ach. The h ead node i s an A thlon 
Pentium IV 1.6 GHz and the remaining 7 nodes have Pentium I l l  1 GHz processors. 

In Tables 8 and 9, we present the timing and parallel performance of the code for the 
aforementioned 3-D benchmark problem for different PL orders of 3 and 5 ,  without and with use 
of the Incomplete Cholesky Preconditioning, respectively. 

The relatively low efficiency obtained is due to the load imbalance caused by the Conjugate 
Gradient (CG) algorithm which requires different numbers of iterations for different moments. 
Also, it is important to note that the Incomplete Cholesky preconditioner tends to reduce the 
differences in the number of iterations needed for the CG algorithm, thereby improving the load 
balance and parallel efficiency. 
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VI. DEVELOPMENT OF THE SPL SYNTHETIC ACCELERATION METHOD 

We have performed a Fourier analysis of the SPL synthetic acceleration in a 1-D infinite 
homogeneous system with c=O.99 and calculated the expected spectral radius. In Fig. 22, shows 
the Fourier analysis of the synthetic acceleration applied to the SN equations. 

I 

Spectral Analysis of the Synthetic SPn Accelerated Transport 
Equation (c=O.99) 

0.25 

0.2 

0.1 5 
G 
5 
a :: 0.1 

-I 
0.05 

0 

-0.05 
Frequency (w) 

Figure 22 Fourier analysis of the SPL synthetic acceleration 

The Fourier analysis suggests that a higher order SPL operator may reduce the spectral radius and 
consequently improve the efficiency of the acceleration. 
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Using the PENSPL code (discussed in Chapter V), we have developed an SPL synthetic 
acceleration algorithm which has been tested within the PENTRAN 3-D discrete ordinates 
parallel code. 

Iterations (sec) 
79 126.7 

FAILED d a  
21 65.3 

VI.2 Testing the SPL SYNTHETIC ACCELERATION FOR THE DISCRETE 
ORDINATE METHOD - PRELIMINARY RESULTS. 

The performance of the SPL synthetic acceleration scheme has been tested using the PENTRAN 
code system for two problems where transport effects are significant. 

The first problem considered is a simple box problem (test problem l), which consists of a fixed 
source region surrounded by a highly absorbing material. In Fig. 23 we show the problem 
configuration. The overall dimensions of the system are 20x20~10 cm3. 

20.0 

10.0 

I I x (cm) 
10.0 20.0 0.0 I 

Figure 23 Geometrical configuration of test problem 1. 

The total cross section is equal to 1 .O [cm-'1 in both regions, while the scattering cross sections 
for regions 1 and 2 are 0.9 cm-' and 0.1 cm-' , respectively. The model is discretized using a 
constant mesh size of 0.77 cm along x, y, and z axes. The flux convergence tolerance for the Sn 
calculation is set to 1 .Oe-5. 

Table 10 gives the performance of the acceleration scheme SP1 (Le., DSA) and SP3 for an S g  
calculation. 

B 
Table 10 - Performance of the SPL synthetic acceleration for the test problem 1 

Method I Number of Inner I Computational Time I 
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The above results demonstrate that the DSA method does not converge, while the SP3 
acceleration was able to reduce the number of inner iterations by almost a factor of four. The 
reason for this behavior is the fact that region 2 contains a highly absorbing material for which 
diffision theory cannot represent the existing transport effects. Note that the computational time 
is not reduced proportionally, because of the time spent for SP3 calculations. For example, for 
this problem, the computation time by is reduced by -50%. 

Fig. 24 shows the relative error in the scalar flux between adjacent iterations. It is apparent that 
the SP3 synthetic acceleration can significantly reduce the error after a few iterations. 

1.00E91 

1.00E90 

1.00E-01 

g 1.00E-02 
t 
W 

1.00E-04 

L 

~~ 

[-+ SB<nacceKrated -+ SP-3 Accelerated I 
Figure 24 Relative error on the scalar flux between different iterations 

The second problem (test problem 2) simulates a small reactor with a control rod inserted in the 
center. This problem is characterized by strong transport effects and by strong variations of the 
total cross section between different regions. 

Fig. 25 presents the problem configuration along with the mesh and material distributions. The 
green region (the most inner region) represents the control rod, the red region (2nd region) is the 
fixed source, and the blue region (the most outer region) is the moderator. The overall 
dimensions of this model are 18x18~10 cm3, The model is discretized into 30,30, 10 fine meshes 
along x, y and z, respectively. The convergence criterion is set to 5.0e-5. 
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w 

Computational Time (sec) 
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Figure 25 Mesh and material distribution of test problem 2. 

Table 11 gives the performance of the SPL acceleration method for the PL orders of 1 and 3. 

Table 11 - Performance of the SPL synthetic acceleration for the test problem 2 

Again, the SP, (or DSA) does not converge, while SP3 reduces the number of iterations by a 
factor -5, and consequently the computation time reduces by a factor of -2.6 

In Fig. 26, we present the behavior of the relative error for the scalar flux between adjacent inner 
iterations. 

B 

31 



b 

1.00E-05 

It DSNS-10 Accelerated t S P - 3 / S - l O  Accelerated -A-S-IO Unaccelerated I 
Figure 26 Relative error on the scalar flux between different iterations for the test problem 

2. 

As expected the SP3 reduces the error significantly in a few iterations, while the DSA starts 
oscillating. Again, the reason for these oscillations of DSA is the presence of highly 
heterogeneous medium in which the diffusion approximation cannot simulate the transport 
effects which are effectively captured with the SP3 formulation. Three-dimensional and 2-D flux 
distributions shown in Figs. 27 and 28, respectively, indicate presence of steep gradients which 
cannot be effectively simulated with the difision approximation. 

2 2 

k 

Figure 28 2-D Scalar flux distribution at 
z=5 .Ocm 
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VII. 
FOR SELECTION OF AN APPROPRIATE DOMAIN DECOMPOSITION 
ALGORITHM IN A PARALLEL ENVIRONMENT. 

DEVELOPMENT OF AN EXPERT SYSTEM FOR MESH GENERATION AND 

VII.l Introduction 

The discrete ordinates (SN) method discretizes all of the independent variables including angle, 
energy and space. One of the challenges for applying this method is generation of an effective 
spatial mesh distribution. This mesh distribution must not only represent the problem geometry 
but also account for the problem physics and numerics. For real-life large and complex problems, 
parallel processing becomes necessary to obtain accurate solutions in a reasonable amount of 
time [Patchimpattapong and Haghighat, 20001. Depending on how the independent variables are 
decomposed, different domain-decomposition strategies (DDSs) may require different amounts 
of computing resources and results in different parallel performance. To address the above 
issues, we have developed an expert system for generating an effective spatial mesh distribution 
for an SN calculation in a parallel environment [Patchimpattapong and Haghighat, 2002a1, 
[Patchimpattapong and Haghighat, 2003a-d]. This expert system comprises two major parts: 1) 
an algorithm for generating an effective mesh distribution, and 2) an algorithm for selecting an 
effective parallel DDS. 

VI13 ALGORITHM FOR GENERATION OF AN EFFECTIVE MESH 
DISTRIBUTION 

The algorithm for generating an effective mesh generation [Patchimpattapong and Haghighat, 
2002bl consists of four steps: 1) creation of a geometric model and come  meshes, 2) estimation 
of an approximate flux shape, 3) selection of differencing schemes, and 4) generation of a fine 
mesh distribution. We have developed and tested the methodologies for this 4-step algorithm as 
discussed below: 

Creation of a geometric model and coarse meshes 

We partition a 3-D physical model into x-y-z coarse meshes. For each z-level, we utilize 
AutoCAD to create a 2-D geometric model and coarse mesh layout via the use of layers. 
Using the VENUS-3 benchmark and the BWR problems, we have demonstrated that our 
model creation algorithm is a practical tool to facilitate a process of modeling a real-life large 
and complex system. 

Estimation of an approximate flux shape 

We use an uncollided flux distribution as an approximate flux shape for selection of an 
appropriate spatial differencing scheme. For this, we have developed a parallel code PENFC 
(Parallel Environment Neutral-Particle First Collision). PENFC is capable of calculating 
uncollided and first collision fluxes in a 3-D Cartesian geometry in a parallel environment. 
We have benchmarked PENFC for an uncollided flux calculation against GRTUNCL3D 
using the dog leg problem, and against PENTRAN [Sjoden and Haghighat, 19971 using the 
simplified VENUS-3 model. For both, we observe a good agreement in uncollided flux 
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shape, while PENFC requires a relatively short computation time. Further, as expected, 
PENFC demonstrates a high parallel efficiency of 96 % for the simplified VENUS-3 model. 

0 Selection of differencing schemes 

We fit a function to the uncollided flux distribution obtained from PENFC and apply the 
method of least squares to determine which differencing scheme best fits the flux 
distribution. We utilized the VENUS-3 problem to examine the capability of our differencing 
scheme selection algorithm. For this test problem, the algorithm has correctly predicted 
differencing schemes for 84 % of the coarse meshes. This demonstrates that an uncollided 
flux distribution can be used as an approximate flux distribution to determine an appropriate 
differencing scheme. 

0 Generation of a fine mesh distribution 

To generate a fine mesh distribution, we have developed a serial code PENXMSH. It utilizes 
the geometric model and coarse mesh layout from Step 1. PENXMSH determines mesh size 
based on material mean-free-path and assigns a material to a fine mesh by checking its center 
position against layers of materials in the geometric model. An iterative procedure is 
employed to examine different mesh sizes in order to achieve the user-specified accuracy in 
preserving material volumes (masses). We demonstrated, using the VENUS-3 problem, that 
our fine mesh generation algorithm can yield an effective mesh distribution that requires 
significantly lesser computation resources while achieving accurate solutions. PENXMSH 
automatically performs mesh refinement in the vicinity of material discontinuities, which are 
indicated by a fine-mesh ratio between two adjacent coarse meshes. The current version of 
the PENXMSH code automatically generates an input file for the pre-processing code 
PENMSH [Haglughat, 20001 of the PENTRAN code system. 

Fig. 28 presents a detailed flowchart for the above four step procedure which leads to an 
effective mesh distribution. In the flowchart, we have included all the necessary input parameters 
for each step of the algorithm. 

34 



Figure 28 Flow-Chart for Generation of an effective mesh distribution 
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For parallel processing, we have identified four factors that affect the parallel performance. 
These are: 1) number of processors and memory available per processor, 2) load balance, 3) 
granularity, and 4) degree-of-coupling (DCP). We have developed methodologies for estimating 
these factors within the PENTRAN code system as described below: 

Estimation of the memory required per processor 

In PENTRAN, the majority of memory is used for storing angular fluxes and flux moments. 
These arrays are allocated based on the number of local coarse meshes, local energy groups, 
and local sweep octants on each processor. As a result, different DDSs may require different 
amounts of memory. We utilize a mapping algorithm available in PENTRAN to estimate the 
memory requirement. 

Estimation of the load balance 

Different numbers of fine meshes per coarse mesh andor different differencing schemes 
causes load imbalance. Fine mesh distribution and differencing schemes can be obtained 
fiom the mesh generation algorithm. 

Estimation of the granularity 

We measure granularity in terms of computation-to-communication time ratio (CPCM) in a 
transport sweep. To simulate a transport sweep without performing the transport calculation, 
we need the following information: fine mesh distribution, differencing schemes, 
computation time of each differencing scheme, computation time of scattering source, and 
communication time of a transport sweep. Fine mesh distribution and differencing schemes 
can be obtained fiom the mesh generation algorithm. To estimate the computation time of a 
differencing scheme, we perform a serial calculation using a simple model with the 
differencing scheme of interest. We utilize the scattering source calculation algorithm 
available in PENTRAN to estimate the computation time of scattering source. We estimate 
the computation times of the differencing schemes and scattering source only once for each 
computing platform. We have created a communication structure as it is used in PENTRAN 
to measure the time spent for message passing in a parallel environment. Load imbalance 
(caused by the different numbers of fine meshes per coarse mesh and different differencing 
schemes) introduces a waiting time, which effectively increases the communication time of 
the transport sweep. By using the aforementioned information, we can estimate the 
computation and communication times of the transport sweep and hence the CPCM. 

Estimation of the DCP 

The DCP is defined as the maximum contribution to the total source in a sub-domain from 
other processors. To calculate DCP, we obtain an angular flux distribution, partial currents, 
and a source distribution fiom a serial calculation of a small model. This small model is 
created by coarsening meshes and reducing quadrature order. We weight the maximum DCP 
of each group by its corresponding scattering- or c-ratio, and sum them to obtain the overall 
DCP of the problem. 
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The CPCM gives the relation of computation and communication, while the DCP reflects the 
convergence (numerical) behavior of the parallel algorithm. To obtain an index that accounts for 
both factors, we define a parallel-pedormance-index (PPI) as a ratio of the CPCM to the DCP. 
Fig. 29 shows a flow-chart for selection of an appropriate domain decomposition strategy (DDS). 

Figure 29 - Flow-Chart for selection of the Domain Decomposition Strategy (DDS) 
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For both test problems, the spatial DDS requires the lowest amount of memory per processor, 
followed by the angular-spatial and the angular DDSs. This is due to the fact that angular 
decomposition requires all the spatial mays for angular fluxes and flux moments on all 
processors, while the spatial decomposition partitions them among processors. We observe that 
our predicted CPCM follows a similar trend as the actual CPCM, and that our predicted DCP has 
a similar behavior as the actual calculation. We define an actual parallel-performance-index 
(APPI) as the inverse of a transport sweep time. Our predicted PPI, similar to the APPI, indicates 
that the angular DDS is the most effective DDS. There are other parts of the calculation that are 
affected by parallel domain decomposition and not included in our algorithm. As a result, the PPI 
is deviated fiom the overall APPI, which is estimated based on the inverse of the problem wall- 
clock time. However, we observe a similar trend between the two indexes. 

Our domain decomposition selection algorithm accurately predicts [Patchimpattapong and 
Haghighat, 2003a-c] the effective DDSs for the VENUS-3 and the BWR problems in -10 % and 
-15 % of the actual computation times, respectively. Nonetheless, the majority of the 
computation time is spent on estimation of the DCP. For these two test problems, the difference 
in the DCPs does not affect the resulting PPIs, which suggests that the PPI can be simply derived 
fkom CPCM. We observe a good agreement between the APPI and the PPI (CPCM). This 
demonstrates that for these two problems the CPCM is suMicient for obtaining the PPI. As a 
result, the computation times of our predictive algorithm for the VENUS-3 and the BWR 
problems are reduced significantly to -1 % and 4 % of the actual computation times, 
respectively. For further detail on the expert system and its performance consult 
Patchimpattapong [2003d] 

f 
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In this project, we have developed several algorithms and techniques which can improve the 
efficiency and accuracy of the discrete ordinates (SN) method for solving difficulty particle 
transport problems in parallel environments. Our studies have resulted in tools which can 
significantly reduce the necessary time for generation of problem inputs which are prepared 
based on problem physics and available computer resources. 

The Sn methods commonly discretize all the independent variables including space, energy, and 
angle. This discretization 1 eads t o  1 arge s ystems o f equations which require 1 arge amounts o f 
computer memory and execution time. The m ethod i s highly v ersatile, however, s uffers from 
several shortcomings which have been addressed by our group and others. 

The major shortcomings of the deterministic SN methods are listed below: 
a. Large memory 
b. Need for effective differencing schemes which allow for problem physics 
c. Slow convergence (iterative & acceleration techniques) 
d. Generation of angular quadrature sets 
e. Need for generation of effective multigroup cross section libraries 
f. Need for parallel algorithms and codes 
g. Need for pre-processing utilities for decision on the following items: 

1. Multigroup cross section 
2. Spatial and angular mesh 
3. Differencing scheme 
4. In case of parallel processing, selection of the appropriate Domain 

decomposition algorithm depending on the available computing resources 
h. Need for post-processing utilities for processing and analysis of results 

In this project, we address items b, c, d, g.2-g.4. The remaining items have been addressed by our 
previous studies. 

In Chapter 11, we have investigated an adaptive differencing strategy (ADS) which allows for the 
use of different differencing schemes based on problem physics. Based on the Kobayashi 
benchmark problems, we have demonstrated that a combination of ADS, Taylor Projection Mesh 
Coupling (TPMC), and an S20 level-symmetric quadrature order results in a relatively accurate 
solution with minimal ray-effects in highly absorbing regions. 

In Chapter 111, we have examined two acceleration techniques: angular multigrid and SPL 
synthetic accelerations. On the angular multigrid, we have concluded that a combination of 
Nested Iteration (NI), V-Cycle, and PCR (partial current rebalance) yields the lowest number of 
iterations and the highest value of speedup. For example, for a BWR shielding problem, the 
number of fine-grid iterations reduces by a factor of -7.5 and the CPU time reduces by a factor 
of -4.1. 

In Chapter IV, in problems with highly directional sources and/or angular flux distributions 
(caused by material heterogeneities, and/or containing void or pure absorbers), large number of 
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directions and/or biased directions are needed. We have developed new techniques for 
generation of angular quadrature sets which are capable of creating biased directions for local 
angular refinement. By simulating a few real-life and benchmark problems, we have 
demonstrated that the PN-TN algorithm with RAR (regional angular refinement) is the most 
accurate and efficient approach. 

In Chapters V & VI, we have developed a SPL code and investigated a SPL synthetic acceleration 
algorithm, respectively. For this work, we have developed the PENSPL (Parallel Environment 
Neutral-particle SPL) code which solves a 3-D multigroup SPL formulation in a parallel 
environment. Parallelization is achieved based on moment decomposition. PENSPL has been 
successfully benchmarked based on criticality and shielding problems. For this implementation, 
PENSPL uses the Conjugate Gradient (CG) formulation with an Incomplete Cholesky 
preconditioner. 

The PENSPL code has been used as a synthetic acceleration technique for the Sn method. This 
new SPL-SN synthetic acceleration technique has resulted in significant reduction in the 
necessary number of iterations and computation of the Sn method. 

In Chapter VII, we have developed an expert system which can create an effective mesh 
distribution and select the most effective domain decomposition strategy (DDS). For real-life 
problems, it is demonstrated that the expert system can effectively prepare a mesh distribution 
and predict the best choice of DDS for the available computing environment. 

Future work should focus on further testing of the expert system for different real-life problems 
and for larger degrees of decomposition, and for testing the SPL-SN synthetic acceleration for 
both criticality and shielding problems. We also believe work is needed to develop time- 
dependent algorithms for simulation of reactor kineticddynamics, generation of 3-D multigroup 
homogeneous cross sections for transient conditions and long fuel cycles, parallel algorithms for 
the generation of sensitivity coefficients for estimation of the calculation uncertainties, and l s t ly  
development of algorithms for electron transport problems. 
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