Integrating a Machine Protection System for High-Current Free Electron Lasers and Energy Recovery Linacs

PDF Version Also Available for Download.

Description

A fully integrated Machine Protection System (MPS) is critical to efficient commissioning and safe operation of all high-current accelerators. The MPS needs to monitor the status of all devices that could enter the beam path, the beam loss monitors (BLMs), magnet settings, beam dump status, etc. This information is then presented to the electron source controller, which must limit the beam power or shut down the beam completely. The MPS for the energy recovery linac (ERL) at the Jefferson Lab Free Electron Laser [1] generates eight different power limits, or beam modes, which are passed to the drive laser pulse … continued below

Physical Description

116 Kilobytes pages

Creation Information

Allison, Trent; Coleman, James; Evans, Richard; Grippo, Al & Jordan, Kevin September 1, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 13 times. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A fully integrated Machine Protection System (MPS) is critical to efficient commissioning and safe operation of all high-current accelerators. The MPS needs to monitor the status of all devices that could enter the beam path, the beam loss monitors (BLMs), magnet settings, beam dump status, etc. This information is then presented to the electron source controller, which must limit the beam power or shut down the beam completely. The MPS for the energy recovery linac (ERL) at the Jefferson Lab Free Electron Laser [1] generates eight different power limits, or beam modes, which are passed to the drive laser pulse controller (DLPC) (photocathode source controller). These range from no beam to nearly 2 megawatts of electron beam power. Automatic masking is used for the BLMs during low-power modes when one might be using beam viewers. The system also reviews the setup for the two different beamlines, the IR path or the UV path, and will allow or disallow operations based on magnet settings and valve positions. This paper will describe the approach taken for the JLab 10-kW FEL. Additional details can be found on our website http://laser.jlab.org [2].

Physical Description

116 Kilobytes pages

Source

  • FEL 2002, Chicago, IL (US), 09/08/2002--09/13/2002

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: JLAB-ACE-02-01
  • Report No.: DOE/ER/40150-2160
  • Grant Number: AC05-84ER40150
  • Office of Scientific & Technical Information Report Number: 801210
  • Archival Resource Key: ark:/67531/metadc739659

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • September 1, 2002

Added to The UNT Digital Library

  • Oct. 19, 2015, 7:39 p.m.

Description Last Updated

  • Feb. 5, 2016, 8:11 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 13

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Allison, Trent; Coleman, James; Evans, Richard; Grippo, Al & Jordan, Kevin. Integrating a Machine Protection System for High-Current Free Electron Lasers and Energy Recovery Linacs, article, September 1, 2002; Newport News, Virginia. (https://digital.library.unt.edu/ark:/67531/metadc739659/: accessed April 23, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen