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Summary 
We consider the frequency dependence of seismic reflections from a thin (compared to the dominant wavelength), fluid-
saturated reservoir for the cases of oil and water saturation.  Reflections from a thin, water or oil -saturated layer have 
increased amplitude and delayed travel time at low frequencies if compared with reflections from a gas-saturated layer. 
This effect was observed for both ultrasonic lab data and seismic field data. One set of field data revealed high 
correlation of low frequency processed image for two different production horizons represented by fractured shale and 
sandstone. Another set was processed for the purpose of contouring of oil/water contact, and reveal very good 
correlation with available well data. The frequency dependent amplitude and phase reflection properties can be used for 
detecting and monitoring thin liquid saturated layers.  
 
Theory 
Consideration of reflection properties of an elastic layer, which is placed between two elastic half-spaces with the same 
material properties is especially simple for normal incidence of a plane wave.  In this case the total reflection wavefield 
consists of an infinite series of multiples with decaying amplitudes. If the duration of the incident seismic signal is less 
than the time interval between multiples then all these multiples are resolved and can be recorded separately. With 
increase of the incident signal duration, multiples interfere and the resulting signal becomes frequency dependent. Such 
frequency dependence due to interference of multiples is known as tuning. At low frequencies all multiples cancel each 
other, the reflection coefficient approaches zero, and the layer becomes invisible for seismic waves. The cancellation 
occurs due to the different sign (ie. polarity) of reflections from the top and the bottom of the layer. If the reflections 
have the same sign, the correspondent reflection coefficient approaches a constant value for the reflection between two 
contacting half-spaces in the low frequency limit. Tuning, expressed as a frequency dependence of a reflection 
coefficient, does not explain the observed increased amplitude in low-frequency reflections for the water-saturated case 
as compared to the dry case. To explain this result we use a frictional attenuation mechanism described in Goloshubin 
and Korneev (2000), which is consistent with the observed frequency dependence of Q, when Q approaches zero at low 
frequencies. Strong attenuation in the layer affects summation of multiples and they do not cancel out completely. Our 
theoretical formulation with frictional loss term matches the physical model data reasonably well. 
 
Physical modeling 
A set of laboratory ultra-sonic experiments was conducted to investigate the differences of reflections from dry-, water- 
and oil-saturated layers. The investigation was done in such a way that the wave propagation in the laboratory model 
approximated wave propagation in standard practice. The scaling factor was set to 1:1000, i.e. 1 mm in the model 
corresponded to 1 m in the field and 1 kHz in the modeling experiment corresponded to a field frequency of 1 Hz. 
Plexiglas was used as a homogeneous constant-velocity background medium. The porous layer was made of artificial 
sandstone with cemented sand and clay grains, and was hermetically sealed to allow its saturation by different fluid. . 
The layer was =h  7 mm thick and had 0.32 porosity and about 300 mDarcy permeability. The velocities and densities 
of the used materials were: Vp=1700 m/s, Vs=1025 m/s, ρ =1800 kg/m3 (dry layer); Vp=2100 m/s, Vs=1250 m/s, 
ρ =2500 kg/m3 (water-saturated layer); and Vp=2300 m/s, Vs=1340 m/s, ρ =1200 kg/m3 (plexiglas). To prevent an 
increased lateral boundary flow, sand was previously glued to the surfaces of contact. The sandstone was not vacuumed 
for both cases and therefore some (up to 10%) residual moisture was present for the dry case, and correspondingly some 
small amount of trapped air was present in the material in the liquid-saturated case. This allows a more realistic partially 
saturated case, which seems closer to the conditions of real rocks. The physical modeling data were recorded using 
Common Offset Gather (COG) observation system shown on Fig.1 for both water and oil saturation. The offset was 
much smaller than depth of the layer and reflection angle was practically equal to zero. A significant difference is seen 
between the seismic response of the porous layer dry zone, water-saturated zone, and oil-saturated zone. The very low 
frequency "bright spot" with phase shift is associated with oil saturation. 
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Figure 1. Laboratory seismic reflection experiment  (left panel), and data filtering results. 
 
Field data 
We used 2D seismic data to investigate the low-frequency effects from oil-saturated reservoir zones. The seismic data 
were recorded using conventional acquisition technology with 10 Hz receivers. The frequency-dependent processing 
was done to get low frequency images of the reservoirs. There were 3 important aspects of the processing: a) the relative 
amplitudes of the seismic data were preserved throughout the processing; b) the processing retained the broadest 
possible signal band in the data with preserved low frequency domain of the spectrum; c) the wavelet transforms were 
used for frequency dependent velocity analysis and imaging. Figures below illustrate the results of frequency dependent 
processing of the experimental data. The data are from oil fields of Western Siberia. The seismic and log data for 
processing and interpretation are courtesy Surgutneftegas Oil Company. A seismic line from Ay-Pim oil field was used 
to image two different types of oil-saturated reservoirs (Fig.2). The well data indicate that the upper reservoir AC11 
consist of an 11-15 m thick sandstone with varying fluid content. The lower reservoir Ju0 is represented by 15-20 m 
thick fractured shale. As we can see in the Fig.3 the oil-saturated domains of the both sandstone reservoir AC11 and 
fractured shale reservoir Ju0 create low-frequency (<15 Hz), high amplitude effects (red) for reflected seismic energy. 
Next example shows the Frequency-Dependent Processing and Interpretation (FDPI) capability to map oil-water contact 
using low-frequency part of seismic data. Presented Fig.4 is result of FDPI at low frequencies. The map includes the 
seismic low frequency reflectivity at 12 Hz relatively to reflectivity at 40 Hz centered frequency, predicted oil-water 
contact, and location of calibration and check-up wells. 
 
Discussion 
Amplitude and phase reflection properties can be used for detecting and monitoring oil, water and gas saturation 
changes in underground reservoirs. While in the purely elastic case all multiple reflections tend to cancel each other at 
low frequencies, the friction attenuation mechanism changes the cancellation balance and observation of reflections 
from very thin layers becomes possible. The reflection amplitude effect is also complimented by an increasing phase 
delay of the reflected phase. In the presented field examples standard data processing did not reveal any significant 
changes for fluid saturated reservoir, while the changes in reflectivity are substantial at low frequencies. The observed 
increase in amplitude and travel-time delay as frequency decreases is in agreement with theoretical predictions and 
laboratory studies. In both the laboratory and field data, the observed effects can be attributed to the target reservoir 
horizon and are not present on other parts of seismic record. These findings are especially important since there was no 
significant change found in the full frequency content seismic reflections from the fluid reservoir. This low-frequency 
reflection variation can be a useful indicator of thin liquid-saturated layers. Attenuation for such layers strongly depends 
on liquid saturation. Layers with higher attenuation create travel time delays, which increase as frequency approaches 
zero. This property was observed in field data and can serve as an additional indication of liquid saturation in porous 
layers. The difference between dry and water and oil saturated layer reflectivities are clearly seen using imaging of 
common offset gathers at high and low frequencies in physical experiment. Physical interpretation of the frictional 
dissipation term remains uncertain. We can speculate that high compressibility, and, correspondently, relatively high 
deformation of granulated porous or fractured media leads to strong mechanical friction between rock composing 
elements because most of the deformation is caused by a change in the relative position of adjacent elements rather than 
by deformations within the elements themselves. The presence of wetting fluid in contact areas increases friction 
because energy is being spent on deformation of fluid droplets. This additional energy loss increases as viscosity of the 
fluid increases. The attenuation mechanism in fluid saturated materials should be further investigated at all practical 
frequencies to find its relation to micro scale parameters. 
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                        Figure 2  Standard processed seismic sections for West-Siberian oil field showing well locations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                            Figure 3     Similar to Figure 2, this time using low-frequency processed reflection data; 
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Figure 4  Low-frequency reflective image mapping of a water-oil contact boundary and well content. Wells # 9, 76, 91, 95 were 

used for seismic fluid attribute calibration.  Information for wells # 3, 5, 63, 74, 75, 77, 78, 79, 86, 96, 101 was disclosed after 

processing and interpretation.  
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