A Validation Process for the Groundwater Flow and Transport Model of the Faultless Nuclear Test at Central Nevada Test Area

PDF Version Also Available for Download.

Description

Many sites of groundwater contamination rely heavily on complex numerical models of flow and transport to develop closure plans. This has created a need for tools and approaches that can be used to build confidence in model predictions and make it apparent to regulators, policy makers, and the public that these models are sufficient for decision making. This confidence building is a long-term iterative process and it is this process that should be termed ''model validation.'' Model validation is a process not an end result. That is, the process of model validation cannot always assure acceptable prediction or quality of ... continued below

Physical Description

76 pages

Creation Information

Hassan, Ahmed January 1, 2003.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Sponsor

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Many sites of groundwater contamination rely heavily on complex numerical models of flow and transport to develop closure plans. This has created a need for tools and approaches that can be used to build confidence in model predictions and make it apparent to regulators, policy makers, and the public that these models are sufficient for decision making. This confidence building is a long-term iterative process and it is this process that should be termed ''model validation.'' Model validation is a process not an end result. That is, the process of model validation cannot always assure acceptable prediction or quality of the model. Rather, it provides safeguard against faulty models or inadequately developed and tested models. Therefore, development of a systematic approach for evaluating and validating subsurface predictive models and guiding field activities for data collection and long-term monitoring is strongly needed. This report presents a review of model validation studies that pertain to groundwater flow and transport modeling. Definitions, literature debates, previously proposed validation strategies, and conferences and symposia that focused on subsurface model validation are reviewed and discussed. The review is general in nature, but the focus of the discussion is on site-specific, predictive groundwater models that are used for making decisions regarding remediation activities and site closure. An attempt is made to compile most of the published studies on groundwater model validation and assemble what has been proposed or used for validating subsurface models. The aim is to provide a reasonable starting point to aid the development of the validation plan for the groundwater flow and transport model of the Faultless nuclear test conducted at the Central Nevada Test Area (CNTA). The review of previous studies on model validation shows that there does not exist a set of specific procedures and tests that can be easily adapted and applied to determine the validity of site-specific groundwater models. This is true for both deterministic and stochastic models, with the latter posing a more difficult and challenging problem when it comes to validation. This report then proposes a general validation approach for the CNTA model, which addresses some of the important issues recognized in previous validation studies, conferences, and symposia as crucial to the process. The proposed approach links model building, model calibration, model predictions, data collection, model evaluations, and model validation in an iterative loop. The approach focuses on use of collected validation data to reduce model uncertainty and narrow the range of possible outcomes of stochastic numerical models. It accounts for the stochastic nature of the numerical CNTA model, which used Monte Carlo simulation approach. The proposed methodology relies on the premise that absolute validity is not even a theoretical possibility and is not a regulatory requirement. Rather, it highlights the importance of testing as many aspects of the model as possible and using as many diverse statistical tools as possible for rigorous checking and confidence building in the model and its predictions. It is this confidence that will eventually allow for regulator and public acceptance of decisions based on the model predictions.

Physical Description

76 pages

Notes

OSTI as DE00812127

Source

  • Other Information: PBD: 1 Jan 2003

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: DOE/NV/13609-27
  • Report No.: DRI Pub. No. 45197
  • Grant Number: AC08-00NV13609
  • DOI: 10.2172/812127 | External Link
  • Office of Scientific & Technical Information Report Number: 812127
  • Archival Resource Key: ark:/67531/metadc740554

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • January 1, 2003

Added to The UNT Digital Library

  • Oct. 18, 2015, 6:40 p.m.

Description Last Updated

  • April 21, 2016, 4:27 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Hassan, Ahmed. A Validation Process for the Groundwater Flow and Transport Model of the Faultless Nuclear Test at Central Nevada Test Area, report, January 1, 2003; United States. (digital.library.unt.edu/ark:/67531/metadc740554/: accessed October 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.