Diagnostic investigation of tune and tune shift in the IPNS RCS.

PDF Version Also Available for Download.

Description

The Intense Pulse Neutron Source (IPNS) Rapid Cycling Synchrotron (RCS) accelerates 50 MeV protons to 450 MeV 30 times per second for spallation neutron production. Average current from the RCS has recently exceeded 16 {micro}A with peak instantaneous current approaching 15 A. The RCS makes efficient use of 21 kV of RF accelerating voltage and uses phase-modulation between the two rf cavities to damp vertical instabilities. Split-ring electrodes in the ring suggest an anomalous tune shift that increases with time in the acceleration cycle. Based on a background gas pressure of 1 {micro}Torr, the neutralization time for the beam is ... continued below

Physical Description

vp.

Creation Information

Dooling, J. C.; Brumwell, F. R. & McMichael, G. E. June 10, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The Intense Pulse Neutron Source (IPNS) Rapid Cycling Synchrotron (RCS) accelerates 50 MeV protons to 450 MeV 30 times per second for spallation neutron production. Average current from the RCS has recently exceeded 16 {micro}A with peak instantaneous current approaching 15 A. The RCS makes efficient use of 21 kV of RF accelerating voltage and uses phase-modulation between the two rf cavities to damp vertical instabilities. Split-ring electrodes in the ring suggest an anomalous tune shift that increases with time in the acceleration cycle. Based on a background gas pressure of 1 {micro}Torr, the neutralization time for the beam is approximately 0.5 ms at injection suggesting the beam becomes fully neutralized relatively quickly in the cycle. Over-neutralization of the beam can lead to a positive tune shift that is presumably incoherent. Studies are underway to characterize the ionization within the RCS using the existing Profile and Position System (PAPS) and a newly installed Retarding Field Analyzer (RFA). Also a newly installed fast, deep-memory digitizing oscilloscope allows the entire history of a single acceleration cycle to be recorded from all four components of the split ring electrodes simultaneously at a rate of 250 MS/s.

Physical Description

vp.

Source

  • 20th ICFA Advanced Beam Dynamics Workshop High Intensity High Brightness Hadron Beams (ICFA - HB2002), Batavia, IL (US), 04/08/2002--04/12/2002

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ANL/IPNS/CP-107168
  • Grant Number: W-31-109-ENG-38
  • Office of Scientific & Technical Information Report Number: 797896
  • Archival Resource Key: ark:/67531/metadc740203

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 10, 2002

Added to The UNT Digital Library

  • Oct. 19, 2015, 7:39 p.m.

Description Last Updated

  • March 30, 2016, 12:28 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Dooling, J. C.; Brumwell, F. R. & McMichael, G. E. Diagnostic investigation of tune and tune shift in the IPNS RCS., article, June 10, 2002; Illinois. (digital.library.unt.edu/ark:/67531/metadc740203/: accessed November 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.