A Database of Herbaceous Vegetation Responses to Elevated Atmospheric CO2

Michael H. Jones
Peter S. Curtis
This report has been reproduced from the best available copy.

Reports are available to the public from the following source.
National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
Telephone 703-605-6000 (1-800-553-6647)
TDD 703-487-4639
Fax 703-605-6900
E-mail orders@ntis.fedworld.gov
Web site http://www.ntis.gov/ordering.htm

Reports are available to U.S. Department of Energy (DOE) employees, DOE contractors, Energy Technology Data Exchange (ETDE) representatives, and International Nuclear Information System (INIS) representatives from the following source.
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831
Telephone 423-576-8401
Fax 423-576-5728
E-mail reports@adonis.osti.gov
Web site http://www.osti.gov/products/sources.html

Reports produced after January 1, 1996, are generally available via the DOE Information Bridge.
Web site http://www.doe.gov/bridge

This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

The drawing of the grass *Bouteloua curtipendula* included in the cover design of this report is copyrighted, and kindly provided by, the artist, Dr. Michael Hunt Jones, The Ohio State University, for this purpose. He retains full rights to this drawing, which may not be used without his written permission.
A DATABASE OF HERBACEOUS VEGETATION RESPONSES TO ELEVATED ATMOSPHERIC CO₂

Contributed by

Michael H. Jones
Peter S. Curtis
Department of Evolution, Ecology, and Organismal Biology
The Ohio State University
Columbus, Ohio

Prepared by

Robert M. Cushman and Antoinette L. Brenkert*
Carbon Dioxide Information Analysis Center

*consultant, Washington, D.C.

Environmental Sciences Division
Publication No. 4909
Date Published: November 1999

Prepared for the
Environmental Sciences Division
Office of Biological and Environmental Research
U.S. Department of Energy
Budget Activity Number KP 12 04 01 0

Prepared by the
Carbon Dioxide Information Analysis Center
Environmental Sciences Division
OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831-6335
managed by
LOCKHEED MARTIN ENERGY RESEARCH CORP.
for the
U.S. DEPARTMENT OF ENERGY
under contract DE-AC05-96OR22464
CONTENTS

ABSTRACT ... v

1. BACKGROUND INFORMATION .. 1

2. APPLICATIONS OF THE DATA .. 1

3. DATA LIMITATIONS AND RESTRICTIONS .. 2

4. DATA CHECKS AND PROCESSING PERFORMED BY CDIAC 2

5. INSTRUCTIONS FOR OBTAINING THE DATA AND DOCUMENTATION 5

6. REFERENCES ... 5

7. LISTING OF FILES PROVIDED ... 6

8. DESCRIPTION OF THE DOCUMENTATION FILE ... 7

9. DESCRIPTION, FORMAT, AND PARTIAL LISTINGS OF THE ASCII DATA FILES 7

10. DESCRIPTION AND FORMAT OF THE LOTUS 1-2-3® BINARY SPREADSHEET FILES ... 15

11. SAS® AND FORTRAN CODES TO ACCESS THE DATA .. 15

APPENDIX A. SPECIES INCLUDED IN THE DATABASE ... A-1

APPENDIX B. FULL LISTING OF REFS.DAT (FILE 4) .. B-1

APPENDIX C. FULL LISTING OF COMMENTS.DAT (FILE 6) C-1

APPENDIX D: REPRINT OF PERTINENT LITERATURE .. D-1

Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO2 concentration: a test of current theories and perceptions,
ABSTRACT

To perform a statistically rigorous meta-analysis of research results on the response by herbaceous vegetation to increased atmospheric CO₂ levels, a multiparameter database of responses was compiled from the published literature. Seventy-eight independent CO₂-enrichment studies, covering 53 species and 26 response parameters, reported mean response, sample size, and variance of the response (either as standard deviation or standard error). An additional 43 studies, covering 25 species and 6 response parameters, did not report variances. This numeric data package accompanies the Carbon Dioxide Information Analysis Center’s (CDIAC’s) NDP-072, which provides similar information for woody vegetation.

This numeric data package contains a 30-field data set of CO₂-exposure experiment responses by herbaceous plants (as both a flat ASCII file and a spreadsheet file), files listing the references to the CO₂-exposure experiments and specific comments relevant to the data in the data sets, and this documentation file (which includes SAS® and Fortran codes to read the ASCII data file).

The data files and this documentation are available without charge on a variety of media and via the Internet from CDIAC.

Keywords: carbon dioxide, meta-analysis, vegetation

1SAS® is a registered trademark of the SAS Institute, Inc., Cary, North Carolina 27511.
1. BACKGROUND INFORMATION

To perform a statistically rigorous synthesis of research results on the response by vegetation to increased atmospheric CO$_2$ levels, a multiparameter database of herbaceous-plant responses was compiled from the published literature (Wand et al. 1999, included in this report as Appendix D; Jones et al. submitted). Seventy-eight independent CO$_2$-enrichment studies, covering 53 species and 26 response parameters, reported mean response, sample size, and variance of the response. An additional 43 studies, covering 25 species and six response parameters, did not report variances. The plant species included in the database are listed in Appendix A. Meta-analytical methods (Cooper and Hedges 1994; Gurevitch and Hedges 1993; Gurevitch et al. 1992) have been applied to part of this database (Wand et al. 1999). This numeric data package accompanies the Carbon Dioxide Information Analysis Center’s (CDIAC’s) NDP-072 (Curtis et al. 1999), which provides similar information for woody vegetation.

Physiological “acclimation” or “downward regulation” of photosynthetic rates, stomatal conductance, dark respiration, and water-use efficiency of plants exposed to elevated CO$_2$ levels can be analyzed according to the following definitions. “Acclimation” is in general defined as “diminishing enhancement of photosynthesis by elevated CO$_2$ with time” (Mousseau and Saugier 1992). “Downward regulation” can be defined as “the initial stimulation of enhanced photosynthesis and growth by atmospheric enrichment eroding with time” (Idso and Kimball 1992). The phenomenon is also called “downward acclimation”: “following prolonged exposure to high CO$_2$, photosynthetic capacity measured at either elevated or ambient CO$_2$ partial pressure falls to below that of plants exposed only to ambient CO$_2$” (Curtis and Teeri 1992).

Data were compiled for the database according to the following guidelines. The durations of experimental exposures are always reported. When more than one elevated-CO$_2$ treatment level is reported, only the level that is approximately twice the ambient level is included. For photosynthetic rates, stomatal conductance, dark respiration, and water use efficiency, only final-exposure experiment results are included; multiple measurements over time for the same plant are not. For acclimationary responses, only data for (1) plants grown at ambient CO$_2$ levels and measured at elevated CO$_2$ levels and (2) plants grown at elevated CO$_2$ levels and measured at elevated CO$_2$ levels are included.

2. APPLICATIONS OF THE DATA

This database was produced to support a meta-analysis of the effects of elevated CO$_2$ on herbaceous vegetation (Wand et al. 1999), and it was formatted accordingly. For other applications, the user should be aware that the data may be reported in more than one unit for a given variable (e.g., aboveground weight is reported in units of grams, grams per square meter, grams per plant, grams per pot, kilograms per hectare, kilograms per square meter, milligrams, milligrams per plant, and tons per hectare); this is not a problem for meta-analysis, but for other applications the user may need to convert the data to consistent units.
The effects of environmental factors (e.g., nutrient levels, light intensity, temperature), stress treatments (e.g., drought, heat, ozone), and the effects of experimental conditions (e.g., duration of CO$_2$ exposure, pot size, type of CO$_2$ exposure facility) on plant responses to elevated CO$_2$ levels can be explored with this database.

3. DATA LIMITATIONS AND RESTRICTIONS

In many papers, the data were reported graphically rather than numerically. In such cases, values reported in the database were digitized from the printed figures and may therefore be less accurate.

Some of the standard deviations (and derived standard errors and coefficients of variation) in this database may be incorrect. When a "standard deviation" was reported in a published paper, it was not generally possible to verify whether this value was a sample standard deviation or the standard deviation of the mean, which is sometimes used synonymously with standard error (i.e., standard error of the mean). Unfortunately, it was not possible to settle this issue definitively without personally contacting the authors of the published papers. In all cases, where not specified or known to be otherwise, a reported standard deviation was taken to be the sample standard deviation. If this assumption was in error, then the standard deviation, standard error, and coefficient of variation reported in this database would be incorrect.

In some cases an error bar in a figure or confidence interval in a table was not specified as standard deviation or standard error. If it was not possible to determine whether the reported variability was standard deviation or standard error, a missing-value indicator (-9.99) is entered under standard deviation and standard error for that observation.

In some cases (e.g., in long-term exposures), the duration of CO$_2$ exposure was approximated.

As noted in Sect. 2, various units may be used for the same parameter, so the user should apply caution in integrating observations from more than one paper. Units are reported in the database.

4. DATA CHECKS AND PROCESSING PERFORMED BY CDIAC

An important part of the data-packaging process at CDIAC involves the quality assurance (QA) of data before distribution. To guarantee data of the highest possible quality, CDIAC performs extensive QA checks, examining the data for completeness, reasonableness, and accuracy, through close cooperation with the data contributor.

All entries in the data file were visually inspected for reasonableness, and selected entries were spot-checked against the original publications.
The following paragraphs describe the additional data checks that were performed in the preparation of this numeric data package and the resulting revisions to the database.

Excel® was used to convert the spreadsheets provided by the principal investigators to Lotus 1-2-3® format. Two separate databases, one including observations for which standard deviation or standard error was reported ("weighted") and the other consisting of observations without reported standard deviation or standard error ("unweighted"), were merged into one.

Lists of entries for each field were generated to identify possible spelling variants, typographical errors, or order-of-magnitude errors in the original literature or in the compilation and data entry of the database.

Where a cited paper reported standard error, standard deviation was calculated and tabulated (such occurrences are indicated in the database with a SDC flag-code).

The ratio of elevated/ambient for X, SE, SD, and N was calculated for all parameters and all observations; then all observations were ranked on the basis of each ratio, whenever possible (all these variables were not present for all observations), to identify suspect values (defined as jumps of greater than twofold between adjacent observations). The ranked ratios of X_{ELEV}/X_{AMB} ranged without abrupt jumps from 0.19 to 3.5, except for the ratio for variable AGWT reported from PAP_NO 2440 ($X_{ELEV}/X_{AMB} = 9.2$); the individual values for X_{ELEV} and X_{AMB} were verified in that publication (they were digitized from Fig. 5). The ranked ratios of SE_{ELEV}/SE_{AMB} and SD_{ELEV}/SD_{AMB} ranged without abrupt jumps from 0.05 to 18, except for the ratios of 0 for variables TOTWT, RGR, PN, and GS reported from PAP_NO 2363; the individual values for which standard error was reported as 0 were verified in that publication. The ranked ratios of $CV^{*}_{ELEV}/CV^{*}_{AMB}$ ranged without abrupt jumps from 0.07 to 29.25, except for the same observations for PAP_NO 2363, for which the reported standard error of 0 was verified. The ranked ratios of N_{ELEV}/N_{AMB} ranged without abrupt jumps from 0.4 to 1.43. Thus, this analysis did not reveal any aberrant and unverifiable observations in the databases.

To search for possible confusion between standard error and standard deviation (see Sect. 3), coefficients of variation CV^{*} (after Sokal & Rohlf 1981) were calculated, whenever possible, for each PARAM from each mean, standard deviation, and sample size. It was expected that, for any PARAM, an anomalously low coefficient of variation for a given observation might signal that a standard error was mis-labeled as a standard deviation. The database was sorted by PARAM, then by CV^{*}_{AMB} and CV^{*}_{ELEV}, and was inspected for jumps of greater than fourfold

2Excel® is a registered trademark of the Microsoft Corporation, Redmond, Washington 98052.

3Lotus 1-2-3® is a registered trademark of the Lotus Development Corporation, Cambridge, Massachusetts 02142.
between adjacent observations. Where the standard error, rather than standard deviation, was reported in the cited publication, no mislabeling should have been possible. This analysis identified two pairs of adjacent observations that warranted further scrutiny. The following list contains those pairs of adjacent observations, along with the results of the checks.

PAP_NO = 3034
PARAM = PN
SPECIES = Echinochloa crusgalli
SOURCE = F1
X_ELEV = 44.400
SE_ELEV = 0.100
CV*_ELEV = 0.694

and

PAP_NO = 2723
PARAM = PN
SPECIES = Poa alpina
SOURCE = F4
X_ELEV = 40.120
SE_ELEV = 0.505
CV*_ELEV = 2.955

Data for both of the above observations were verified in the original publications.

PAP_NO = 2184
PARAM = TILLERS
SPECIES = Phleum pratense
SOURCE = T2
X_ELEV = 726.000
SE_ELEV = 52.000
CV*_ELEV = 28.203

and

PAP_NO = 2717
PARAM = TILLERS
SPECIES = Bromus erectus
SOURCE = F1
X_ELEV = 4.590
SE_ELEV = 0.400
CV*_ELEV = 129.991
Data for both of the above observations were verified in the original publications. However, the error bars in Fig. 1 of PAP_NO 2717 were not labeled as to their meaning; they were assumed to represent standard error (see Sect. 3).

5. INSTRUCTIONS FOR OBTAINING THE DATA AND DOCUMENTATION

This database (NDP-073) is available free of charge from CDIAC. The files are available via the Internet, from CDIAC's World-Wide-Web site (http://cdiac.esd.ornl.gov), or from CDIAC's anonymous file transfer protocol (FTP) area (cdiac.esd.ornl.gov) as follows:

2. Enter "ftp" as the user id.
3. Enter your electronic mail address as the password (e.g., fred@zulu.org).
4. Change to the directory "pub/ndp073" (i.e., use the command "cd pub/ndp073").
5. Set ftp to get ASCII files by using the ftp "ascii" command.
6. Retrieve the ASCII database documentation file by using the ftp "get ndp073.txt" command.
7. Retrieve the ASCII data files by using the ftp "mget *.dat" command.
8. Set ftp to get binary files by using the ftp "binary" command.
9. Retrieve the binary spreadsheet files by using the ftp "mget *.wk1" command.
10. Exit the system by using the ftp "quit" command.
11. Uncompress the files on your computer if they are obtained in compressed format.

For non-Internet data acquisitions (e.g., diskette or 8-mm tape) or for additional information, contact:

User Services
Carbon Dioxide Information Analysis Center
Oak Ridge National Laboratory
P.O. Box 2008
Oak Ridge, Tennessee 37831-6335, U.S.A.

Telephone: 1-865-574-3645
Telefax: 1-865-574-2232
Email: cdiac@ornl.gov

6. REFERENCES

7. LISTING OF FILES PROVIDED

The database consists of seven files (see Table 1), including this documentation file. The data files (ndp073.dat and ndp073.wk1), reference files (refs.dat and refs.wk1), and comment files (comments.dat and comments.wk1) are available in two formats: as flat ASCII files and as binary spreadsheet files (in Lotus 1-2-3® format, but readable by other spreadsheet programs).

The 30-field ndp073.dat and ndp073.wk1 files contain data (954 observations in all) relevant for CO₂-exposure meta-analysis for herbaceous plants. The ndp073.dat file can be read into SAS® or Fortran programs, using the access codes provided in Sect. 11 of this numeric data package. The
ndp073.dat file can also be converted into a spreadsheet file for processing, although it is simpler to use the corresponding **ndp073.wk1** spreadsheet file provided.

The **refs.dat** file (included in this report as Appendix B) and **refs.wk1** file list the selected literature represented in the data file (119 references), and the **comments.dat** file (included in this report as Appendix C) and **comments.wk1** file provide additional information about the studies, beyond what appears in the **ndp073.dat** and **ndp073.wk1** data files. The reference numbers in the **refs.dat**, **refs.wk1**, **comments.dat**, and **comments.wk1** files correspond to the paper numbers in the **ndp073.dat** and **ndp073.wk1** data files.

<table>
<thead>
<tr>
<th>File number</th>
<th>File name</th>
<th>File size (kB)</th>
<th>File type</th>
<th>File description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ndp073.txt</td>
<td>85</td>
<td>ASCII text</td>
<td>Documentation file</td>
</tr>
<tr>
<td>2</td>
<td>ndp073.dat</td>
<td>223</td>
<td>ASCII text</td>
<td>Data file</td>
</tr>
<tr>
<td>3</td>
<td>ndp073.wk1</td>
<td>507</td>
<td>Binary spreadsheet</td>
<td>Data file</td>
</tr>
<tr>
<td>4</td>
<td>refs.dat</td>
<td>24</td>
<td>ASCII text</td>
<td>Reference file</td>
</tr>
<tr>
<td>5</td>
<td>refs.wk1</td>
<td>30</td>
<td>Binary spreadsheet</td>
<td>Reference file</td>
</tr>
<tr>
<td>6</td>
<td>comments.dat</td>
<td>21</td>
<td>ASCII text</td>
<td>Comment file</td>
</tr>
<tr>
<td>7</td>
<td>comments.wk1</td>
<td>29</td>
<td>Binary spreadsheet</td>
<td>Comment file</td>
</tr>
</tbody>
</table>

8. DESCRIPTION OF THE DOCUMENTATION FILE

The **ndp073.txt** (File 1) file is an ASCII text equivalent of this document.

9. DESCRIPTION, FORMAT, AND PARTIAL LISTINGS OF THE ASCII DATA FILES

Table 2 describes the format and contents of the ASCII data file **ndp073.dat** (File 2) distributed with this numeric data package. Table 2 also indicates the column in the corresponding spreadsheet file **ndp073.wk1** in which each variable is found. The missing-value indicator in this database is the period (.), except for the real numeric fields **SE_AMB**, **SD_AMB**, **CV*_AMB**, **SE_ELEV**, **SD_ELEV**, and **CV*_ELEV**, in which the missing-value indicator is -9.99, and the integer numeric fields **N_AMB** and **N_ELEV**, in which the missing-value indicator is -9.
<table>
<thead>
<tr>
<th>Variable</th>
<th>Variable type</th>
<th>Variable width</th>
<th>Starting column</th>
<th>Ending column</th>
<th>Units</th>
<th>Spreadsheet column</th>
<th>Definition and comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAP_NO</td>
<td>Numeric</td>
<td>6</td>
<td>1</td>
<td>6</td>
<td></td>
<td>A</td>
<td>Cited paper number</td>
</tr>
<tr>
<td>PARAM</td>
<td>Character</td>
<td>7</td>
<td>7</td>
<td>13</td>
<td></td>
<td>B</td>
<td>Measured parameter</td>
</tr>
<tr>
<td>P_UNIT</td>
<td>Character</td>
<td>14</td>
<td>14</td>
<td>27</td>
<td></td>
<td>C</td>
<td>Unit for PARAM</td>
</tr>
<tr>
<td>GENUS</td>
<td>Character</td>
<td>13</td>
<td>28</td>
<td>40</td>
<td></td>
<td>D</td>
<td>Plant genus name</td>
</tr>
<tr>
<td>SPECIES</td>
<td>Character</td>
<td>13</td>
<td>41</td>
<td>53</td>
<td></td>
<td>E</td>
<td>Plant species name</td>
</tr>
<tr>
<td>DIV1</td>
<td>Character</td>
<td>6</td>
<td>54</td>
<td>59</td>
<td></td>
<td>F</td>
<td>Functional division #1</td>
</tr>
<tr>
<td>DIV2</td>
<td>Character</td>
<td>7</td>
<td>60</td>
<td>66</td>
<td></td>
<td>G</td>
<td>Functional division #2</td>
</tr>
<tr>
<td>DIV3</td>
<td>Character</td>
<td>5</td>
<td>67</td>
<td>71</td>
<td></td>
<td>H</td>
<td>Functional division #3</td>
</tr>
<tr>
<td>DIV4</td>
<td>Character</td>
<td>6</td>
<td>72</td>
<td>77</td>
<td></td>
<td>I</td>
<td>Functional division #4</td>
</tr>
<tr>
<td>AMB</td>
<td>Character</td>
<td>3</td>
<td>78</td>
<td>80</td>
<td></td>
<td>J</td>
<td>See CO2_UNIT</td>
</tr>
<tr>
<td>ELEV</td>
<td>Character</td>
<td>4</td>
<td>81</td>
<td>84</td>
<td></td>
<td>K</td>
<td>See CO2_UNIT</td>
</tr>
<tr>
<td>CO2_UNIT</td>
<td>Character</td>
<td>10</td>
<td>85</td>
<td>94</td>
<td></td>
<td>L</td>
<td>See text following table</td>
</tr>
<tr>
<td>TIME</td>
<td>Character</td>
<td>5</td>
<td>95</td>
<td>99</td>
<td>Days</td>
<td>M</td>
<td>Maximum duration of CO2 exposure</td>
</tr>
<tr>
<td>POT</td>
<td>Character</td>
<td>13</td>
<td>100</td>
<td>112</td>
<td></td>
<td>N</td>
<td>Growing method</td>
</tr>
<tr>
<td>MTHD</td>
<td>Character</td>
<td>4</td>
<td>113</td>
<td>116</td>
<td></td>
<td>O</td>
<td>CO2-exposure facility</td>
</tr>
<tr>
<td>STOCK</td>
<td>Character</td>
<td>9</td>
<td>117</td>
<td>125</td>
<td></td>
<td>P</td>
<td>Planting stock</td>
</tr>
</tbody>
</table>
Table 2 (continued)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Variable type</th>
<th>Variable width</th>
<th>Starting column</th>
<th>Ending column</th>
<th>Units</th>
<th>Spreadsheet column</th>
<th>Definition and comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>XTRT</td>
<td>Character</td>
<td>6</td>
<td>126</td>
<td>131</td>
<td>Q</td>
<td></td>
<td>Interacting treatment</td>
</tr>
<tr>
<td>LEVEL</td>
<td>Character</td>
<td>7</td>
<td>132</td>
<td>138</td>
<td>R</td>
<td></td>
<td>Interacting treatment level</td>
</tr>
<tr>
<td>QUANT</td>
<td>Character</td>
<td>17</td>
<td>139</td>
<td>155</td>
<td>S</td>
<td></td>
<td>Quantity and unit associated with LEVEL</td>
</tr>
<tr>
<td>SOURCE</td>
<td>Character</td>
<td>6</td>
<td>156</td>
<td>161</td>
<td>T</td>
<td></td>
<td>Figure, table, or page from which data taken</td>
</tr>
<tr>
<td>X_AMB</td>
<td>Numeric</td>
<td>8</td>
<td>162</td>
<td>169</td>
<td>See P_UNIT</td>
<td>U</td>
<td>Mean response of plants grown in ambient CO₂</td>
</tr>
<tr>
<td>SE_AMB</td>
<td>Numeric</td>
<td>8</td>
<td>170</td>
<td>177</td>
<td>See P_UNIT</td>
<td>V</td>
<td>Standard error of X_AMB</td>
</tr>
<tr>
<td>SD_AMB</td>
<td>Numeric</td>
<td>8</td>
<td>178</td>
<td>185</td>
<td>See P_UNIT</td>
<td>W</td>
<td>Standard deviation of responses of plants grown in ambient CO₂</td>
</tr>
<tr>
<td>CV*AMB</td>
<td>Numeric</td>
<td>7</td>
<td>186</td>
<td>192</td>
<td>%</td>
<td>X</td>
<td>Coefficient of variation of responses of plants grown in ambient CO₂</td>
</tr>
<tr>
<td>N_AMB</td>
<td>Numeric</td>
<td>5</td>
<td>193</td>
<td>197</td>
<td>Y</td>
<td></td>
<td>Sample size of responses of plants grown in ambient CO₂</td>
</tr>
<tr>
<td>X_ELEV</td>
<td>Numeric</td>
<td>9</td>
<td>198</td>
<td>206</td>
<td>See P_UNIT</td>
<td>Z</td>
<td>Mean response of plants grown in elevated CO₂</td>
</tr>
<tr>
<td>SE_ELEV</td>
<td>Numeric</td>
<td>7</td>
<td>207</td>
<td>213</td>
<td>See P_UNIT</td>
<td>AA</td>
<td>Standard error of X_ELEV</td>
</tr>
</tbody>
</table>

9
<table>
<thead>
<tr>
<th>Variable</th>
<th>Variable type</th>
<th>Variable width</th>
<th>Starting column</th>
<th>Ending column</th>
<th>Units</th>
<th>Spreadsheet column</th>
<th>Definition and comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD_ELEV</td>
<td>Numeric</td>
<td>8</td>
<td>214</td>
<td>221</td>
<td>See P_UNIT AB</td>
<td>AC</td>
<td>Standard deviation of responses of plants grown in elevated CO₂</td>
</tr>
<tr>
<td>CV*_ELEV</td>
<td>Numeric</td>
<td>8</td>
<td>222</td>
<td>229</td>
<td>%</td>
<td>AC</td>
<td>Coefficient of variation of responses of plants grown in elevated CO₂</td>
</tr>
<tr>
<td>N_ELEV</td>
<td>Numeric</td>
<td>6</td>
<td>230</td>
<td>235</td>
<td></td>
<td>AD</td>
<td>Sample size of responses of plants grown in elevated CO₂</td>
</tr>
<tr>
<td>SDC</td>
<td>Character</td>
<td>3</td>
<td>236</td>
<td>238</td>
<td></td>
<td>AE</td>
<td>Calculated versus reported standard deviation</td>
</tr>
</tbody>
</table>

Where:

For **PARAM**, the following list defines the possible measured parameters:

- **plant parts**
 - AGPROD: aboveground productivity (= AGWT + clippings)
 - AGWT: total aboveground weight
 - BGWT: total belowground weight
 - LFWT: total leaf weight
 - RGR: relative growth rate
 - ROOTWT: root weight
 - SHTWT: shoot weight
 - STWT: stem weight
 - TILLERS: number of tillers
 - TOTWT: whole plant weight

- **leaf area components**
 - INDLA: maximum individual leaf area
 - MAXLA: maximum canopy leaf area
 - SLA: specific leaf area (leaf area/unit mass of leaf)
 - SLW: specific leaf weight (leaf mass/unit area of leaf)
gas-exchange parameters

GR: stomatal resistance of ambient-grown plants measured at ambient CO₂ levels (X_AMB) and of elevated-grown plants measured at elevated CO₂ levels (X_ELEV)

GR_AC: stomatal resistance of ambient-grown plants measured at elevated CO₂ levels (X_AMB) and of elevated-grown plants measured at elevated CO₂ levels (X_ELEV)

GS: stomatal conductance of ambient-grown plants measured under ambient CO₂ (X_AMB) and elevated-grown plants measured under elevated CO₂ levels (X_ELEV)

PN: net CO₂ assimilation of ambient-grown plants measured under ambient CO₂ (X_AMB) and elevated-grown plants measured under elevated CO₂ levels (X_ELEV)

PN_AC: net CO₂ assimilation of ambient-grown plants measured at elevated CO₂ (X_AMB) and elevated-grown plants measured at elevated CO₂ levels (X_ELEV)

RD: dark respiration of ambient-grown plants measured under ambient CO₂ (X_AMB) and elevated-grown plants measured under elevated CO₂ levels (X_ELEV)

WUE: water use efficiency of ambient-grown plants measured under ambient CO₂ (X_AMB) and elevated-grown plants measured under elevated CO₂ levels (X_ELEV)

WUE_AC: water use efficiency of ambient-grown plants measured at elevated CO₂ (X_AMB) and elevated-grown plants measured at elevated CO₂ levels (X_ELEV)

biochemical constituents

AGN: aboveground N
BGN: belowground N
LFN: leaf N
STEMN: stem total N
TOTN: total N

The value of PARAM is linked to that shown for P_UNIT (parameter units), X_AMB (parameter value for plants grown under ambient CO₂ exposure conditions), and X_ELEV (parameter value for plants grown under elevated CO₂ exposure conditions).

The only entry for DIV1 (functional division #1) is ANGIO (angiosperms)

Entries for DIV2 (functional division #2) are
GRASS
GRASS_C: typically monotypic crop; generally does not include pasture species
SEDGE

Entries for DIV3 (functional division #3), if known, are
C3
C4
C3/C4: C3/C4 intermediate, as reported by the authors of the cited paper

Entries for DIV4 (functional division #4) are general habitat or location:
- ALPINE
- BOREAL
- GRASS (grassland)
- MEAD (meadow)
- WETL (wetland)

The values of AMB and ELEV are linked to those shown for CO2_UNIT.

Entries for CO2_UNIT are
- Pa (Pascals)
- μbar (1 μbar = 0.1 Pa)
- ppm
- μl/l
- cm³/m³
- μmol/mol
- μmol/l
- ml/l

TIME represents the maximum duration (days) of the CO₂ exposure.

For POT (growing method), a numeric entry signifies pot size (in liters) used during the major part of the experiment; the other entries are
- GRND: plants rooted in the ground
- HYDRO: solution or aeroponic culture

Entries for MTHD (CO₂-exposure facility) are
- FACE: Free-Air CO₂ Enrichment
- GC: indoor, controlled environment: growth chambers
- GH: sunlit greenhouses and chambers within greenhouses; also includes closed-top chambers in the field, covering ecosystems
- OTC: field-based open-top chambers
- SACC: screen-aided CO₂ control

Entries for STOCK (planting stock codes) are
- CLONE: experimental plants started from cuttings (graminoids); published paper refers to specific genotype
- ECOSYS: entire ecosystem exposed
- MATURE: mature plants exposed
- MIXED: typically ecosystems where species are propagated from multiple sources
RAMETS: small plants (with 2 to 3 tillers) propagated from cuttings, rather than grown from seed
SEED: plants started from seeds
SEEDLINGS: young plants grown from seed
TILLERS: equivalent to rhizomes or stolons, depending upon species; that is, more-or-less horizontal stems or culms

Entries for **XTRT** (codes for interacting treatment, used together with CO₂) are
- COMP: plant competition
- DEFOL: defoliation (clipping by any means)
- FERT: soil fertility
- FLD: flooding treatment
- F+O3: fertility plus ozone
- H2O: well-watered versus drought
- LIGHT: light treatment
- NONE: no additional treatment beyond CO₂ enrichment; usually optimal growth conditions
- O3: ozone exposure
- SALT: temperature treatment
- TEMP: temperature treatment

The entries for **LEVEL** (which qualitatively describes the treatment level) are treatment-dependent; this field is linked with **XTRT** (which characterizes the treatment type) and **QUANT** (which quantifies the treatment level).

For **XTRT** = COMP, FERT+L, NATIVE, NONE, or SALT, **LEVEL** = . (missing value)
(see entry for corresponding paper in comments.dat and comments.wk1 files)

For soil fertility treatment:
- CONTROL
- HI
- LOW
- MED
- TRT-1
- TRT-2
- TRT-3
missing (.) when treatment cannot be clearly described (see entry for corresponding paper in comments.dat and comments.wk1 files).

For H2O treatment:
- DRT: drought
- FLD: flooding
- PRECIP: natural levels of precipitation
WW: well-watered

For LIGHT, TEMP, OZONE, and UVB treatments:
 CONTROL
 HI
 LOW

Entries for QUANT, which quantify the interacting treatment level, are treatment-dependent. The combination of quantity and unit is reported in this one field (see also the corresponding entry in comments.dat and comments.wk1 file). If QUANT data are not available or inappropriate, a missing value (.) is present.

Possible entry formats for SOURCE (figure, table, or page from which data were extracted) are:
 F1a (Fig. 1a)
 T1 (Table 1)

Entries for X_AMB, SE_AMB, SD_AMB, X_ELEV, SE_ELEV, and SD_ELEV are linked to the units given for P_UNIT. The suffix “AMB” refers to measurements of plants grown under ambient CO₂ exposure conditions, and the suffix “ELEV” refers to measurements of plants grown under elevated CO₂ exposure conditions.

For CV*_AMB and CV*_ELEV, corrected (for small sample size) coefficient of variation was calculated according to Sokal and Rohlfs (1981) as follows:

 CV* = (1 + 1/4N)(SD x 100)/X

where SD = standard deviation, X = mean, and N = sample size.

SDC indicates whether the tabulated values for standard deviation (used to calculate coefficient of variation) were extracted directly from the cited publications or calculated from reported values for standard error. The tabulated values of SDC are either Y (yes) or N (no).

First two data records:

<table>
<thead>
<tr>
<th>38AGWT</th>
<th>G PLANT-1</th>
<th>TRITICUM</th>
<th>AESTIVUM</th>
<th>ANGIO GRASS_CC3</th>
<th>GRASS 330</th>
</tr>
</thead>
<tbody>
<tr>
<td>660UL</td>
<td>L-1</td>
<td>461.45</td>
<td>QC SEED</td>
<td>H2O</td>
<td>LO</td>
</tr>
<tr>
<td>38AGWT</td>
<td>G PLANT-1</td>
<td>TRITICUM</td>
<td>AESTIVUM</td>
<td>ANGIO GRASS_CC3</td>
<td>GRASS 330</td>
</tr>
<tr>
<td>660UL</td>
<td>L-1</td>
<td>371.45</td>
<td>QC SEED</td>
<td>H2O</td>
<td>CTL</td>
</tr>
</tbody>
</table>

Last two data records:
The *refs.dat* (File 4) ASCII file provides citations of papers included in the database. A full listing of the file is included as Appendix B.

The *comments.dat* (File 6) ASCII file provides experimental details from papers included in the database. A full listing of the file is included as Appendix C.

10. DESCRIPTION AND FORMAT OF THE LOTUS 1-2-3® BINARY SPREADSHEET FILES

Three Lotus 1-2-3® binary spreadsheet files (files 3, 5, and 7) contain the same information as the corresponding ASCII files (files 2, 4, and 6).

File *ndp073.wk1* (File 3) corresponds to ASCII file *ndp073.dat* (File 2).

Table 2, which describes the contents and format of *ndp073.dat*, also indicates the column of *ndp073.wk1* in which each variable is found.

File *refs.wk1* (File 5) corresponds to ASCII file *refs.dat* (File 4).

File *comments.wk1* (File 7) corresponds to ASCII file *comments.dat* (File 6).

11. SAS® AND FORTRAN CODES TO ACCESS THE DATA

The following is SAS® code to read file *ndp073.dat*.

```sas
*SAS data retrieval routine to read ndp073.dat;

data ndp073;
infile 'ndp073.dat';
input PAP_NO 6. 97 PARAM $char7. P_UNIT $ 14-27 GENUS $ 28-40
    SPECIES $ 41-53 DIV1 $ 54-59 DIV2 $ 60-66 DIV3 $ 67-71
    DIV4 $ 72-77 AMB $ 78-80 ELEV $ 81-84
    CO2_UNIT $ 85-94 TIME $ 95-99 POT $ 100-112 MTHD $ 113-116
    STOCK $ 117-125 XRTX $ 126-131 LEVEL $ 132-138 QUANT $ 139-155
    SOURCE $ 156-161 X_AMB 162-169 SE_AMB 170-177 SD_AMB 178-185
    CV_AMB 186-192 N_AMB 193-197 X_ELEV 198-206 SE_ELEV 207-213
    SD_ELEV 214-221 CV_ELEV 222-229 N_ELEV 230-235 SDC $ 236-238 ;
```

* In the above INPUT statement, the variables CV*_AMB* and CV*_ELEV* have been renamed CV_AMB and CV_ELEV, respectively.;
The following is Fortran code to read file ndp073.dat.

```fortran
C *** Fortran program to read the file "ndp073.dat"
C
INTEGER PAP_NO, N_AMB, N_ELEV

REAL X_AMB, SE_AMB, SD_AMB, CV_AMB, X_ELEV, SE_ELEV,
     SD_ELEV, CV_ELEV

CHARACTER PARAM*7, P_UNIT*14, GENUS*13, SPECIES*13, DIV1*6,
     DIV2*7, DIV3*5, DIV4*6, AMB*3, ELEV*4, CO2_UNIT*10,
     TIME*5, POT*13, MTHD*4, STOCK*9, XTRT*6, LEVEL*7,
     QUANT*17, SOURCE*6, SDC*3

OPEN (UNIT=1, FILE='ndp073.dat')

Note that the variables CV_*AMB and CV_*ELEV have been renamed CV_AMB and CV_ELEV, respectively

10 READ (1,100,END=99) PAP_NO, PARAM, P_UNIT, GENUS, SPECIES,
     DIV1, DIV2, DIV3, DIV4, AMB, ELEV, CO2_UNIT, TIME, POT,
     MTHD, STOCK, XTRT, LEVEL, QUANT, SOURCE, X_AMB, SD_AMB,
     SD_AMB, CV_AMB, N_AMB, X_ELEV, SE_ELEV, SD_ELEV, CV_ELEV,
     N_ELEV, SDC

100 FORMAT (I6,A7,A14,2A13,A6,A7,A5,A6,A3,A4,A10,A5,A13,A4,A9,

GO TO 10

99 CLOSE (UNIT=1)
STOP
END
```
APPENDIX A. SPECIES INCLUDED IN THE DATABASE

Agropyron caninum
Agropyron smithii
Agrostis capillaris
Andropogon gerardii
Avena barbata
Avena fatua
Avena sativa
Bouteloua curtipendula
Bouteloua eriopoda
Bouteloua gracilis
Briza subaristata
Bromus erectus
Bromus hordaeceus
Bromus willdenowii
Calamagrostis epigejos
Carex curvula
Dactylis glomerata
Digitaria macroblephara
Digitaria sanguinalis
Echinochloa crusgalli
Eleusine indica
Eriophorum vaginatum
Festuca arundinacea
Festuca durviscula
Festuca elatior
Festuca idahoensis
Festuca ovina
Festuca pratense
Festuca rupicola
Festuca vivipara
Hordeum vulgare
Lolium boucheanum
Lolium multiflorum
Lolium perenne
Nardus stricta
Oryza sativa
Panicum antidotale
Panicum laxum
Panicum millioides
Pascopyrum smithii
Paspalum dilatatum
Pennisetum clandestinum
Phalaris aquatica
Phleum pratense
Poa alpina
Poa annua
Poa pratensis
Puccinellia maritima
Rottboellia exaltata
Schizachyrium scoparium
Scirpus olneyi
Setaria faberi
Sorghum bicolor
Sorghum helpense
Spartina patens
Sporobolus kenophyllus
Stipa occidentalis
Themeda triandra
Triticum aestivum
Vulpia microstachys
Zea mays
APPENDIX B. FULL LISTING OF REFS.DAT (FILE 4)

The number at the beginning of each entry corresponds to PAP_NO, the cited paper number, as defined in Sect. 9.

B-1

APPENDIX C. FULL LISTING OF COMMENTS.DAT (FILE 6)

Listed are

paper number (PAP_NO, as defined in Sect. 9.)
 CO₂ exposure facility
 light
 temperature
 watering
 humidity
 nutrient
 interacting treatment
 biome
 location, and
 comments.

Abbreviations are as described in the body of this report for data files ndp073.dat and ndp073.wk1.

38
 GC
 600+/-90 UE M-2 S-1
 14/10
 24/18
 40 OR 10 ML PL-1 D-1
 0.588235294
 HOAGLAND'S
 H2O
 GRASS
 EU

186
 OTC
 AMB
 AMB
 AMB
 AMB
 AMB
 NONE
 CO₂ ONLY
 WETL
 NA

488
 GH
 AMBIENT
 AMBIENT

 FIELD CAPACITY OR NONE
NONE
CO2 AND WATER
GRASS
NA
2ND YEAR; NO TEMP DATA; FIELD PLANTS.

618
GC
AMB
12H
20/15 C (DAY/NIGHT)
WW
AMB
NITRATE' SOLUTION
NONE
GRASS
EU
.

754
GC
0.6 MMOL M-2 S-1
14 H
"15, 20, 25, 30 DEG C CONSTANT DAY/NIGHT"
WW
>50 %
COMPLETE NUTRIENT SOLUTION ADDED DAILY
TEMP
MEAD
NA
MAINTENANCE RESPIRATION RECORDED HERE. GROWTH RESPIRATION
ALSO REPORTED ONE GC PER CO2 TREATMENT

765
GC
AMB
AMB
.
WW
.
.
TEMP
GRASS_C
NA
CONTROL: 28/21/25 C; HI: 40/33/37 C

2066
GH
24.8 MOL M-2 D-1
16 H
20/14
.
.
COMPLETE FERTILIZER ADDED
H2O
GRASS_C

C-2
AU
TWO VARIETIES USED

2119
GC
700 UMOL M-2 S-1
1/12/00
12/7; 18/13; 28/23
WW
0.4/0.3 +- 0.05 KPA VPD
HALF-STRENGTH HOAGLAND'S
TEMP
GRASS
AU
"USABLE DATA ON 4 SPP ONLY, FOR PN"

2125
OTC
AMB
AMB
AMB
WW DAILY FC
AMB
0.2 MOL M-3 N AND 0.05 MOL M-3 P
CO2 ONLY
GRASS
EU
"OTHER NUTRIENT DATA, EFFICIENCIES - P,"

2132
GC
500 UMOL M-2 S-1
14/10
25/18
WW
50-70
HOAGLAND'S ALTERNATE DAYS
O3
GRASS
NA

2133
OTC
AMB
AMB
AMB
.
.
NPK APPLIED
.
GRASS_C
EU

2158
GC
200 UMOL M-2 S-1
16 H

C-3
SURPLUS NUTRIENTS
NONE
BOREAL
EU
"1 GC AT EACH CO2 LEVEL. QY, RHZWT, LWR, LAR"

GC
.6 MMOL M-25-1
14H
"15,20,25,30"
WW
>50%
"COMPLETE" IN DAILY WATER
TEMP
GRASS
NA

OTC
AMBIENT
AMBIENT
AMBIENT
AMBIENT
AMBIENT
AMBIENT
NONE
GRASS
NA
1991 PRECIPITATION: 17.1 CM; 1992 PRECIPITATION: 26.8 CM; SAMPLE SIZE INFERRED FROM DESIGN. LFY.MD

OTC
AMBIENT
15-18
12-Nov
AMB AND DRAIN
.
ADDED WITH DRAIN WATER; AMT NOT STATED
HARVEST
GRASS
EU
CLIPPED TO 5 CM AT EACH HARVEST

OTC
AMB
AMB
AMB
AMB
AMB
.
CO2
GRASS
NA
"DATA USED FROM LAST MEASUREMENT PRIOR TO SHADING, F2."

2202
GC
725-890 UE

WW
HOAGLAND'S; 2 G/M2 N WEEKLY
CLIPPING TO 5 CM
GRASS
AF
C4; SPOROBOLUS KENTROPHYLLUS; ADDT'L LF NUTRIENTS AVAILABLE IN T1

2208
GC
700 UMOL M-2
12 H

WW
AMB
PERT
TEMP
GRASS_C
NA
THERE ARE TWO LOLIUM HYBRIDS (2N AND 4N). EACH ONE WAS TREATED AS A SPECIES.

2211
GH
~900 UMOL M-2 S-1
14/10
25/16
WW
35/90
NONE
NONE
GRASS
NA

2227
GC
600 UMOL M-2 S-1 AT SEEDLING HT
15/9
20/15
WW
65/70
0.8 NM NH4NO3 + 50% LONG ASHTON SOLUTION
"HI N, LOW N"
GRASS
EU

2229
GC

C-5
AMB
+4C
.
.
HI/LOW
TEMP/FERT
GRASS_C
EU

2246

OTC
AMBIENT
AMBIENT
AMBIENT
WW
AMBIENT
"WEEKLY 1/5 MODIFIED LONG ASHTON- 0.2 MOL M-3 N, 0.05 MOL M-3 P"
NONE
GRASS
EU
"NAR, LAR, LWR"

2300

GC
800 UMOL/M2S ACTIVE RADIATION
18 H
15 C
WATERED DAILY TO SATURATION
.
HALF-STRENGTH MODIFIED HOAGLAND SOLUTION WITH AMMONIUM NITRATE AND P
CONCENTRATION OF 32 PPM
"SOIL TEMPERATURE (5,15, AND 25 C)"
TUNDRA
NA
THIS STUDY FOCUSES ON THE EFFECTS OF SOIL TEMPERATURE. RATE OF PO4
ABSORPTION WAS LEFT OUT.

2312

GC
615 UE (603-621)

23/11
100 ML EACH 3 D
NOT CONTROLLED
C= HOAGLAND'S T=HOAGLAND'S + UREA (40 G/M2)
"UREA, CLIPPING"
GRASS
NA
RINSED SAND; CONTROLS HAD HOAGLAND'S

2315

GH
AMB/SEASONAL
AMB/SEASONAL
AMB/SEASONAL
SEASONAL; SUMMER WW/DEFICIT
N = 160 kg/ha yr; N+ = 530 kg/ha yr
N HI, LO
GRASS
EU
2 yr study; microclimate details avail. FKS also applied. Data used from summer drought only.

2316
GH
AMB
AMB
AMB
IRRIGATION AT AMB LEVELS
AMB
160 or 530 kg N ha−1 yr−1
FERT
GRASS
EU
"PLASTIC TUNNELS. SWARDS, SOWN. PERIODIC CLIPPING OF ALL PLOTS."

2329
OTC
REDUCED −20%
AMB
"AMB + 1−2 DAY, 0−1 NIGHT"
WW
NPK; 600 kg N/ha for season
CLIPPING
GRASS
EU
SOWN IN GROUND. DATA FROM 2 GROWING SEASONS. CO2 TMNT YR-ROUND

2330
OTC and GC
"OTC= AMBIENT, GC NOT AVAILABLE"
"OTC= AMBIENT, GC= NOT AVAILABLE"
"OTC= AMBIENT, GC= FOLLOWED AMBIENT"
"OTC= AMBIENT, GC= EVERY 1−3 DAYS"
"OTC= AMBIENT, GC= NOT AVAILABLE"
GROWTH CHAMBERS; 5−10−15 NPK PLUS MICRONUTRIENTS. 2 ML/H EVERY TWO WEEKS
COMPETITION AND METHOD (OTC AND GC)
GRASS
NA
"GC (PH = 6.5) PHOTOPERIOD, LIGHT AND HUMIDITY ARE REPORTED IN WANT,
LECHOWICZ AND POTWIN (1994). COMPETING SPECIES (TRIFOLIUM REPENS, POA
FRATENSIS, PHLEUM PRATENSE, AGROSTIS STOLONIFERA) NO INDIVIDUAL POTS."

2337
OTC
AMB
AMB
AMB; X=11.3
DRIP
AMB
"YES, UNKNOWN"
COMMON SPP + CULTIVARS; NORWAY; MARITIME

2341
OTC
AMB
AMB
AMB
AMB/WW
AMB
NPK 1.5:1.5; =40 KG N HA-1 Y-1
"CO2, NUTRIENTS"

EU
3 YR EXP. OTCS UP 98-108 D Y-1. SOME DATA ALSO FROM YEARS 1 & 2

2342
OTC
AMBIENT
AMBIENT
AMBIENT
AMBIENT
AMBIENT
"N, P, K 20 G M-2, 120 DAY TIME-RELEASE OSMOCOTE"
"ADDITIONAL NUTRIENTS N, P, K"
GRASS
NA
MONOCULTURES OF SIX SPECIES AND ONE MIXED COMMUNITY. SERPENTIME SOIL

2345
otc
amb
AMB; AMB +3
WW
NPK + NUTRIENTS
TEMP
GRASS
EU
OTCS PLACED IN GH FOR WARMING

2347
OTC
AMB
AMB
AMB
AMB
AMB
NONE
CO2 ONLY
GRASS
NA
JASPER RIDGE
GH
AMB
AMB
17
WW
7 G M-2 N; 5 G M-2 P; 7 G M-2 K
CLIPPING EVERY 4 WK
GRASS
EU
"ALSO INCLUDED TEMP, CO2 X TEMP, MIXTURES OF SPP"

GC
700 UMOL M-2 S-1
12
12/7; 18/13; 28/23
WW
HALF-STRENGTH HOAGLAND'S GX D-1
TEMP
GRASS
AU
GROWN IN STERILE SAND

OTC
AMB
AMB
AMB
AMB
AMB
OSMOCOTE: 20 G M
NUTRIENTS
GRASS
NA
JASPER RIDGE

GH
AMB; 640 UMOL M-2 S-1
AMB; 640 UMOL M-2 S-1
13-26
WW
0.08
13 G N M-2; 3.18 G P M-2; 10.61 G K M-2
TEMP (+4)
GRASS
EU
GERMINATION IN POTS IN FIELD; CO2 BEGAN AFTER ~6.5 MONTHS

GH
AMB
AMB
13;10

C-9
WW

NOT LIMITING
NONE
GRASS
EU
TUNNELS = GH

2363
GC
552 UMOL M-2 S-1
14 H
26/21
WW
60-70%
HALF STRENGTH HOAGLAND'S; N=6 OR .5 mM
O3 + FERT
GRASS
NA
"OZONE = 3 +/- .3, 92 +/- .4 nMOL MOL-1; FERT = 6 OR .5 mM N.
MACRONUTRIENTS SAME FOR HI/LO FERT TMNT."

2364
FACE
AMB

.
.
.
.
.
.
GRASS_C
EU
MINIFACE

2366
OTC
89% OF AMB
AMB
32 / 24.9
WW
.
.
FERT
GRASS_C
AS
NO SUPPLEMENTAL N

2367
OTC
AMB
AMB
AMB
WW
.
IRRIGATED WITH NUTRIENT ENRICHED WATER
NONE

C-10
GRASS_C
EU

2369
GH
AMB
AMB
29/21 OR 37/29
WW
70 +/- 5
PROVIDED
WETL
WETL
AS
29/21 = CTL; 37/29 = HI TEMP (PC.1354). 17 CULTIVARS TREATED AS REPS

2372
FACE
AMB
AMB
"AMB/AMB+2.5, 18-30"
WW
AMB
7 G N M-2
TEMP
GRASS
EU
"TEMP INCREASE USING INFRA-RED LAMPS ALL MATERIAL CLIPPED PRIOR TO START OF TEMP TMT. EFFECTIVE CO2 DURATION USED. 12- AGWT, LFN, FN"

2379
GC
AMB
AMB
AMB
.
.
NONE
GRASS_C
EU
10 CULTIVARS TREATED AS REPS.

2383
GH
.
AMB
AMB AND AMB+4
WW
.
FERTILIZED
TEMP
GRASS_C
EU

2387

C-11
AMBL - MAX = 800 UMOL M-2 S-1
"16, W LIGHTS"
18/10-24/18
WW 1X WK-1

NO ADDITIONAL
"330, 500, 660 L-1 CO2"
GRASS
EU
"CALCEROS GRASSLAND, SPP AND ECOSYS 76 PLANTS/ CONTAINER
REPRESENTING FIELD %, PESTICIDES USED."

THE SPECIES GROW IN A XERIC TEMPERATE LOESS STEPPE.

AMBL
AMBL (-11)
WW
"ADDED, BUT NOT SPECIFIC; SEE TEXT."
SEASONALITY
GRASS
EU
USING GRAND MEANS AND SE ONLY; NOT USING SEASONAL DATA.

LOW/Hi NPK
FERT
GRASS
NA

OTC
AMBL
AMBL
AMBL
WW
AMBL
LOW/Hi NPK
FERT
GRASS
NA

C-12
150 KG N HA-1 AND 270 KG N HA-1
FERT/OZONE
GRASS_C
EU

2407
FACE
AMB
AMB
3 C LESS THAN AMB
WW + DROUGHT
.
.
H2O
GRASS_C
NA
.

2420
GC
550 UMOL M-2 S-1
SEASONAL
SEASONAL
WW
.
NONE
TEMP
GRASS
NA
"WATER TMT ALSO, BUT NOT USED IN DATASET. "WINTER" TEMP = 3"

2427
GH
AMB + SUPPL (28.4 MOL M-2 S-1)
16
28/22
WW/DRY
5KG M-3 15:10:10:2 NPK MG 3 MO RELEASE
H2O
GRASS
AU

2430
GH
AMB 2-3.9 MJ M-2 D-1
AMB
19 - 22.5
WW
.
SUPPLEMENTED
NONE
GRASS
EU
NOT USING 1992 DATA
GC
1115 UMOL M-2 S-1
16/8
25/15
WW

N= 0 OR 300 KG HA-1; P= 56 KG HA-1; K= 46 KG HA-1
"FERT, TEMP"
GRASS
NA

GC
1000 UMOL M-2 S-1
12/12/98
"DAY 20, 35; NIGHT 15"
WW
60/~100
HALF STRENGTH HOAGLAND'S; =400 UL L-1 N
TEMP 20 = CTL
GRASS
NA

GH
SEASONAL
SEASONAL
SEASONAL
WW
.

HOAGLAND'S + - N; SEE METHODS AND RESULTS
NONE. SEE RESULTS
GRASS
NA
"N HAD NO EFFECT ON PN, OR APPARENTLY ON TOTWT"

GC
600 UMOL/M2S PFD
15 H
20/15 DEGREES C
WW
"65/70 % (DAY,NIGHT)"
"NITROGEN CONCENTRATIONS (.01, .1, 1.0, AND 5.0 MG N/L)"
NITROGEN CONCENTRATIONS BY N SUPPLY (AMMONIUM OR NITRATE)
GRASS
EU
SAMPLE SIZE OF GAS EXCHANGE MEASUREMENTS WAS USED FOR ALL MEASUREMENTS
BECAUSE IT WAS THE ONLY ONE AVAILABLE. AGROSTIS CAPILLARIS IS A FAST
GROWING GRASS. NARDUS ESTRICTA IS A SLOW GROWING GRASS.
WW

TEMP
GRASS_C
NA

2454
GC
AMB
14 HR
AMB
WW
60-70%RH
NUTRIENTS SUPPLEMENTED TWICE A WEEK
NONE
GRASS
EU

2468
GC
200 UMOL M-2 S-1
14H
19/15 C

GRASS_C
EU
ANOTHER SET OF DATA (CO2 * SO2) CAN BE EXTRACTED

2474
GH
AMBIENT
AMBIENT

WW

MODIFIED HOAGLANDS
"N= 5, 20, OR 50 MG L-1; P= 2, 11, OR 30 MG L-1; K=5, 20, 50 MG L-1"
GRASS
EU
"CO2= AMB, AMB+250...1:1 SAND:PEAT; DATA TAKEN FROM P=3 + K=3 ONLY.
AGN, AGC, AGK, AGP"

2480
GH
200 UMOL M-2 S-1
14 H
25/18
"WW, FLD"

NATIVE SOIL
"FLD, SALT*
WETL
EU
PLANTS ROTATED BETWEEN 2 GHS

2492
GC
220-250 UMOL M-2 S-1
14/10
23.5/19
80% OF FIELD CAPACITY
30/55
"194 MG N, 13 MG P, 24 MG K, 39 MG MG POT-1"
DENSITY
GRASS
EU
"USING LOWEST AND HIGHEST DENSITIES ONLY, AS REPS"

2502
OTC
AMB
AMB
AMB
PRECIP
AMB
NONE
NONE
WETL
NA
"SAME PARAMETERS WERE MEASURED AT DIFFERENT YEARS AND/OR THE SAME YEAR,
BUT DIFFERENT MONTHS. EACH MONTH AND/OR YEAR WAS CONSIDERED A SEPARATE
DATA POINT BECAUSE TIME OF EXPOSITION CHANGED. THE PAPER INCLUDES DATA
ON LEAF RUBISCO AND LEAF SOLUBLE PROTEIN."

2503
FACE
AMB
AMB
SEASONAL; -5-25
AMB
SEASONAL
N (100 OR 420 KG HA-1 Y-1); 120 KG HA-1 P2O5; 240 KG HA-1 K2O; 16 KG HA-1
MGO
FERT: 100 OR 420 KG N HA-1 Y-1
GRASS
EU
OCT IN GROWTH BAGS. ETHANOL SOLUBLE TNC USED IN DATABASE. WATER-SOLUBLE
TNC ALSO AVAILABLE.

2504
GH
AMB; 180 UMOL M-2 S-1 + 100 UMOL M-2 S-1
16/8
20
WW
HI N=54 G M-2; LO N=9.5 G M-2; + OTHER NUTRIENTS
FERT

C-16
GRASS
EU

2510
GC
AMB
.
AMB
WW
AMB
FERTILIZED WEEKLY
.
.
EU

2521
GC
500 UMOL M-2 S-1
13.5 H
23/17
WW
60-70
.
OZONE
GRASS_C
EU
.

2522
GC
500 UMOL M-2 S-1
14/10
24/14
WW
65+/-5
INITIAL AND EVERY 21 DAYS
O3
GRASS
EU

2525
OTC
AMB
AMB
AMB
WW
AMB
.
.
WETL
NA
CARBON CONTENT WITH SE/SD & N; ADDT'L VAR

2531
OTC
Amb - 11%
AMB
AMB
AMB
AMB
AMB
AMB
AMB
AMB
AMB
AMB+
AMB
AMB
NO ADDITIONAL
CO2
GRASS
NA
"CASPER RIDGE. GS, E, LFY, PN, SEEDS, HT, AGWT, WVE, DNSITY,
ISOPOE, SEED WT, FRUITWT, SEED C, SEED N."

2547
GH
AMB
AMB
28/21/25(H2O)
WW
.
NPK INITIAL; VARIABLE N ADDED DURING SEASON
CO2 ONLY APPROPRIATE
WETL
NA

2579
GC
1000 UMOL M-2 S-1
16/8
23/16
WW
70-80
ALL: 4.6 MG P; 5.8 MG K; N= 0 OR 32 MG POT-1
FERT
.
.

2580
GH
amb
amb
32/23; 35/26; 38/29
WW
.
"12.6, 6.3, 6.3, G N M-2 AT 7, 31 + 63 D"

C-18
NONE
WETL
NA

2595
GC
350 UMOL N-2 S-1
15/9
20/17
WW

2597
GH
AMB
AMB
AMB
WW

NONE
GRASS_C
EU

2644
OTC
AMB
AMB
AMB
WW

101 KG N HA-1; SEE ALSO T1
NONE
GRASS
NA

2654
OTC
AMB
AMB
AMB
AMB
AMB
AMB
AMB
NONE
GRASS
NA
JASPER RIDGE

2666

C-19
GH
AMB 25-29 MOL M-2 D-1
16 H
20/14
WW / DRY
.
SOLUBLE OR SLOW RELEASE ADDED
H2O
GRASS_C
AU

2669
GC
220-250 UMOL M-2 S-1
14/10
17-Dec
WW
0.571428571
N: 0 OR 765 MG POT-1; 114 MG P; 193 MG K; 26 MG MG
FERT
GRASS
EU
USING ONLY CTL; HIGHEST FERT LEVELS

2692
FACE
AMB
AMB
32/23; 35/26; 38/29
WET/DRY
AMB
NON-LIMITING; REPEATED APPLICATIONS
H2O
GRASS
NA
DRY = HALF OF WET (WW). USE WET AS CTL

2698
OTC
AMB
AMB
AMB
AMB
AMB
NONE
NONE
GRASS
NA
"SUM Y EXPERIMENT. 2 OTC'S W/ CO2, OTC'S - CO2"

2709
FACE
AMB
AMB
AMB
.
.

C-20
FER/COMP
GRASS
EU
TIME ASSUMED TO BE 730 BECAUSE AGWT WAS SUM OF TWO SEASONS

2710
FACE
AMB
AMB
AMB
AMB
AMB
LO: 10-14 G N M-2 Y-1; HI: 42-56 G N M-2 Y-1
DEFOL: 4 OR 7-8 Y-1; FERT
GRASS
EU
MET IN TABLE 1

2711
GH
9.2 + 24.9 MOL M-2 S-1
AMB
30/25
WW
>90
"30 MG N POT-1 + 60 G N POT-1, SEASONALLY"
LIGHT
GRASS
AU

2715
GC
300 UMOL M-2 S-1
16/8
18/4
WW; 14% H2O
0.928571429
28 MG P + 50 MG K KG-1 + N TREATMENTS
N 8KG N HA-1 OR 278 KG N HA-1
GRASS
EU

2718
GC
794
AMB
25/13 (DAY/NIGHT)
WW
AMB
HOAGLAND'S SOLUTION EVERY 3 D
DEFOL
GRASS
NA

2723
GH
85-90% AMB
14-H
AMB/AMB + 3 C
WW
AMB
.
TEMP
.
EU
GS WITH NO SE/SD. VC MAX WITH SE/SD AND N IN FIG. 4

2735
GH
AMB
AMB
"AMB, AMB+4"
WW
AMB
10 G M-2 N; 15 G M-2 P; 15 G M-2 K
TEMP
GRASS
EU
80% OF UVB

2737
GH
25 MOL M-2 DAY-1
16/8
17
WW
65
"COMPLETE, INCLUDE 188 MG L-1 N"
"03, SOIL"
GRASS
EU
03 NOT USED FOR PHYL DATASET

2756
OTC
AMB
AMB
AMB
AMB + DROUGHT
AMB
NONE
H2O
GRASS
NA
"UNDISTURBED TALL GRASS PRAIRIE; EARLY, MID + LATE SEASON DATA; EXP. RAN
4Y PRIOR TO THIS STUDY"

2758
OTC
AMB
AMB
AMB

C-22
NONE
GRASS
EU

2785
OTC
AMBIENT
AMBIENT
AMBIENT
AMBIENT
AMBIENT
HI FERT TRT ONLY
FERT. 20 G M-2 NPK OSMOCOTE
GRASS
NA
JASPER RIDGE. SERPENTINE SOIL

2793
OTC
AMB
AMB
AMB
AMB

GRASS
EU
MINI-RHIZOTRONE. DATA USED FROM 10 CM

2802
GH (TUNNEL)
AMB
AMB
0.3 C HIGHER DURING DAY; 0.2 C LOWER AT NIGHT

FERT
GRASS
EU

2821
GH
75% OF AMB
AMB
AMB
WW

8 G N M-2 PER 24 DAYS
CO2
GRASS
2834
GC
750 UMOL M-2 S-1
16/8
16
WW
0.54 KPA
0.2 OR 2.5 MOL M-3 N; 0.04 OR 0.5 MOL M-3 P
LOW N+LOW P OR HI N + HI P
GRASS
EU
"P, OTHER MINERALS"

2835
GC
1000 UMOL M-2 S-1
16
30/20
WW
0.0025
"HOAGLAND'S, ALTERNATE WATERING"
GRASS
NA

2839
OTC
85% OF AMB
AMB
"25/29 (AMB, AMB+4)"
WW

220 KG N HA-1
TEMP
WETL
AS

2855
GH
AMB+
16/8
20/15
WW
70
NPK (HOAGLAND'S) OR 0.1 N (MODIFIED HOAGLAND'S)
FERT
GRASS
EU

2856
GH
AMB
AMB
26/16 C DAY/NIGHT
WW
2892
GC
645 umol m-2 s-1
16/8
24/18
WW

MODIFIED SHIVE'S SOLUTION
O3
GRASS
EU
TIME FOR BIOMASS ASSUMED > 42 D; SEE FIG 6

2893
OTC
AMB
AMB
19
WW
67-71%
0.4 g L-1 N; 0.3 g L-1 P205; 0.4 g L-1 K20
NONE
GRASS_C
EU
INTRODUCED IN 1890

2895
OTC
AMB
AMB
AMB
AMB

NONE
GRASS
NA

2911
OTC
AMB
AMB
AMB
AMB
AMB
AMB
AMB
AMB
03
GRASS
EU
CTRL 03 = 26-29 NMOL MOL-1; HI 03 = 84 NMOL MOL-1 AVE FOR ALL DAYS

C-25
GC
AMB
AMB
15 C MEAN

150 MG N, 18.1 MG P AND 34 MG K
H2O
GRASS_C
EU

2924
GH
AMB; PN >1200 UMOL M-2 S-1
AMB
32/23; 35/26; 38/29
WW

P, K= 9 G M-2; N (UREA) 12.6-6.3 G M-2 X3 DATES
TEMP
WETL
NA

2928
OTC
85% OF AMB
AMB
X = 25; AMB+4
WW

N: 110 KG HA-1 WET SEASON; 220 KG HA-1 DRY
TEMP
WETL
AS
DATA ON DEVELOPMENT STAGES

2935
OTC
AMB

28/21 (DAY / NIGHT)

H2O
GRASS_C
NA
SPAR: SOIL-PLANT-ATMOSPHERE-RESEARCH CHAMBER

3034
GC
1000 UMOL M-2 S-1
14/10
28/22; 24/18; 21/25
WW
70
TEMP. NOTE ECOTYPES
GRASS
NA
"TEMPS: MISS: CTL=28, LO=2, . ; N.C: CTL=24, LO=21, HI=28; QUEBEC:
CTL=21, . , HI =28"

3033
GC
65 UE M-2 S-1
14/10
28/22
WW
0.7
HALF STRENGTH HOAGLANDS
NONE
MIXED
NA

3035
GC
1000 UMOL M-2 S-1
14/10
28/22; 24/18; 21/15
WW
70

TEMP NOTE ECOTYPES
GRASS
NA
"TEMPS: MISS: CTL=28, LO=21, . ; N.C: CTL=24, LO-21, HI=28; QUEBEC:
CTL=21, . , HI=28"

3036
GC
150 OR 1000 UMOL M-2 S-1
14/10
29/23
WW
70
HALF STRENGTH HOAGLANDS
LIGHT
GRASS
NA

3038
GH
AMB
AMB
34
WW

. .
NONE
GRASS
NA
MIXED AND UNMIXED CULTURES

C-27
GH
AMB; 2ME M-2 S-1
AMB
32/20
WW
50-70
"4 LEVELS OF HENITTS: 24, 12, 4, OR MM NITRATE"
FERT
GRASS_C
NA
ONLY MAIZE DATA WERE TAKEN

3401
GH
AMB + LOW INTENSITY INCANDESCENT
1/16/00
28/23
"AT PLANTING ONLY, DRYING THEREAFTER"
60-70
...
H20
GRASS
AU
ASSUMING THAT TIME COURSE FOR WATER LOSS IS SIMILAR FOR ALL GRASS SPECIES
(USING WHEAT (COMPANION PAPER)); WE USE TIME CLASSES FOR ANALYSES.
APPENDIX D: REPRINT OF PERTINENT LITERATURE

This paper is © Blackwell Science Ltd. (London, England) and is reprinted with kind permission from the publisher. This paper is also available online via Blackwell’s *Synergy* subscription service (see http://www.blackwell-science.com/online/).
Review Article

Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO2 concentration: a meta-analytic test of current theories and perceptions

STEPHANIE J. E. WAND,* GUY F. MIDGLEY,* MICHAEL H. JONES† and PETER S. CURTIS†
*Ecology and Conservation, National Botanical Institute, Private Bag X7, Claremont 7735, South Africa, †Department of Evolution, Ecology & Organismal Biology, The Ohio State University 1735, Neil Avenue, Columbus, OH 43210–1293, USA

Abstract

C4 plants contribute ~20% of global gross primary productivity, and uncertainties regarding their responses to rising atmospheric CO2 concentrations may limit predictions of future global change impacts on C4-dominated ecosystems. These uncertainties have not yet been considered rigorously due to expectations of C4 low responsiveness based on photosynthetic theory and early experiments. We carried out a literature review (1980–97) and meta-analysis in order to identify emerging patterns of C4 grass responses to elevated CO2, as compared with those of C3 grasses. The focus was on nondomesticated Poaceae alone, to the exclusion of C4 dicotyledonous and C4 crop species. This provides a clear test, controlled for genotypic variability at family level, of differences between the CO2-responsiveness of these functional types. Eleven responses were considered, ranging from physiological behaviour at the leaf level to carbon allocation patterns at the whole plant level. Results were also assessed in the context of environmental stress conditions (light, temperature, water and nutrient stress), and experimental growing conditions (pot size, experimental duration and fumigation method).

Both C4 and C3 species increased total biomass significantly in elevated CO2, by 33% and 44%, respectively. Differing tendencies between types in shoot structural response were revealed: C3 species showed a greater increase in tillering, whereas C4 species showed a greater increase in leaf area in elevated CO2. At the leaf level, significant stomatal closure and increased leaf water use efficiency were confirmed in both types, and higher carbon assimilation rates were found in both C3 and C4 species (33% and 25%, respectively). Environmental stress did not alter the C4 CO2-response, except for the loss of a significant positive CO2-response for above-ground biomass and leaf area under water stress. In C3 species, stimulation of carbon assimilation rate was reduced by stress (overall), and nutrient stress tended to reduce the mean biomass response to elevated CO2. Leaf carbohydrate status increased and leaf nitrogen concentration decreased significantly in elevated CO2 only in C3 species.

We conclude that the relative responses of the C4 and C3 photosynthetic types to elevated CO2 concur only to some extent with expectations based on photosynthetic theory. The significant positive responses of C4 grass species at both the leaf and the whole plant level demand a re-evaluation of the assumption of low responsiveness in C4 plants at both levels, and not only with regard to water relations. The combined shoot structural and water use efficiency responses of these functional types will have consequential implications for the water balance of important catchments and range-
lands throughout the world, especially in semiarid subtropical and temperate regions. It may be premature to predict that C4 grass species will lose their competitive advantage over C3 grass species in elevated CO₂.

Keywords: C4 grasses, C3 grasses, climate change, elevated CO₂, gas exchange and growth responses, meta-analysis

Received 2 October 1998; resubmitted and accepted 5 January 1999

Introduction

The effects of atmospheric CO₂ enrichment have been studied in great detail for agricultural crops (Cure & Acoc 1986), trees (Ceulemans & Mousseau 1994), and other plant types (Bazzaz 1990; Poorter 1993; Idso & Idso 1994). The great majority of these studies have been carried out on C3 species. Much of the early research into CO₂-responses of C4 species focused on weedy and old-field dicotyledonous (dicot) species (e.g. Amaranthus sp., Bazzaz & Carlson 1984), or important planted C4 crop species (e.g. Zea mays and Sorghum sp., Morison & Gifford 1984). Despite the fact that about half of the world’s grass species possess the C4 photosynthetic pathway, fewer studies have tested the responses of wild temperate C4 grasses to elevated CO₂, and only a handful have used tropical C4 grasses. These plants account for 18% of the total global productivity, mainly due to the extensive grasslands and savannas of the tropics (Ehleringer et al. 1997), but they also play an important role in mixed temperate grasslands such as the North American prairies. Lloyd & Farquhar (1994), using a modelling approach based on ¹³C discrimination, estimated a contribution of 21% by C4 plants to global gross primary productivity (GPP) under current atmospheric conditions. Any changes in C4 productivity driven by CO₂ and other climatic perturbations will, consequently, have a substantial impact on global GPP.

By far the greatest proportion of C4 species are monocotyledonous (monocot), whereas C4 dicots are relatively uncommon, both in terms of species representation and abundance (Ehleringer et al. 1997). Many C4 dicots are noxious weeds and old-field invaders, and gain importance only in disturbed sites. Thus, studies using C4 dicots and bred crops may not represent the potential CO₂-responsiveness of natural, relatively undisturbed ecosystems with a significant C4 monocot component, such as prairies, tropical grasslands, and savannas. Nevertheless, results obtained from many of these studies, and from the first field-based study of a C4-containing ecosystem, a salt marsh on Chesapeake Bay (Curtis et al. 1989), appeared to confirm the theory that C4 plants should not show significant growth responses to elevated CO₂ due to their CO₂-concentrating mechanism in the bundle sheath cells (Osmond et al. 1982; Pearcy & Ehleringer 1984; Bowes 1993). This mechanism increases the effective concentration of CO₂ at the site of carboxylation, thereby masking photorespiration and apparently ensuring saturation of photosynthesis at current atmospheric CO₂ concentrations. It follows, in theory, that C4 plants should not benefit from increased atmospheric CO₂ availability, and may suffer reduced competitive advantage over C3 species (Bazzaz 1990; Bowes 1993; Ehleringer & Monson 1993). As a result of this common perception, the potential contribution of C4-dominated ecosystems to the global carbon budget in a future high-CO₂ environment, especially in the highly productive tropics, has been largely discounted or ignored.

It is now becoming increasingly clear that the response of C4 species to elevated CO₂ is not as clear-cut as previously thought (Henderson et al. 1994), and that many C4 plants show significant photosynthetic and growth responses to CO₂. In a recent review, Poorter (1993) found an average growth enhancement of 22% for C4 species. Owensby et al. (1993) have also reported significant above-ground biomass increases in the C4 component of a tallgrass prairie site exposed to elevated CO₂. This was explained by the reduced water loss under high CO₂ of C4 species relative to competing C3 species, especially during a dry year. However, there also appears to be a primary direct enhancement of photosynthetic activity in elevated CO₂ in a number of C4 species (Sionit & Patterson 1984; Knapp et al. 1993), suggesting that the assumption of photosynthesis saturation at current CO₂ concentration may need to be re-evaluated.

Interacting environmental stresses can influence the response to elevated CO₂ in plants (Idso & Idso 1994; Curtis 1996; Lloyd & Farquhar 1996; Curtis & Wang 1998), and may do so differentially for different functional types. The literature of C4 responses to elevated CO₂ shows that environmental factors, especially those known to be of importance to C4 productivity and biogeographic distributions (high minimum temperatures and high light levels), may influence the relative CO₂-response. Responses of C4 species under stressful conditions may not emerge clearly from experiments employing growth conditions optimal for C3 plants. These factors could account for some of the poor responses to high CO₂ previously reported for environmentally controlled experiments, as opposed to significant responses meas-
ured more recently under natural field conditions (Owensby et al. 1993).

The purpose of this review is to assess critically from the literature, using meta-analytic methods (e.g. Curtis 1996; Curtis & Wang 1998), the physiological and growth responses of wild C4 grass species (family: Poaceae) to elevated atmospheric CO2. To enable a critical test of current theories and perceptions, a similar literature review was carried out for the CO2-responses of wild C3 grass species (Poaceae). This provides a clear comparison, controlled for genotypic and morphological variability. The influences of exposure and growth conditions were also analysed, in order to determine whether current understanding of the relative responses of C3 and C4 species, and resulting uncertainties of response to natural environments, may be biased by experimental conditions very different from natural conditions.

Materials and methods

Database compilation

The data analysed in this study were taken from published sources by investigators at the National Botanical Institute, South Africa, and the CO2 Meta-Analysis Project, Ohio State University, USA. In cases where the two individual databases overlapped, data were used from the CO2 Meta-Analysis Project only. Non-overlapping data were checked for consistency. The studies addressing C4 pathway grass species that were included in our analyses were as comprehensive as possible for all years (1980-97), while the studies addressing C3 pathway grass species were as comprehensive as possible for 1991-97, with most studies from 1980 to 1990 also included. The following criteria were used for incorporation of studies in the database:

(a) The species was wild or semiwild, a member of the family Poaceae, and the photosynthetic pathway (C3 or C4) was either clearly stated or otherwise unambiguous.
(b) Only data which included response means, sample sizes (N), and either standard deviation (SD) or standard error (SE) were used, since a weighted meta-analysis gives a more robust analysis than if resampling tests must be used to estimate variances or if an unweighted analysis is used (Rosenberg et al. 1997).
(c) The paper was published between 1980 and 1997.
(d) The ambient CO2 treatment concentration was between 300 and 400 μmol mol⁻¹, and the elevated CO2 treatment was between 550 and 750 μmol mol⁻¹.
(e) Data were presented for individual plants, or for individual species where plants were grown in stands or in mixture with other species.
(f) Only absolute data were used, not relative data such as relative growth rates.

(g) At least one of the following parameters was measured:
- A: Leaf-based light-saturated net CO2 assimilation rates measured at the growth CO2 concentration
- G5: Leaf-based stomatal conductance measured at the growth CO2 concentration
- WUE: Instantaneous leaf water use efficiency at the growth CO2 concentration, either published as such or calculated from net CO2 assimilation rates and transpiration rates
- TOTWT: Total plant biomass, either presented as such or calculated as the sum of above- and below-ground biomass.
- AGWT: Above-ground biomass
- BGWT: Below-ground biomass
- INDLA: Individual leaf area
- TILLERS: Number of tillers
- SLA: Specific leaf area either presented as SLA, or calculated as the inverse of specific leaf mass
- TNC: Concentration of total nonstructural carbohydrates in leaves, either presented as such or calculated as the sum of total sugar and starch concentrations, and expressed on a dry mass basis
- N: Leaf total nitrogen concentration expressed on a dry mass basis

The responses at elevated and ambient CO2 were extracted either from tables, or manually digitized from figures. Where the interaction between CO2 treatments and deliberately imposed light, temperature, water, or nutrient stress treatments was reported, the CO2-response was entered separately under both levels of the stressful environmental factor. For those analyses testing a response to stress, all possible data in which plants were not stressed were included as controls for the meta-analysis (‘no stress’), rather than only the data for nonstressed plants in studies reporting the response under intentional factorial stress treatments (controls within those studies). This necessitated careful decisions about how to code some treatment responses. For example, we determined that ‘high nutrient levels’ or normal nutrient levels (comparable to the field situation) were equivalent to ‘no nutrient stress’, and that ‘high light levels’ or light levels which were deemed normal or sufficiently high, were similarly equivalent to ‘no light stress’. In these instances, we recorded ‘none’ for the level of stress. Furthermore, we utilized only the extreme levels of any given stress. That is, we included only ‘low nutrients’ (nutrient stress) and ‘high nutrients’ (no nutrient stress, or normal) in our analyses, and did not include intermediate levels (e.g. medium nutrient levels). Studies which provided data on interactions with environmental stresses are identified in Appendix 3 (C3) and Appendix 4 (C4).
Where additional environmental stresses (such as salinity or ozone treatments) were imposed factorially, only the CO₂-response at the ambient, nonstressful level of this other factor was used. Unintentional stresses were not taken into account, except in the case of separately reported data for wet and dry years in some prairie studies. Where competition treatments were intentionally and differentially imposed, only the CO₂ response at the lowest level of competition was used.

Response parameters were combined whenever appropriate in order to overcome the problem of low sample sizes. For example, rather than differentiate between what some authors termed root biomass and others termed below-ground biomass, we pooled these data and report them as below-ground biomass. Thus, while we lost some potential detail in the analysis, we improved our ability to generalize and distinguish among effects (Gurevitch & Hedges 1993).

In order to test for potential influences of exposure methodology on the responses to elevated CO₂, the following categorical variables were assigned to each data entry:

(i) Pot size: ≤ 10 L, > 10 L, or in-ground. These size classes have been previously used in a similar meta-analytic review (e.g. Curtis 1996).

(ii) Duration of exposure (from treatment initiation until measurement): ≤ 60 days, 61–120 days, > 120 days. Where repeated measurements were taken, only the last measurement was used (usually at harvest). However, in some field studies showing marked seasonal responses, declining towards the end of the growth season, a single date at or just after the mid-season peak was chosen.

(iii) Exposure method: GC-indoor controlled-environment growth chamber, GH-outdoor enclosed mini-greenhouse or enclosed portion of greenhouse, OTC-open-top chamber in the field or greenhouse, FACE-free-air CO₂ enrichment.

The database used for the meta-analysis comprised 62 papers (Appendix 1). Other papers on C₄ grass responses to elevated CO₂ which did not meet the criteria for meta-analysis are given in Appendix 2 to provide a complete reference list.

Meta-analyses

Meta-analyses were conducted with MetaWin (Rosenberg et al. 1997), using the natural log of the response ratio (response in elevated CO₂/response in ambient CO₂) as our metric (Hedges et al. 1999). We used the mixed-effects model in our analyses, because of the large number of diverse studies examined and the assumption that there is random variation among studies in the effects in which we are interested. Consequently, the confidence intervals generated are larger than those of a fixed-effects model, and as such represent potentially more conservative interpretation. In general, means of single response variables were considered significantly different from zero (significant response to elevated CO₂) if their 95% confidence intervals did not overlap zero. Similarly, means of two different response variables (e.g. stress treatment classes) were considered significantly different from each other if their 95% confidence intervals did not overlap. Some results are also discussed in terms of trends and tendencies in order to highlight interesting comparisons, even if they did not satisfy this statistical guideline. For a more detailed description of the statistical approach see Curtis & Wang (1998) and Hedges et al. (1999).

Results

Sample sizes for all variables presented in the Figures are given in Table 1.

Relative CO₂-responses of C₃ and C₄ species

CO₂ responses of the full data set, including responses under interacting stress variables, are presented as the mean percentage change in elevated CO₂ (Fig. 1a). Net CO₂ assimilation rates (A) increased significantly in both C₃ and C₄ species, by 33% and 25%, respectively. Stomatal conductances (gs) decreased significantly by 24% and 29% for C₃ and C₄, respectively. Increases in instantaneous leaf water use efficiency (WUE) were significant only in C₄ species (72%); the sample size for C₃ was small and variability high. Total plant biomass (TWT) was enhanced in both C₃ (44%) and C₄ species (33%). C₃ species showed greater CO₂-induced increases in above-ground biomass (AGWT, 38%) than below-ground biomass (BGWT, 44%), whereas these were reported individually, than C₄ species. This suggests a deficiency in data for C₄ biomass partitioning into above- and below-ground components, as the smaller effect here does not concur with the larger positive result for TOTWT. Due to reporting shortcomings, the data set for above- and below-ground biomass was often drawn from a different set of publications than that for total plant biomass, likely contributing to the lack of correspondence between the results for the three variables. Individual leaf area (INDLA) increased by 15% and 25% and tiller numbers increased by 27% and 14% in C₃ and C₄ species, respectively. C₃ species showed greater decreases in specific leaf area (SLA, 19%) and foliar total nitrogen (N) concentrations (21%) than C₄ species. Only C₃ species showed significantly increased foliar total nonstructural carbohydrate (TNC) concentrations (37%) in elevated CO₂.
Table 1 Number of data entries (N) used for analyses of the CO₂-responses of C₃ and C₄ grasses. Abbreviations of variables as for Fig. 1. 'None' refers to no stress; 'low' or 'high' refers to stress. For pot size, category numbers represent (1) <10 L (2) >10 L (3) in-ground. For duration, category numbers represent (1) <60 days (2) 61-120 days (3) >120 days. For method, category numbers represent (1) GC (2) GH (3) OTC (4) FACE.

<table>
<thead>
<tr>
<th>Variable</th>
<th>CO₂-responses (Fig. 1)</th>
<th>Environmental stress (Fig. 2)</th>
<th>Exposure methods/Growth conditions(Figs 3-5)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Photo pathway</td>
<td>All stresses</td>
<td>No stress</td>
</tr>
<tr>
<td>A</td>
<td>C₄</td>
<td>48</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>C₃</td>
<td>68</td>
<td>8</td>
</tr>
<tr>
<td>Gₛ</td>
<td>C₄</td>
<td>47</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>C₃</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>WUE</td>
<td>C₄</td>
<td>13</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>C₃</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>TOTWT</td>
<td>C₄</td>
<td>25</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>C₃</td>
<td>71</td>
<td>9</td>
</tr>
<tr>
<td>AGWT</td>
<td>C₄</td>
<td>19</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>C₃</td>
<td>40</td>
<td>23</td>
</tr>
<tr>
<td>BGWT</td>
<td>C₄</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>C₃</td>
<td>30</td>
<td>8</td>
</tr>
<tr>
<td>INDLA</td>
<td>C₄</td>
<td>14</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>C₃</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>TILLERS</td>
<td>C₄</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>C₃</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>SLA</td>
<td>C₄</td>
<td>19</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>C₃</td>
<td>21</td>
<td>5</td>
</tr>
<tr>
<td>TNC</td>
<td>C₄</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>C₃</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>N</td>
<td>C₄</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>C₃</td>
<td>37</td>
<td>10</td>
</tr>
</tbody>
</table>

Influence of environmental stress

Under nonstressful growth conditions (Fig. 1b), the relative mean stimulation of photosynthetic rate in C₃ species increased from 33% to 53%, and below-ground biomass enhancement rose from 44% to 57%. However, both changes were not significant according to the 95% confidence interval (CI) overlap test. The CO₂-responses of all other variables remained similar compared to the 'all stresses’ analysis (Fig. 1a). By contrast, when interacting stresses were removed from the database for C₄ species, the response of total biomass to elevated CO₂ decreased from 33% to 26%, the tillering response was reduced (from a 14% increase to a 10% increase), but stimulation of individual leaf area rose from 25% to 30%. Again, these responses were not significant according to the CI overlap test.

The influence of environmental stresses was further explored by comparing the CO₂-responses of deliberately stressed plants with the responses of all other plants (not deliberately stressed) for each stress variable individually (Fig. 2). Only results which can be interpreted with reasonable confidence, taking into account the sample size (>2), the confidence interval, and the power to draw robust statistical conclusions, are presented. For example, no studies addressing the interactions between elevated CO₂ and light or water stress in C₃ grass species existed or were suitable for use in the meta-analysis, and in many other cases the number of studies for a particular measurement category and stress factor were too small, or did not exist.

In C₄ species (Fig. 2a), low light, low temperature, or low nutrient supply levels did not alter the mean responses to elevated CO₂. Droughting treatments (low water supply) similarly did not alter the CO₂-responses of gas exchange in C₄ species, but resulted in the loss of a significant CO₂-response for above-ground biomass and individual leaf area (95% confidence intervals overlap zero), compared to plants that were not water stressed. There were no data for C₄ plants under high temperature stress, probably because high temperatures are not regarded as being potentially harmful to C₄ plants as they are for C₃ plants. In C₃ species (Fig. 2b), on the other hand, abnormally high temperatures increased the mean
above-ground biomass response to elevated CO2, but this tendency was not significant. Low nutrient stress did not alter the mean CO2-response of photosynthesis and leaf nitrogen concentration in C3 species. By contrast, mean CO2-induced increases in total plant, above- and below-ground biomass tended to diminish under low nutrient supply levels, although these changes were not significant.

Exposure methods and growth conditions

The effects of exposure methods and growth conditions on the relative responses to elevated CO2 are presented in Figs 3, 4, 5. Those variables for which data for at least two categories were available for either the C3 or C4 data set, and which had reasonable sample sizes and the potential for meaningful statistical inferences, are presented. These are matched with the results for the corresponding variable in the other (C3 or C4) data set, even if the sample sizes are small and categories missing. This was done in order to allow at least a rudimentary comparison between C3 and C4 species. Even though this comparison is largely fragmentary, it exposes gaps in the knowledge base, particularly with regard to the lack of information from long-term studies in the field, and could provide a guideline for future studies (and publication of existing data).

An increasing volume of available rooting space ('pot size', Fig. 3) allowed for slightly greater CO2-induced increases in photosynthetic rate in C3 species, although not significantly according to the C1 overlap test. The mean photosynthetic CO2-response in C4 species was not altered. Stomatal conductances were reduced more strongly in C4 species growing in open ground than in small pots. Large positive responses in

1999 Blackwell Science Ltd., Global Change Biology, 5, 723–741
Fig. 2 CO₂-responses of wild C4 (a) and C3 (b) grass species as influenced by interaction with low light, low or high temperature, low water, or low nutrient stress. Abbreviations as for Fig. 1. Data represent percentage change in elevated CO₂ with 95% confidence intervals.

Fig. 3 Effect of pot size on CO₂-response of C3 and C4 grass species. Legend refers to pot size in dm³, or plants grown in-ground. Abbreviations as for Fig. 1. Data represent percentage change in elevated CO₂ with 95% confidence intervals.

Fig. 4 Effect of duration of exposure on the CO₂-response of C3 and C4 grass species. Abbreviations as for Fig. 1. Data represent percentage change in elevated CO₂ with 95% confidence intervals.

Fig. 5 Effect of exposure method on the CO₂-response of C3 and C4 grass species. Abbreviations as for Fig. 1. In the legend, GC, growth chamber; GH, greenhouse; OTC, open-top chamber; FACE, free-air CO₂ enrichment. Data represent percentage change in elevated CO₂ with 95% confidence intervals. Note that GC, GH and OTC treatments typically have 2× ambient [CO₂] (650–700 μmol mol⁻¹), and that FACE is typically about 550 μmol mol⁻¹ [CO₂].

discernible in C4 species, although interpretation here is strongly limited by insufficient sample sizes. Significant increases in individual leaf area in C4 species in high CO₂ were measured in plants growing both in small pots and in the ground.

The mean CO₂-responses for photosynthetic rate and conductance in C3 species were greater in the longer term (>120 days, Fig. 4) than in the medium term (61–120 days). The mean above-ground biomass response, by contrast, was greatest in the short term (<60 days). The positive tillering response to elevated CO₂ achieved significance (95% confidence interval not overlapping zero) only after 60 days of exposure to high CO₂, and continued to
increase with experimental duration, although not significantly. In C4 species, relative decreases in conductance were significantly greater in the longer term (>120 days). The biomass response to elevated CO2 appeared to decrease somewhat after 60 days (although small sample sizes and large confidence limits preclude a clear interpretation), so that mean biomass increases were no longer significant after 60 days (confidence intervals overlap zero). Similar increases in leaf area in elevated CO2 were found both in the short and longer term.

Increases in photosynthetic rates in elevated CO2 appeared to be greater when C3 species were grown in open-top chambers (73%), and smallest in FACE systems (12%, Fig. 5), although the latter is probably attributable to the generally lower CO2 concentrations used in these systems than in the other types of growth facilities. In both C3 and C4 species, mean decreases in conductances were greatest in OTCs. Above-ground biomass increases were found for all exposure methods in C3 species, but responses were particularly high in growth chambers (95% increase in GC compared to 23-32% increases in other facilities). The mean tillering response was greater in OTCs (45% increase) than in growth chambers (18%). In C4 species, CO2-induced increases in photosynthetic rates were similar in all exposure facilities. Leaf area increases were found for most exposure methods (with the possible exception of greenhouses, where confidence intervals overlapped zero), and the tillering response to elevated CO2 was small for all methods and not significant in GHs and OTCs (CI overlapped zero), but in both cases interpretation was hampered by insufficient sample sizes.

Discussion

Relative CO2-responses of C3 and C4 species

The results of this meta-analysis confirm the widely held view that the relative responses of C4 species to elevated CO2 are usually smaller than those for C3 species, especially for growth under nonstressful environmental conditions. Nevertheless, differences in CO2 response between C3 and C4 grass species are not as large as current perceptions have it. A similar conclusion was drawn from a previous semiquantitative minireview of C3 vs. C4 responses (Poorter 1993). The present analysis shows that C4 grasses are certainly responsive to elevated CO2, particularly with regard to gas exchange and leaf area development.

Photosynthetic stimulation of C4 species is, surprisingly, comparable to that of C3 species. This contradicts the general view that C4 photosynthesis does not increase in elevated CO2, due to the specialized CO2 concentrating mechanism in C4 leaves (Bowes 1993). Many of the definitive early studies of C4 photosynthesis were performed on crop species, such as maize, which appears to be CO2-saturated at ambient CO2 levels and shows very low responsiveness to higher CO2 concentrations, compared to wild C4 species (Ziska & Bunce 1997). A closer examination of gas exchange in other C4 grasses reveals that photosynthesis is not necessarily saturated at current CO2 levels and can increase at higher ci (Scuriut & Patterson 1984; Imai & Okamoto-Sato 1991). This simple explanation may account for the majority of cases of photosynthetic stimulation in C4 species. For example, LeCain & Morgan (1998) showed that photosynthesis was not saturated at ambient CO2 concentration in any of the six wild C4 grass species studied. Ziska & Bunce (1997) similarly measured higher photosynthetic rates at elevated CO2 in 8 out of 10 C4 species studied, due to the effect of increased ci. Another study has shown that under favourable growth conditions (high light), the operational ci of a tropical C4 grass was close to the inflection point of the A/ci response, so that increasing CO2 supply caused slight enhancements in the CO2 assimilation rates, and improved growth (Ghanour et al. 1997). On the other hand, under growth-limiting conditions (low light), the operational ci was well above the CO2 saturation level for photosynthesis, and no photosynthetic or growth response to elevated CO2 was measured. The relative ‘saturation level’ may therefore change with changing conditions, and this may play a role in photosynthetic responses to elevated CO2 in wild C4 grasses.

Stimulation of photosynthetic rates due to increases in ci represents a simple short-term effect. In addition, longer-term biochemical changes, such as altered enzyme efficiencies, or altered regeneration rates of phosphoenolpyruvate (PEP) or ribulose-1,5-bisphosphate (RuBP), may develop in elevated CO2. These are termed ‘regulatory’ or ‘acclimatory’ responses and change the shape of the A/ci response. Unlike for many C3 species (Wullschleger 1993), instances of up- or downregulation of photosynthetic capacity in C4 species have not been given much attention in the literature as they have appeared to be rare. Sage (1994) concluded that little adjustment is found in the A/ci response in C4 species under elevated CO2 (see also Ziska & Bunce 1997), except possibly downregulation under conditions of nutrient deficiency (Wong 1979; Morgan et al. 1994; Ghannoum & Conroy 1998). Nevertheless, photosynthetic downregulation has also been measured under conditions not apparently stressful (Read et al. 1997; LeCain & Morgan 1998). Many earlier reports of unchanged or reduced photosynthetic rates in C4 species in elevated CO2 may have been due to the acclimation phenomenon, but are not identifiable without full A/ci measurements (e.g. Wray & Strain 1986). The mechanisms of photosynthetic
acclimation in C4 species are apparently not related to feedback inhibition resulting from carbohydrate (TNC) accumulation, or to reductions in leaf nitrogen (N) concentrations (Read et al. 1997; LeCain & Morgan 1998), as they are in C3 species (Stitt 1991; Sage 1994; Cotrufo et al. 1998). The meta-analysis confirmed that accumulation of TNC and reductions in leaf N in elevated CO2 are insignificantly low in C4 species. There is currently no available information on the possible mechanisms of photosynthetic acclimation in C4 species, and this warrants further attention.

Natural seasonal dynamics of photosynthetic capacity in C4 species may also influence the response to elevated CO2. In young Themeda triandra (red grass) plants with high assimilation rates, photosynthetic upregulation resulted in increased photosynthetic rates in high CO2 (Ludwig 1996), but downregulation was measured in the same set of plants later in the season (when absolute rates were reduced), which led to similar or reduced photosynthetic rates at high compared to ambient CO2 (Wand, unpublished data). Growth enhancement, particularly of leaf area, was linked to this early response. Detailed measurements of A/ci responses in C4 and C3 grass species growing in elevated CO2 in a field experiment in South Africa (utilization of a natural CO2 spring) have also shown photosynthetic upregulation in Themeda triandra during the active growth season (Wand, unpublished data). Similarly, significant increases in CO2 assimilation rates in the salt marsh C4 species Spartina patens in high CO2 were confined to the early season, when absolute rates of assimilation were highest (Ziska et al. 1990). Knapp et al. (1993) have also reported upregulation in Andropogon gerardii (big bluestem), and Chen et al. (1994) modelled this response. Recent reports indicate that C4 photosynthetic physiology may change with progressive developmental stages, showing more similarities with C3 physiology (lower CO2-concentrating ability) when leaves are young or senescent, compared to mature leaves (Dai et al. 1995; He & Edwards 1996). This was tentatively proposed as an explanation for ontogenetic shifts in CO2-responsiveness (Ghannoum et al. 1997), but subsequent work on C4 grass species does not support this explanation, as C4 photosynthetic characteristics were already fully developed in young leaves (Ghannoum et al., 1998). In conclusion, this aspect of C4 response to elevated CO2 requires more attention, as conflicting evidence also exists. For example, photosynthetic downregulation was found in both young and older Bouteloua gracilis (blue grama) plants (Read et al. 1997). Furthermore, seasonal dependencies of C4 growth responses, in contrast with responses of carbon assimilation, are not evident in many field-based elevated CO2 experiments (Curtis et al. 1989; Kirkham et al. 1991; Hamerlynck et al. 1997).

The issue of whether biochemical differences between C4 photosynthetic subtypes may shed light on the reasons for interspecific differences in CO2 response may be beyond the scope of the present review, but we make some brief comments. The three C4 subtypes (NADP-ME (NADP-malic enzyme), PCK (phosphoenolpyruvate carboxykinase), and NAD-ME (NAD-malic enzyme)) exhibit increasing levels of 'leakiness' to CO2 from the bundle sheath to the mesophyll, in the above order (Hattersley 1982; Furbank & Hatch 1987; Jenkins et al. 1989; Brown & Byrd 1993; but see Hatch et al. 1995). This amounts to a loss of between 10 and 40% of carbon fixed by PEP carboxylase, which could, conceivably, be counteracted by increased CO2 supply from the atmosphere. Recent studies investigating the relative responsiveness of the subtypes to elevated CO2 yielded counter-intuitive results, with the least 'leaky' NADP-ME showing the largest responses (LeCain & Morgan 1998; Wand, unpublished data). Nevertheless, this line of investigation may well contribute to an improved understanding of photosynthetic responses of C4 plants to elevated CO2.

Elevated CO2 has significant positive effects on plant water relations in both C3 and C4 grass species, via reductions in stomatal conductance (Gs). In fact, this response, coupled with reduced transpirational water loss and the corresponding increases in WUE, are probably the most ubiquitous responses to elevated CO2 for almost all plant functional types (Gifford & Morison 1983; Chaves & Pereira 1992; Tyree & Alexander 1993). C4 and C3 responses in Gs to elevated CO2 were similar (Fig. 1a), but clear interpretation is hampered by the fact that fewer data are available for C3 Poaceae. The decrease in Gs in C4 species is consistent across a range of environmental stresses, but greatest in plants grown in the ground and exposed to elevated CO2 for more than 120 days. This suggests that developmental changes in Gs, possibly related to altered stomatal sizes or densities, may occur as leaves mature in high CO2. Information on long-term changes in Gs (e.g. changing stomatal densities) is limited (Ghannoum et al. 1997). It is generally thought that CO2-induced reductions in Gs are primarily short-term effects, but some researchers have measured acclimatory responses in stomatal physiology in C4 species, as shown by the responses of conductance to increasing CO2 (Gs/ci curves) (Morgan et al. 1994; Read et al. 1997; LeCain & Morgan 1998). This can take the form of either upregulation (higher Gs at equivalent ci for leaves grown in elevated CO2), or downregulation (reduced Gs at low ci in elevated CO2). Studies in the greenhouse and field (Wand, unpublished data) showed that Gs was significantly reduced under increasing CO2 levels in the short term (changes in the cuvette CO2 concentration) in all seven C4 grass species studied. In addition, either upregulation or
downregulation of Gs was also found in the longer term (a treatment effect) in some species, and this developmental response appeared to depend on season or environmental conditions (e.g., water stress). Reduced transpiration and water loss in elevated CO2 and the resulting improvement in soil water content over the course of the growing season, as reported for the tall-grass prairie (Kirkham et al. 1993), are likely to be reflected in longer term changes in stomatal conductances.

The stimulation of C4 whole plant growth under elevated CO2 (mean of 33%, 95% confidence interval 21%-47%) is slightly higher than the 22% reported by Poorter (1993). Growth stimulation could be either a direct effect of greater carbon assimilation rates (discussed above), or an indirect effect of improved soil and leaf water relations resulting from reduced stomatal conductances and transpirational water loss (Knapp et al. 1993; Owensby et al. 1993). Cell elongation and blade extension rates in developing grass leaves are positively correlated with leaf water potentials (Boyer 1970; Toft et al. 1987). Although not included in the meta-analysis, the C4 literature database clearly showed a consistent and significant positive increase in shoot water potentials in grasses exposed to elevated CO2 (e.g., Kirkham et al. 1993; Hamerlynck et al. 1997).

The growth response of C3 species in this review is a little larger than that for C4 species (4%) and comparable to the C3 herbaceous monocot component of Poorter’s database (42%). We tentatively support Poorter’s conclusion that differences in growth stimulation between C3 and C4 plants are probably not as large as suggested by current perceptions. Unfortunately, the responses for above- and below-ground biomass in C4 species in this meta-analysis do not match those for whole-plant biomass, and care must be taken in interpretation. Also, many field studies using C4 species have not reported biomass responses adequately, probably due to logistical difficulties and an unwillingness to disturb the ecosystem in longer term experiments. We need more information on whether increased carbon assimilation rates will lead to sustained enhanced biomass production in C4-grass-dominated ecosystems such as prairies and savannas, which comprise a large percentage of productive land surface (Hall et al. 1995). This would help to improve our models of global carbon dynamics. Currently, the potential of C4-grass-dominated ecosystems as significant carbon sinks is considered small, but this may need to be re-assessed.

An interesting contrast emerged regarding the morphological development of C3 and C4 species under elevated CO2. C3 species generally develop more tillers, with only small increases in leaf area, but decreased specific leaf areas (increased leaf density or thickness). C4 species, on the other hand, appeared to respond mainly with increased leaf areas, and smaller increases in tiller numbers. This contrast may indicate a greater sensitivity in C4 species to self-shading of the basal nodes from which tillers are initiated (Deregibus et al. 1985; Everson et al. 1988), and may provide the mechanism for growth stimulation even under moderate photosynthetic enhancement. Gradually increasing canopy leaf areas, leading to a progressive increase in whole-canopy carbon assimilation rates, would result in a continuously greater supply of carbon products to support enhanced growth. Early increases in leaf area, leaf area duration (the cumulative leaf area over the growth period), leaf area ratio (the proportion of leaf area to plant biomass), plant height and total plant biomass of C4 species in elevated CO2 have been reported by Patterson & Flint (1980), Riethers & Strain (1988) and Ackerly et al. (1992). Early responses in biomass and leaf area, which persist for the whole growth period, have also been found for some C3 species (Bowler & Press 1993), but the stimulation of leaf area, in particular, appears to be characteristic of the CO2 response of C4 species. Coleman & Bazzaz (1992) and Ackerly et al. (1992) came to the conclusion that standing photosynthetically active leaf area (net leaf area production and loss) in a C4 species was the primary influence on growth responses in elevated CO2.

Influence of environmental stress and growth methodology

Environmental stresses tend to reduce (although not significantly) the potential CO2-response in C3 species, as evidenced by the suppression of mean photosynthetic and below-ground biomass responses when all stresses are included in the analysis (Fig. 1a,b), as well as the reductions in mean growth responses when nutrients are limiting (Fig. 2b). By contrast, C4 species were generally not negatively impacted by environmental stresses, although leaf area stimulation was sensitive to water stress (Fig. 2a). The current view that CO2-responses in C4 graminoids are particularly marked under conditions of water stress (Nie et al. 1992; Knapp et al. 1993; Owensby et al. 1993; Ham et al. 1995) was not borne out by the meta-analysis, possibly due to the lack of data suitable for inclusion in the database. Many of these studies do not present plant and leaf-level responses, concentrating on canopy-level gas fluxes instead.

C4 graminoids may well benefit from increased CO2 supply under some stressful environmental conditions, such as low soil fertility. However, there is a lack of information about the changes in plant nitrogen use efficiency in C3 and C4 graminoids in elevated CO2. This understanding may be critical in predicting changes in their relative competitive abilities, as it has been suggested that competitive advantage,
especially in grasslands, may be due to a greater ability to extract nitrogen from the soil (Tilman 1990). This in turn may be associated with greater plant and photosynthetic nitrogen use efficiency (Richardson et al. in press).

Contrary to strong evidence for nongraminoid C3 species showing reduced CO₂ responsiveness in small rooting volumes (Arp 1991; McConnaughlay et al. 1993, 1996), C3 grass species were more responsive in small pots, with respect to above- and below-ground growth. In C4 species, rooting volume did not appear to play a role in the biomass response to CO₂, but more data are needed to confirm this as the sample size was too small for a confident interpretation. Nevertheless, field studies with C3 species have not supported the expected significant productivity increases based on earlier pot studies, and predictions of competitive advantages over C4 species should be cautiously reviewed. In addition, above-ground biomass enhancement of C3 species diminished with increasing duration of exposure to elevated CO₂, even though tiller number appeared to be stimulated, which suggests that individual tiller size is progressively reduced in this group.

In conclusion, responses to elevated CO₂ in wild C4 and C3 Poaceae at the leaf and whole plant levels are summarised in Fig. 6, and demonstrate many trends common to both photosynthetic types. At the leaf level, the greater carbohydrate accumulation and greater reductions in leaf nitrogen concentration in the C3 type alone differentiated the types, and constituted the only evidence for so-called 'sink limitation' which is often invoked in elevated CO₂ studies on C3 dicots. Average photosynthetic responsiveness did not concur with predictions based solely on photosynthetic theory. However, at the shoot level, there were clearcut differences between types resulting from disparate effects on above-ground morphologies. These, rather than photosynthetic differences between the types, might be of greater importance when evaluating responses to elevated CO₂.

The combined shoot structural and water use efficiency responses of these functional types are likely to have consequential implications for the water balance of important catchments and rangelands throughout the world, especially in semiarid subtropical and temperate regions. Improved water relations would be highly beneficial to C4 grasses growing in marginal semiarid sites where growing season may be limited by soil water availability, such as over much of southern Africa and parts of North America. The results of this meta-analysis suggest that it may be premature to predict that the C4 type will lose its competitive advantage in certain regions as CO₂ levels rise, based solely on differential photosynthetic mechanisms (Collatz et al. 1998).

Acknowledgements

We thank B.G. Drake of the Smithsonian Environmental Research Centre, Edgewater, USA, for stimulating our interest in C4 plant responses to elevated CO₂. We are also grateful to W.D. Stock, O. Ghannoum and J.A. Morgan for suggestions and valuable discussion. P. Moran-Palma, X. Wang, N. Cea, E. Lai, T. Goodwin and M. Reinhardt are thanked for their assistance. M.B. Kirkham and two anonymous referees made valuable comments that helped improve the manuscript.

References

Bazzaz FA (1990) The response of natural ecosystems to the

Kirkham MB, He H, Bolger TP, Lawlor DJ, Kanemasu ET (1991)

Appendix 1

References included in database for meta-analysis

1999 Blackwell Science Ltd., Global Change Biology, 5, 723–741
C4 AND C3 GRASS RESPONSES TO ELEVATED CO₂

Morgan JA, Hunt HW, Monz CA, LeCain DR (1994a) Consequences of growth at two carbon dioxide concentrations and two temperatures for leaf gas exchange in Pascopyrum smithii (C₄) and Bouteloua gracilis (C₃). Plant, Cell and Environment, 17, 1023–1033.

Thompson GB, Drake BG (1994) Insects and fungi on a C₃ sedge and a C₄ grass exposed to elevated atmospheric CO₂ concentrations in open-top chambers in the field. Plant, Cell and Environment, 17, 1161–1167.

Appendix 2

Other References for C4 grass species not included in database for meta-analysis

Read J, Morgan JA (1996) Growth and partitioning in *Pascopyrum smithii* (C3) and *Bouteloua gracilis* (C4) as influenced by carbon dioxide and temperature. *Annals of Botany*, 77, 487–496.

C4 and C3 Grass Responses to Elevated CO2

Appendix 3

References, C3 species, exposure and growth conditions, and interaction with other environmental stresses, for studies used in the analysis. GC, growth chamber; GH, greenhouse; OTC, open-top chamber; FACE, free-air CO2 enrichment

<table>
<thead>
<tr>
<th>Reference</th>
<th>C3 species</th>
<th>Exposure facility</th>
<th>Pot size (L)</th>
<th>Duration (days)</th>
<th>Interacting stresses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baxter et al. (1994a)</td>
<td>Agrostis capillaris</td>
<td>OTC</td>
<td>0.7</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Festuca virens</td>
<td>OTC</td>
<td>0.7</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Poa alpina</td>
<td>OTC</td>
<td>0.7</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>Baxter et al. (1994b)</td>
<td>Agrostis capillaris</td>
<td>OTC</td>
<td>0.4</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Festuca virens</td>
<td>OTC</td>
<td>0.4</td>
<td>189</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Poa alpina</td>
<td>OTC</td>
<td>0.4</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>Baxter et al. (1995)</td>
<td>Agrostis capillaris</td>
<td>OTC</td>
<td>0.7</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Festuca virens</td>
<td>OTC</td>
<td>0.7</td>
<td>189</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Poa alpina</td>
<td>OTC</td>
<td>0.7</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>Baxter et al. (1997)</td>
<td>Poa alpina</td>
<td>GC</td>
<td>2.5</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nardus stricta</td>
<td>GC</td>
<td>3.8</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nardus stricta</td>
<td>GC</td>
<td>25</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>Campbell et al. (1995)</td>
<td>Agrostis capillaris</td>
<td>GC</td>
<td>0.8</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bromus inodorus</td>
<td>GC</td>
<td>0.8</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dactylis glomerata</td>
<td>GC</td>
<td>0.8</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Festuca arundinacea</td>
<td>GC</td>
<td>0.8</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lolium multiflorum</td>
<td>GC</td>
<td>0.8</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lolium perenne</td>
<td>GC</td>
<td>0.8</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Philastris aquatica</td>
<td>GC</td>
<td>0.8</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Casella et al. (1996)</td>
<td>Lolium perenne</td>
<td>GH</td>
<td>220</td>
<td>720</td>
<td></td>
</tr>
<tr>
<td>Ferris et al. (1996)</td>
<td>Lolium perenne</td>
<td>GH</td>
<td>3.7</td>
<td>133</td>
<td></td>
</tr>
<tr>
<td>Fischer et al. (1997)</td>
<td>Lolium perenne</td>
<td>FACE</td>
<td>426</td>
<td>226</td>
<td></td>
</tr>
<tr>
<td>Fitter et al. (1996)</td>
<td>Festuca ovina</td>
<td>GC</td>
<td>7.0</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>Ghanoun et al. (1997)</td>
<td>Panicum laxum</td>
<td>GH</td>
<td>6.0</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>Glorser & Bartak (1994)</td>
<td>Calamagrostis epigeios</td>
<td>GC</td>
<td>0.5</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Greer et al. (1995)</td>
<td>Lolium perenne</td>
<td>GC</td>
<td>1.2</td>
<td>26/56</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Agrostis capillaris</td>
<td>GC</td>
<td>1.2</td>
<td>26/56</td>
<td></td>
</tr>
<tr>
<td>Hakala & Mela (1996)</td>
<td>Festuca pratensis</td>
<td>OTC</td>
<td>5.0</td>
<td>510</td>
<td></td>
</tr>
<tr>
<td>Jackson & Reynolds (1996)</td>
<td>Aeina sativa</td>
<td>OTC</td>
<td>30</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>Jackson et al. (1994)</td>
<td>Lolium perenne</td>
<td>OTC</td>
<td>30</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>Jackson et al. (1995)</td>
<td>Bromus hordeaceus</td>
<td>OTC</td>
<td>30</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lolium multiflorum</td>
<td>OTC</td>
<td>30</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vulpia microstachys</td>
<td>OTC</td>
<td>30</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>Jones et al. (1996)</td>
<td>Aenea barbara</td>
<td>OTC</td>
<td>430</td>
<td>790</td>
<td></td>
</tr>
<tr>
<td>Larigauderie et al. (1988)</td>
<td>Bromus mollis</td>
<td>GC</td>
<td>3</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td>Leadley & Stöcklin (1996)</td>
<td>Bromus erectus</td>
<td>GC</td>
<td>24.3</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>Lenssen et al. (1995)</td>
<td>Festuca ovina</td>
<td>GC</td>
<td>24.3</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>Marks & Clay (1990)</td>
<td>Puccinellia maritima</td>
<td>GH</td>
<td>1.8</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Morgan et al. (1994a)</td>
<td>Lolium perenne</td>
<td>GC</td>
<td>0.5</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Newton et al. (1995)</td>
<td>Pastocarpus smithii</td>
<td>GC</td>
<td>20.4</td>
<td>460</td>
<td></td>
</tr>
<tr>
<td>Nie et al. (1992)</td>
<td>Lolium perenne</td>
<td>GC</td>
<td>150</td>
<td>340</td>
<td></td>
</tr>
<tr>
<td>Nijs et al. (1996)</td>
<td>Poa pratensis</td>
<td>GC</td>
<td>6</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>Nijs et al. (1997)</td>
<td>Lolium perenne</td>
<td>GC</td>
<td>2</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>Read et al. (1997)</td>
<td>Lolium perenne</td>
<td>OTC</td>
<td>48</td>
<td>147</td>
<td></td>
</tr>
<tr>
<td>Ryle et al. (1992)</td>
<td>Phleum pratense</td>
<td>OTC</td>
<td>48</td>
<td>147</td>
<td></td>
</tr>
<tr>
<td>Sæbo & Mortensen (1995)</td>
<td>Agrostis capillaris</td>
<td>OTC</td>
<td>48</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Sæbo & Mortensen (1996)</td>
<td>Dactylis glomerata</td>
<td>OTC</td>
<td>48</td>
<td>64</td>
<td></td>
</tr>
</tbody>
</table>

© 1999 Blackwell Science Ltd., Global Change Biology, 5, 723–741

D-19
<table>
<thead>
<tr>
<th>Reference</th>
<th>C3 species</th>
<th>Exposure facility</th>
<th>Pot size (L)</th>
<th>Duration (days)</th>
<th>Interacting stresses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schäppi & Körner (1996)</td>
<td>Festuca arundinacea</td>
<td>OTC</td>
<td>48</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Festuca doriuscula</td>
<td>OTC</td>
<td>48</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Festuca pratensis</td>
<td>OTC</td>
<td>48</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Festuca rubra</td>
<td>OTC</td>
<td>48</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Poa pratensis</td>
<td>OTC</td>
<td>48</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>Stewart & Potvin (1996)</td>
<td>Poa alpina</td>
<td>OTC</td>
<td>G</td>
<td>310</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Poa pratensis</td>
<td>GC</td>
<td>27.4</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Poa pratensis</td>
<td>OTC</td>
<td>G</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elymus atricus</td>
<td>GH</td>
<td>1.8</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>Stirling et al. (1997)</td>
<td>Poa alpina</td>
<td>GH</td>
<td>4.7</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Poa annua</td>
<td>GH</td>
<td>4.7</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Teughels et al. (1995)</td>
<td>Lolium perenne</td>
<td>GH</td>
<td>6.2</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Festuca arundinacea</td>
<td>GH</td>
<td>6.2</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>van de Staaij et al. (1993)</td>
<td>Elymus atricus</td>
<td>GH</td>
<td>1.8</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>Volin & Reich (1996)</td>
<td>Agropyron smithii</td>
<td>GC</td>
<td>2.5</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>Wilsey (1996)</td>
<td>Stipa occidentalis</td>
<td>GC</td>
<td>2</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>Wilsey et al. (1997)</td>
<td>Agropyron caninum</td>
<td>GC</td>
<td>2.0</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Festuca idahoensis</td>
<td>GC</td>
<td>2.0</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Briza subtilis</td>
<td>GC</td>
<td>2.0</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stipa occidentalis</td>
<td>GC</td>
<td>2.0</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Zanetti et al. (1997)</td>
<td>Lolium perenne</td>
<td>FACE</td>
<td>G</td>
<td>913</td>
<td></td>
</tr>
<tr>
<td>Ziska et al. (1991)</td>
<td>Pharus latifolius</td>
<td>OTC</td>
<td>12.5</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
Appendix 4

References, C4 species, exposure and growth conditions, and interaction with other environmental stresses, for studies used in the analysis. GC, growth chamber; GH, greenhouse; OTC, open-top chamber

<table>
<thead>
<tr>
<th>Reference</th>
<th>C4 species</th>
<th>Exposure facility</th>
<th>Pot size (L)</th>
<th>Duration (days)</th>
<th>Interacting stresses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bowman & Strain (1987)</td>
<td>Andropogon glomeratus</td>
<td>GC</td>
<td>1</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>Campbell et al. (1995)</td>
<td>Digitaria sanguinalis</td>
<td>GC</td>
<td>0.8</td>
<td>42</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Pennisetum dilatatum</td>
<td>GC</td>
<td>0.8</td>
<td>42</td>
<td>*</td>
</tr>
<tr>
<td>Carlson & Bazzar (1982)</td>
<td>Setaria faberii</td>
<td>GH</td>
<td>1</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Setaria lutescens</td>
<td>GH</td>
<td>1</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Curtis et al. (1989)</td>
<td>Spartina patens</td>
<td>OTC</td>
<td>G</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td>Curtis et al. (1990)</td>
<td>Spartina patens</td>
<td>OTC</td>
<td>G</td>
<td>580</td>
<td></td>
</tr>
<tr>
<td>Garbutt et al. (1990)</td>
<td>Setaria faberii</td>
<td>GH</td>
<td>1</td>
<td>78</td>
<td>*</td>
</tr>
<tr>
<td>Ghannoun et al. (1997)</td>
<td>Panicum antidoticum</td>
<td>GH</td>
<td>7</td>
<td>49</td>
<td>*</td>
</tr>
<tr>
<td>Gifford & Morison (1985)</td>
<td>Paspalum plicatum</td>
<td>GC</td>
<td>3.2</td>
<td>131</td>
<td>*</td>
</tr>
<tr>
<td>Hamerlynck et al. (1997)</td>
<td>Andropogon gerardii</td>
<td>OTC</td>
<td>G</td>
<td>1255</td>
<td>*</td>
</tr>
<tr>
<td>Kirkham et al. (1991)</td>
<td>Andropogon gerardii</td>
<td>OTC</td>
<td>G</td>
<td>214</td>
<td>*</td>
</tr>
<tr>
<td>Knapp et al. (1993)</td>
<td>Andropogon gerardii</td>
<td>OTC</td>
<td>G</td>
<td>480</td>
<td>*</td>
</tr>
<tr>
<td>Marks & Clay (1990)</td>
<td>Tridens flavus</td>
<td>GC</td>
<td>0.5</td>
<td>70</td>
<td>*</td>
</tr>
<tr>
<td>Marks & Strain (1989)</td>
<td>Andropogon virginicus</td>
<td>GC</td>
<td>0.5</td>
<td>16</td>
<td>*</td>
</tr>
<tr>
<td>Morgan et al. (1994a)</td>
<td>Bouteloua gracilis</td>
<td>GC</td>
<td>8</td>
<td>76</td>
<td>*</td>
</tr>
<tr>
<td>Morgan et al. (1994b)</td>
<td>Bouteloua gracilis</td>
<td>GC</td>
<td>20</td>
<td>190</td>
<td>*</td>
</tr>
<tr>
<td>Newton et al. (1995)</td>
<td>Paspalum dilatatum</td>
<td>GC</td>
<td>150</td>
<td>340</td>
<td>*</td>
</tr>
<tr>
<td>Nie et al. (1992)</td>
<td>Andropogon gerardii</td>
<td>GH</td>
<td>G</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>Polley et al. (1996)</td>
<td>Schizachyrium scoparium</td>
<td>GH</td>
<td>30</td>
<td>480</td>
<td>*</td>
</tr>
<tr>
<td>Potvin & Strain (1985a)</td>
<td>Echinochloa crus-galli</td>
<td>GC</td>
<td>1</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eleusine indica</td>
<td>GC</td>
<td>1</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bouteloua gracilis</td>
<td>GC</td>
<td>6</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Digitaria sanguinalis</td>
<td>GC</td>
<td>1</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Read et al. (1997)</td>
<td>Echinochloa crus-galli</td>
<td>GC</td>
<td>1</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eleusine indica</td>
<td>GC</td>
<td>1</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Setaria faberii</td>
<td>GC</td>
<td>1</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Sionit & Patterson (1984)</td>
<td>Digitaria sanguinalis</td>
<td>GC</td>
<td>2</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Echinochloa crus-galli</td>
<td>GC</td>
<td>2</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eleusine indica</td>
<td>GC</td>
<td>2</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Setaria faberii</td>
<td>GC</td>
<td>2</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>Thompson & Drake (1994)</td>
<td>Spartina patens</td>
<td>OTC</td>
<td>G</td>
<td>1600</td>
<td></td>
</tr>
<tr>
<td>Volin & Reich (1996)</td>
<td>Bouteloua curtipendula</td>
<td>GC</td>
<td>2.5</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>Wand et al. (1996)</td>
<td>Themeda triandra</td>
<td>OTC</td>
<td>3.9</td>
<td>210</td>
<td></td>
</tr>
<tr>
<td>Wilsey et al. (1994)</td>
<td>Sporobolus kentrophyllus</td>
<td>GC</td>
<td>4.2</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>Wilsey et al. (1997)</td>
<td>Sporobolus kentrophyllus</td>
<td>GC</td>
<td>2</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Paspalum dilatatum</td>
<td>GC</td>
<td>2</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Digitaria macroplephara</td>
<td>GC</td>
<td>2</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Themeda triandra</td>
<td>GC</td>
<td>2</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Wray & Strain (1986)</td>
<td>Andropogon virginicus</td>
<td>GC</td>
<td>0.5</td>
<td>56</td>
<td>*</td>
</tr>
<tr>
<td>Wray & Strain (1987)</td>
<td>Andropogon virginicus</td>
<td>GC</td>
<td>0.5</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Ziska et al. (1990)</td>
<td>Spartina patens</td>
<td>OTC</td>
<td>G</td>
<td>500</td>
<td></td>
</tr>
</tbody>
</table>