Development of Mercury and Hydrogen Chloride Emission Monitors for Coal Gasifiers

PDF Version Also Available for Download.

Description

The gas conditioning issues involved with coal gasification streams are very complex and do not have simple solutions. This is particularly true in view of the fact that the gas conditioning system must deal with tars, high moisture contents, and problems with NH{sub 3} without affecting low ppb levels of Hg, low levels (low ppm or less) of HCl, or the successful operation of conditioner components and analytical systems. Those issues are far from trivial. Trying to develop a non-chemical system for gas conditioning was very ambitious in view of the difficult sampling environment and unique problems associated with coal ... continued below

Physical Description

2,330 Kilobytes pages

Creation Information

Norton, G.; Eckels, D. & Chriswell, C. February 26, 2001.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

  • Ames Laboratory
    Publisher Info: Ames Lab., IA (United States)
    Place of Publication: Iowa

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The gas conditioning issues involved with coal gasification streams are very complex and do not have simple solutions. This is particularly true in view of the fact that the gas conditioning system must deal with tars, high moisture contents, and problems with NH{sub 3} without affecting low ppb levels of Hg, low levels (low ppm or less) of HCl, or the successful operation of conditioner components and analytical systems. Those issues are far from trivial. Trying to develop a non-chemical system for gas conditioning was very ambitious in view of the difficult sampling environment and unique problems associated with coal gasification streams. Although a great deal was learned regarding calibration, sample transport, instrumentation options, gas stream conditioning, and CEM design options, some challenging issues still remain. Sample transport is one area that is often not adequately considered. Because of the gas stream composition and elevated temperatures involved, special attention will need to be given to the choice of materials for the sample line and other plumbing components. When using gas stream oxidation, there will be sample transport regions under oxidizing as well as reducing conditions, and each of those regions will require different materials of construction for sample transport. The catalytic oxidation approach worked well for removal of tars and NH{sub 3} on a short term basis, but durability issues related to using the catalyst tube during extended testing periods still require study.

Physical Description

2,330 Kilobytes pages

Notes

OSTI as DE00797628

Source

  • Other Information: PBD: 26 Feb 2001

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: IS-5146
  • Grant Number: W-7405-Eng-82
  • DOI: 10.2172/797628 | External Link
  • Office of Scientific & Technical Information Report Number: 797628
  • Archival Resource Key: ark:/67531/metadc740135

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • February 26, 2001

Added to The UNT Digital Library

  • Oct. 19, 2015, 7:39 p.m.

Description Last Updated

  • April 21, 2016, 1:14 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Norton, G.; Eckels, D. & Chriswell, C. Development of Mercury and Hydrogen Chloride Emission Monitors for Coal Gasifiers, report, February 26, 2001; Iowa. (digital.library.unt.edu/ark:/67531/metadc740135/: accessed December 12, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.