Control of the heavy-ion beam line gas pressure and density in the HYLIFE thick-liquid chamber

PDF Version Also Available for Download.

Description

Controlling the density and pressure of the background gas in the beam lines of thick-liquid heavy-ion fusion chambers is of paramount importance for the beams to focus and propagate properly. Additionally, transport and deposition of debris material onto metal beam-tube surfaces may reduce the breakdown voltage and permit arcing with the beam. The strategy to control the gas pressure and the rate of debris deposition is twofold. First, the cool thick-liquid jet structures will mitigate the venting to the beam tubes. The ablation and venting of debris through thick-liquid structures must be modeled to predict the quantities of debris reaching ... continued below

Physical Description

vp.

Creation Information

Debonnel, Christophe D.; Fukuda, Grant T.; Bardet, Philippe M. & Peterson, Per F. February 26, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Controlling the density and pressure of the background gas in the beam lines of thick-liquid heavy-ion fusion chambers is of paramount importance for the beams to focus and propagate properly. Additionally, transport and deposition of debris material onto metal beam-tube surfaces may reduce the breakdown voltage and permit arcing with the beam. The strategy to control the gas pressure and the rate of debris deposition is twofold. First, the cool thick-liquid jet structures will mitigate the venting to the beam tubes. The ablation and venting of debris through thick-liquid structures must be modeled to predict the quantities of debris reaching the beam ports. TSUNAMI calculations have been performed to estimate the mass and energy flux histories at the entrance of the beam ports in a 9x9 HYLIFE pocket geometry. Secondly, additional renewable shielding will be interposed in the beam tubes themselves. Thick-liquid vortexes are planned to coat the inside of the beam tubes and provide a quasi-continuous protection of the beam-tube walls up to the final focus magnets. A three-component molten salt, flinabe, with a low melting temperature and vapor pressure, has been identified as a candidate liquid for the vortexes. The use of flinabe may actually eliminate the necessity of mechanical shutters to rapidly close the beam tubes after target ignition.

Physical Description

vp.

Notes

OSTI as DE00805121

Source

  • 6th international symposium on Fusion Nuclear Technology (ISFNT-6), San Diego, CA (US), 04/07/2002--04/12/2002

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--49684
  • Report No.: HIFAN 1159
  • Grant Number: AC03-76SF00098
  • Office of Scientific & Technical Information Report Number: 805121
  • Archival Resource Key: ark:/67531/metadc740465

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • February 26, 2002

Added to The UNT Digital Library

  • Oct. 18, 2015, 6:40 p.m.

Description Last Updated

  • April 4, 2016, 3:02 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Debonnel, Christophe D.; Fukuda, Grant T.; Bardet, Philippe M. & Peterson, Per F. Control of the heavy-ion beam line gas pressure and density in the HYLIFE thick-liquid chamber, article, February 26, 2002; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc740465/: accessed December 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.