Using toughreact to model reactive fluid flow and geochemical transport in hydrothermal systems

PDF Version Also Available for Download.

Description

The interaction between hydrothermal fluids and the rocks through which they migrate alters the earlier formed primary minerals and leads to the formation of secondary minerals, resulting in changes in the physical and chemical properties of the system. We have developed a comprehensive numerical simulator, TOUGHREACT, which considers nonisothermal multi-component chemical transport in both liquid and gas phases. A variety of subsurface thermo-physical-chemical processes is considered under a wide range of conditions of pressure, temperature, water saturation, and ionic strength. The code can be applied to problems in fundamental analysis of the hydrothermal systems and in the exploration of geothermal ... continued below

Physical Description

12 pages

Creation Information

Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas & Pruess, Karsten July 31, 2003.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The interaction between hydrothermal fluids and the rocks through which they migrate alters the earlier formed primary minerals and leads to the formation of secondary minerals, resulting in changes in the physical and chemical properties of the system. We have developed a comprehensive numerical simulator, TOUGHREACT, which considers nonisothermal multi-component chemical transport in both liquid and gas phases. A variety of subsurface thermo-physical-chemical processes is considered under a wide range of conditions of pressure, temperature, water saturation, and ionic strength. The code can be applied to problems in fundamental analysis of the hydrothermal systems and in the exploration of geothermal reservoirs including chemical evolution, mineral alteration, mineral scaling, changes of porosity and permeability, and mineral recovery from geothermal fluids.

Physical Description

12 pages

Notes

OSTI as DE00815537

Source

  • Geothermal Resources Council (GRC) 2003 Annual Meeting, Morelia (MX), 10/12/2003--10/15/2003

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--53643
  • Grant Number: AC03-76SF00098
  • Office of Scientific & Technical Information Report Number: 815537
  • Archival Resource Key: ark:/67531/metadc740445

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 31, 2003

Added to The UNT Digital Library

  • Oct. 18, 2015, 6:40 p.m.

Description Last Updated

  • April 4, 2016, 3:53 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas & Pruess, Karsten. Using toughreact to model reactive fluid flow and geochemical transport in hydrothermal systems, article, July 31, 2003; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc740445/: accessed October 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.