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Agent-Based  Mediation  and 
Cooperative  Information  Systems 

Laurence R. Phillips,  Hamilton E. Link, and Steven Y. Goldsmith 
Advanced  Information and Control  Systems  Department 

Sandia  National  Laboratories 
P. 0. Box 5800 

Albuquerque, NM 87185-0455 

ABSTRACT 

This report describes the  results of research  and  development in the  area of 
communication among disparate species of software agents. The two 
primary elements of the work  are  the formation of ontologies for use by 
software agents and  the  means by  which software agents  are  instructed to 
carry out complex tasks  that  require interaction with  other  agents. This 
work  was grounded in the areas of commercial transport and 
cybersecurity. 
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1. Introduction 
This project was  conceived as research into agent mediation issues, focused on developing a 
technological “Rosetta Stone” that would allow disparate agent systems to collaborate with one 
another. We accomplished  many  of  the  original  goals of  the project, although  not all in the  way 
first proposed. In  the course of  the project,  we discovered additional important aspects of the 
problem space and explored a number of these aspects as well. 
We began by working with CMU  to establish an operational version of their agent architecture in 
our lab, alongside machines running Sandia’s 2nd-generation agent architecture (SAA2). As  we 
made these systems interact with one another, we  began to better comprehend  the  problem space 
of  general-purpose communication mechanisms  in agent systems. To demonstrate  and expand 
our understanding of the issues we  developed generalized mechanisms for describing and 
executing complex patterns of interaction. This led to the invention of a number of software 
components that we integrated with  SAA2 in the form of perception and schema-processing 
frameworks. 
Around this time,  much of our work  began to shift towards applicability in  network security. 
This led to the  development  of a number  of  security support protocols, and allowed us to test the 
generality  and capabilities of the communications framework  that  we  had  developed by applying 
the  technology in a domain  it had not  been explicitly designed to cope with.  The process gave us 
the  opportunity to identify and improve a number  of framework components  where  the 
implementation had not fully realized the hypotheses. In the end  we  succeeded in constructing 
operational systems of agents executing very  complex communication patterns  with  one another, 
based  on  the  work  we originally began  with  CMU. 
The theoretical results of the LDRD effort are: 
1. A more  complete understanding of the problem of making disparate agent systems 

2. The design of a general-purpose framework  for enabling interaction between agents, and 
3. An analysis of communication issues associated with security protocols in agent systems. 
These theoretical results were realized in agent-based technology for executing speech acts in 
KQML  and a mature implementation of a general-purpose communications framework  that has 
since been  leveraged repeatedly for many different tasks on other projects in our lab. 

communicate  with one another, 

2. Background  and  Problem  Statement 
One  of the difficulties in building distributed information systems is enabling disparate 
components to share  meaningful  messages  with  one another. The issue is not so much in 
constructing a network able to transmit data between the components, but rather in developing a 
system in which  all components can grasp the data’s semantic meaning. 

“For an initiator to [understand] a respondent . . . their messages must be . . . grounded in a 
shared ontology . . . the  lack  of  common definitions is known as the  ontology  problem, 
and is the  most challenging obstacle to widespread interoperability of heterogeneous, 
distributed co-operating systems.” [ 11 

This problem  must of course arise when components have been designed independently, but in 
fact it  can  be  an issue even when all components initially  shared a semantic  model,  when 
modifications and additions are not uniformly  made. It  has been  said  that  “the  main barrier to 
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electronic commerce lies in the need for applications to meaningfully share information” [2] and 
it is clear that this barrier exists for other application domains as well. 
The thesis of this project is that agents are a  useful  adjunct in addressing issues of 
intercommunication  among  disparate processes. An agent is a  computational thread of execution 
(or  set of interacting threads) that takes action based on input  and its state without waiting for 
explicit commands.  As stated in  our initial proposal,  “agent-mediated information management 
is currently the most  promising solution to the problem of integrating  and accessing large legacy 
data stores and  for  utilizing  networked information sources such as the Internet.” [3] The project 
was engendered  to explore the process of realizing this promise  in  a concrete setting using the 
SAA2 agents we  developed. 
We are not alone in our  assessment that agents are the relevant approach.  “Army, Navy and  Air 
Force  researchers-along  with  defense contractor Lockheed Martin-have recognized software 
agents as ‘absolutely  critical’ in solving another long-standing frustration: The inability to share 
data across the military’s  myriad computer systems.” [4] 
But an agent-based  approach  can  only facilitate the design and  implementation of such systems. 
What is required to actually  enable two disparate agent  communities to meaningfully share 
information? Greaves et al. say  it  well: 

“The dream of agent interoperability is commonly thought to  rest on three main 
characteristics shared by the interoperating agents: 
1. They  would  be able to access a set of shared infrastructure services for 

registration, reliable message delivery, agent  naming,  and so forth (i.e., there 
must be structural interoperability); 

2. They  would share (possibly through translation) a  common content ontology, 
truth theory,  and  method of binding objects to variables  (i.e., there must be 
logical interoperability);  and 

communication  language (ACL) in which to express themselves (i.e., there 
must be language interoperability).” [4] 

In human  systems,  language interoperability is largely taken for granted;  logical interoperability 
is achieved  through training, experience,  and  convention;  and  structural interoperability is 
engineered as necessary-telephones, e-mail, radios-to extend our natural human abilities. In 
most  agent-based  systems,  language interoperability is achieved by selection of a standard 
common  language,  such as Knowledge  Query and Manipulation  Language  (KQML), the 
Foundation  for  Intelligent  Physical Agents (FIPA) ACL, or DARPA’s  Agent Markup Language 
(DAML).  Existing  media for transmission of information-e.g., the  Internet-readily  provide 
structural  interoperability. This leaves as the primary issue the realization of a means to achieve 
logical interoperability: Given that agents can communicate  with  one another, what do they  say, 
and  what  must be done to enable the receiving agent to  understand the transmitting agent? 
For the applications we  considered in the context of this research, the Internet provides structural 
interoperability,  and we  used  KQML to provide language  interoperability.  Our  primary 
conceptual  challenge was therefore  to formulate a  representation of the knowledge that would 
enable non-SAA agents to understand SAA agents; that  is, to achieve logical interoperability 
with agents that we  did  not  design. 

3.  They  would agree on the syntax and semantics of a  common agent 
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3. Approach 
Our  approach  was to design and build into our  Standard  Agent Architecture (SAA) agents a 
means to  share information with another community of agents that had  been  designed 
independently  from our  own. We selected the Reusable Environment for Task  Structured 
Intelligent Network Agents (RETSINA) at Carnegie Mellon  University  (CMU) as OUT target 
community.  RETSINA offered several features that supported our goals: 

RETSINA agents communicate using KQML  syntax. 
CMU  had developed a  RETSINA-based  Matchmaker  system for advertising and  finding 

CMU  had developed the Language for Advertisement and Request for  Knowledge  Sharing 

We could  readily communicate with operational CMU agent communities via the Internet. 
With these features and concepts in mind, we  began the following work  plan: 
1. Develop a  mechanism to accept objects in our internal format and  emit  messages in KQML 

2. Develop a  means to express the services our agents would provide as trans-border 

3. Advertise our services with the CMU  Matchmaker. 
4. Receive  and  respond to KQML-framed requests for our services. 
When  we  began to cany out domain-specific interactions with  CMU’s agents (item 3 in the  work 
plan), it  became apparent that the high  granularity of the procedural language with  which  we 
programmed our agents was going to limit the complexity of behavior we  could  implement, 
especially when several agents were involved. 
We needed  a declarative language in which we could write  agent behavior descriptions that the 
agents would  execute. This implied not  only  a  language  that supported the operations the agents 
were to perform  but also a canonical execution mechanism  in each agent so that  any  SAA agent 
receiving such  a description could execute it. 
It was apparent  to us that we needed this extension no matter  what further operations we  decided 
to  pursue  with our agent technology. But another change overshadowed all decisions: Because of 
changes in our business direction and the outcome of our  work on other projects, our focus began 
to shift to  security. For-us, with our primary focus on agents, this devolved to  answering three 
questions: (1) With  what aspects of “security” might  agents  be concerned? (2) How  can an agent 
protect itself  from cyberattack? (3) How can an agent or group of agents protect  other  cyber 
resources from cyberattack? 
This change in direction of any subsequent real-world  work made the move to  a  declarative- 
language execution mechanism especially compelling, because  many  security  operations are 
very  complex. 
Based  on  these conditions, instead of completing step 4,  we  began the following work  plan: 
4a. Develop  and implement a declarative framework for specifying the actions of agents. 
4b.  Develop  and  implement an execution engine  that can execute action thus specified 
5. Develop  and  implement ontological representations for  security elements 
6 .  Develop  and implement security operations using the results of 4a, 4b, and 5. 

services that dovetailed nicely with our work on cross-border shipping; 

(LARKS)  with which to construct postings for their Matchmaker; and 

syntax. 

documentation experts and facilitators in LARKS. 
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4. Focus on  Ontologies  and  Their  Representation 
The  concept ontology appears above as a  necessary  element in applications that  must  share 
meaning  among  disparate  components. Ontology has  a particular meaning  when  used  in an 
information  technology context that differs from its use elsewhere. In addition,  the  representation 
of  ontological  information takes a  special  form in our  environment. 
Definitions  of ontology from the literature: 

I. “An  ontology is a description (like  a  formal specification of a  program) of the 

11. “1. <Philosophy>  A  systematic  account of Existence. 
concepts and  relationships  that  can  exist  for an agent or a  community of agents.” [6]  

2. <Artificial  intelligence>  (From  philosophy) An explicit formal  specification of 
how to represent the objects, concepts and  other entities that are assumed to exist in 
some  area of interest  and the relationships  that  hold  among  them . . . A  set of agents 
that  share the same  ontology  will  be able to  communicate  about  a  domain . . . 
3. <Information  science> The hierarchical  structuring  of  knowledge  about  things by 
subcategorizing  them  according  to their essential  (or at least relevant  and/or 
cognitive)  qualities.” [7] 

We include the first definition because of its breadth  and  use of vernacular  English. This 
definition is important  because it exposes the important  notion  that if a  concept  isn’t  represented 
in the agent’s ontology, as far as the agent is concerned, it cannot exist; and,  conversely,  the 
definition  of  what  can exist for an agent, in  whatever  form, is the agent’s ontology. 
The  second  definition distinguishes the meaning  of ontology as used by different  disciplines. 
Definition  I corresponds to  element 2 of definition 11. The direct statement  “agents  that  share the 
same  ontology  will  be able to  communicate” indicates that  our  fundamental  conceptual 
work-sharing an ontology-must  be  accomplished  for heterogeneous agents  to  share  meaning. 
Element 3 of definition I1 is noteworthy  because SAA2 agents  use  a  hierarchical  class-subclass- 
instance  network  both  intensively (to describe things that  may or may  not exist, such as 
electronic  messages  it is able to create) and  extensively  (to categorize things that  it  discovers, 
such as messages  it  receives).  The  agent’s  ontology-bearing  structure,  in  other  words, is a  class- 
subclass-instance  network  defined at compile time and  supplanted  during its lifetime. 
Ultimately,  no  matter  how  our  ontology  was  expressed internally, we  needed to delimit  a section 
of it  for  export  to the CMU agents and convert or transform  it  into  a form they  could  understand. 
The approach  we  decided to take can be summarized: 
1. Develop  a  representation of the activity  to  be  advertised on the CMU  Matchmaker  (we 

already  had  ontologies  describing  every  aspect of the cross-border  shipping  problem. 
Specifling an activity for the Matchmaker  meant  expressing  it as a  state  change in some  set 
of information). 

2. Determine  how to express that activity in  LARKS terms 
3. Manually  build  a document in  LARKS 
4. Embed the LARKS  activity  description in a  KQML  message  and  send  it  to the Matchmaker 
Some of the issues  inherent in this process are explored in [8] (reprinted in Appendix 11). 
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5. The  Ontology  of the Border  Trade  Facilitation  System  (BTFS) 
The  BTFS [9] was  developed  prior 
to this research,  and the nature of 
electronically facilitated business 
transactions  was  a  natural point of 
departure  for this project. As a 
result  some time was spent 
constructing  more  formal ontologies 
for  the  ecommerce domain to 
provide  CMU’s  agent system and 
ours with  a domain of concern in 
which  to  perform experiments (see 
example). The purpose of BTFS 
was  to  maintain an accurate online 
representation of the current state of 
the world, in particular the state of 
transported  goods  moving through 
the  US  and  Mexico. In addition to 
tracking the physical locations of 
these items,  BTFS  maintained the 
information  necessary to automate 

IS-MANUFACTURER = (and MANUFACTURER 
CATEGORY-INSTANCE 
1 

IANUFACTURER = (and COMMERCIAL-ORGANIZATION 
CATEGORV-INSTANCE 
( a l l  h a s - F r ~ d u c t C a t e g ~ r i e 5 )  
(a l l  has-FarentCompany) 
1 

:OMMERCIAL-ORGANIZATION = land ORGANIZATION 
CATEGORV-INSTANCE 
( a l l  has-DunsNrrmher) 
1 

IRGANIZATION = (and EXPORT-AS-REFERENCE 
ADDRESSED-OBJECT 
PHONE-NUMBERED-OBJECT 
FAX-NUMBERED-OBJECT 
( a l l  has-EcaFub l icFroxy)  
1 

:XFORT-AS-REFERENCE = (and PROXY-REFERENCE 
1 

‘ROXV-REFERENCE = (and OBJECT-BASE 
PROXY-MIXIN 
REMOTABLE-OBJECT-MIXIN 

Figure 1. BTFS  Ontology  fragment  in  LARKS  format 

the paperwork  used by customs agencies, manufacturers,  and trucking companies.  The  notion 
that  part of the state of the world is purely  informational, such as the fact that  a  transaction is 
authorized  once  a document has  been  signed, is not  uncommon in agent environments. 

In order  to  experiment with the BTFS  domain, the world was divided  into services that  would 
typically be provided by an agent. In addition to each  service’s specific ontology of discourse, all 
services  were described in a  service-description  ontology. This description was  intended  for 
submission by the service provider to CMU’s  “Matchmaker” agent, which  when  coupled  with 
their Agent  Nameserver (ANS) acted as a  Yellow  Pages, of sorts. Agents desiring  a  particular 
service would  describe the service to  a  Matchmaker  agent,  and  would be referred  to  an 
appropriate  service provider. The  requestor  would  then  make contact with the provider  and  they 
would  interact  using that service’s ontology. 

In order  to  interact with CMU’s  Matchmaker  and  ANS agents, it was  most  expedient to enable 
our agents to speak  KQML, an agent communication  language.  This was straightforward,  and 
was easier than we  believed it would  be to enable their systems  to  comprehend  and  manipulate 
the more  sophisticated (and complex)  distributed  object  representation  used by our agents when 
communicating  among themselves. 

6. Specifying  Patterns  of  Interaction  and  Processing  Schemata 
As we  approached  the  point of carrying  out  domain-specific interactions with  CMU’s agents, we 
became  aware  that  a  more  highly  structured description language  was  necessary  to  improve the 
process by which we designed  and  implemented  agent  behaviors.  Key  elements of the design 
problem  were the identification and  naming of distinct  information states in  a  particular  context 
and  whether  organizing  behaviors  around  discrete  named states would  be  a  practical  way to 
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approach agent interactions. Out of this work  came the schema  processing  mechanism  now  used 
in SAA2 for most agent-to-agent interaction.  The  Schema  Processing  mechanism has been 
declared  in  a  Technical  Advance entitled “Standard  Agent Architecture 11,” dated  4/18/2002,  that 
has not  been  assigned an identifying number as this is being  written. 

The underlying premise of the  schema  mechanism is that  most of the  information states in the 
course of an interaction can be characterized  and  distinguished  from  one  another. These states 
are then  used as the basis for a  state diagram, and the transitions between these states and the 
operations to  perform within each state are built  around them. The state  diagram is realized in a 
form we call a schema (pl.  schemata). The schema  mechanism consists of an “engine”  that 
executes the schemata and an expectation maintenance  system that allows the agents to describe 
and subsequently quickly select  relevant  stimuli  (and  reject  irrelevant ones) depending on the 
current states of the schemata being executed by the agent. 

7. Security  Policy  and  Cryptographic  Protocols 
The schema processing mechanism  began to mature  and  we  proceeded to implement  more 
involved operations using that system.  Both as part of our  work in exploring  increasingly 
complex interactions and their limitations and as part of our growing  work  in  security systems 
research, we began implementing cryptographic protocols for multiparty  authentication  in our 
schema  language. The multiparty protocols have  been  declared  in  Technical  Advance SC- 
71  77/S-98,790 dated 4/26/2002 and entitled “Implementation of Group  Threshold  Signature 
System.” 

An essential component of the security  work was the separation of interaction speczjkation and 
interaction policy. The specification of an interaction is  a description of what  information needs 
to  pass  among which entities. The  policy of an interaction defines conditions that may or must 
hold or not hold, independent of the specification. Security  policy is the basis by which an 
observer decides whether an observed  interaction is “legal” or not. Issues of delineating  and 
representing  policy are relevant to this project’s goal of exploring communication  among agents; 
in essence policy is an aspect of communication that affects one’s own communication as well as 
one’s responses to the communication of others. These issues are discussed further in [lo] 
(reprinted in Appendix 11). 

These protocols had  many  attributes, such as firm requirements of asynchronicity and minimum 
numbers of agents involved, that  made  them  useful  demonstrations of the capabilities of agent 
interactions. We  did  not have the opportunity to  develop  matching capabilities in CMU’s agents 
to  intermix agents from our two different systems while testing these protocols,  but  we  believe 
this would not be substantially more difficult than establishing interoperability  in the BTFS 
domain was. 

At the end of this experiment, we can  with  a fair degree of confidence state that, even without  the 
distributed object system used by SAA2, the required  object descriptions could be expressed  in 
other agent communication languages.  Given  language  interoperability,  SAA2  agents  should be 
able to complete these protocols with  any  other agent system that was  extended  to handle the 
algorithms and ontologies involved. Furthermore we believe from  our  experience  implementing 
these and  other protocols and procedures  that  SAA2 agents can  be  readily  extended to handle 
complex new domains and operations. 
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8. Associated Work 
This work was developed in several stages,  and  resulted  in  a  number of publications 
(Appendixes I through IV). 

During the development of the BTFS,  substantial effort was put into discovering and specifying 
the existing border trade participants and their processes,  in  order to accurately reproduce the 
functionality of these components in the virtual version of  that  system. In both the agent 
mediation  study  and the original BTFS  system,  BTFS  service-providing agents performed these 
operations and  roles. In the context of work on agent mediation and interaction, however, these 
agents also needed  to provide service descriptions to an advertising service such as CMU’s 
Matchmaker  agents.  Appendix  I lists some of these operations and describes some of the roles 
involved in the border trade process that  were  transformed into an ontology  for  use  with an 
advertising service. Figures 2,3, and 4 present this material as the software represents it. 

The development of BTFS represented an application of technology  .developed in our  laboratory 
for allowing agents to elicit information from humans using  HTML over the world  wide web 
(Appendix 11, section 1). This allowed information to be brought  into the agent in  a  controlled 
format and  using  a simple synchronous process, enabling the agents to maintain simple 
representations  of  ongoing transactions and map input  directly  into  matching structures in the 
BTFS  ontology.  The mechanisms developed  to enable this were specialized predecessors of the 
more  general  mechanisms that were to follow. 

At this time we  began  to identify architectural obstacles in  our initial standard agent architecture 
(SAA) to  rapidly developing new and increasingly  complex processes for the agents to  execute. 
This led  us to consider cornmon features of such processes that  could be exploited if appropriate 
tools were developed. We submitted some of our initial hypotheses to  a  workshop at 
Autonomous Agents ‘99 on conversation policies in agent systems (Appendix 11, section 2). As 
we  refined  our  ideas these concepts ultimately developed into the proposal of this project. 

In the course of the project we worked  with CMU to enable our agents to interact with theirs, 
choosing  LARKS as a service description language, while continuing to refine and explore more 
general means of communication between agents (Appendix 11, section 3). Selected  portions of 
this software  and descriptions of CMU’s  agent framework are in Appendixes I11 and IV. 

9. Conclusions 
Our  initial goals of developing an agent “Rosetta Stone”  that  would allow a  wide  variety of agent 
systems  to collaborate led us to cast a  wide  net into the problem of communication. We began by 
researching  agent communication languages and  ontologies, developed many protocols and 
policies, and  examined the impact of security requirements in a multi-agent environment. Based 
on our experience we drew a number of conclusions,  and  now have new questions that warrant 
additional  research. 

As  a  result of this project our agents can contain complex ontologies, convert them into 
alternative forms for consumption by different agents, and communicate with other agents using 
standard  message  forms. This represents a proof of principle that independently  designed  agent 
systems  can be  extended  to collaborate with one another. This process can be  very difficult in 
practice, but the difficulty of the task can be mitigated if the design of one of those systems 
provides  a  framework  upon which language  interoperability  and  a  shared ontology can be built. 
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This extension was possible but  challenging  in the SAA, and our second-generation SAA2 has 
been  designed  with this dimension of extensibility. SAA2 can be  easily  extended  to  add 
recognition and processing of new languages dynamically, and is able to  be  informed online of 
new ontologies and select for  each  transaction the appropriate ontology to use  when processing 
information from another agent. 

We  have a framework mechanism  and  language  for describing complex cooperative tasks that 
agents can execute. This demonstrated that common patterns of interaction in agent  systems  can 
be exploited  using special-purpose process description languages. In the SAA we were able to 
build  simple interactive processes  using  conventional  object-oriented  programming techniques. 
In order to express more  involved  conversation procedures that were  responsive to dynamically 
established communication policies, we implemented a more  sophisticated  state-based 
mechanism for executing protocols.  This  allowed  us to develop new tools that  took advantage of 
the structure of the communication environment  to greatly simplify the programming  task. 

We were able to exercise these facilities in the  context of security operations such as secure key 
share distribution, and multi-party  authorization  protocols. Because of the complexity of the 
security protocols we were now able to  implement  and come to  understand, we realized that 
informal approaches to communications  security in agent  systems  are  inadequate. This is a 
strong statement, made from a point  of view gained from working in information surety at a 
national  laboratory: systems developed  with  security requirements must consider the insider 
threat model as important  and  realistic  when  designing  network software. 
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Data  component  trading  for a shipment  transaction 
Collaborator  actors  operate on  components of the  shared  shipment  transaction  object 

I ORIGINATOR I I 
route  plan I 

fMONlTOR7---ti container 

route plan I BTFS (-> exit 4 Transaction 
Shipment 

POEx 

exit 

BROKER 

CONSIGNEE 

shipper Y-ZiJ 
route  plan \ ) 

*acknowledge f poEn 1 
-A REGULATOR I 

entry - \ 1 
declaration 

shipper 
ENTRY 

BROKER 
entry 

declaration 

The BTFS Shipment  Transaction (ST) is  the  suprema1  object  (superobject)  that  is  the 
subject of the collaborative  operations.  Each  collaborator performs its  value-added 
processing on one or  more  component  objects of the ST. Each  collaborator modifies 
the  state of the superobject, moving it  towards a ”goal state.’’ 

Figure 2. Data component trading for a shipment transaction 
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Figure 3. Shipment  Transactions & Components:  Attributes and Associations 
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Figure 4. Border  Trade  Facilitation System Ontology 
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Appendix 1. Operations and Roles of U.S./Mexico Cross-border Trade 

Operations  necessary  to  move  goods  across  the  U.S.-Mexican  border; to be advertised in 
Matchmaker:  (illustrated in Figure 2. Data  component  trading for a shipment  transaction) 
shipment-initiation 
shipment-monitoring 
shipment-in-transit-visibility 
US-transport 
Mexican-transport 
Border-crossing-drayage 

US-export 
Mexican-export 
US-import 
Mexican-import 
US-regulator-filing 
Mexican-regulator-filing 

Detailed  descriptions of the  roles of border  trade  collaborators  (Figure 3 illustrates  how 
these  roles are connected  to an individual  transaction): 
Originator: 
Advertised  services: shipment-initiation 
Role  function(s): Start the process of shipment by giving the fundamental task  parameter  values 
Information: Originator, Origin, Cargo-manifest,  elements  of signature-list 
Matchmaker  comments:  Normally  a  manufacturer  getting  ready  to  move  some goods does this. 
We expect  that an agent will  interact  with  a  human  to cause the appropriate information objects 
to be  created  and the appropriate goals  to be opened by the appropriate collaborators. This 
service  doesn’t  make as much sense in the broad  Internet setting, but is perfectly at home  in an 
Intranet  environment. 
Remarks:  Acts  to cause the creation of a  new  transaction  object.  The  originator is sometimes 
called the “shipper,” but we avoid this term  because  it’s  also  a  common  name  for  a  document. In 
the maquiladora environment, the originator  and the consignee are different sites of the same 
corporation. 

Consignee: 
Advertised  services:  none 
Role function(s): shipment  closure 
Information: Consignee, destination, arrival  time/date, 
Matchmaker  comments:  Not an advertised service, but  a  role  that  must be filled by a  collaborator 
in  order  to  finish  a  shipment. 
Remarks: Acts to cause closing of the  active  transaction object (although  archiving,  cleanup, etc. 
goals may ensue). Occasionally  referred  to as the receiver,  but  we  avoid the term since it’s also a 
common  name  for  a document. 

Monitor: 
Advertised  services:  shipment-monitor,  shipment-in-transit-visibility 
Role  function(s):  Watch  a shipment 
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Information: Import plan, Export  plan, arrival time/date, departure time/date 
Matchmaker  comments:  Not  clear  whether monitoring is a separable component  of  a  shipment 
transaction. In-transit  visibility is separable and should  be  advertised as a  standalone  function. 
Remarks: Acts to cause timely  completion of necessary information subgoals  (technically, the 
monitor  merely notices that  some  subgoals  may fail or  have failed, but  could  naturally  ask the 
appropriate agents to  correct  some  deficiency or put  some  other  contingency  plan  into  action). 
In-transit  visibility requires the presence  of onboard sensing and locating  hardware as well as a 
reading and reporting infrastructure that would  not  necessarily  be  provided by agents. 

Carrier: 
Advertised  services:  US-transport,  Mexican-transport,  Border-crossing-drayage 
Role function: negotiate to plan the route, then physically  move  goods. 
Information:  Container,  shipper,  route  plan 
Matchmaker  comments:  Primary service of all those given above is  “transport”  (i.e.,  physical 
translation or “ptrans”).  An  issue is how  to specify the scope within  which the service  is  offered. 
Remarks: (none) 

POEdPOEx regulator: 
Advertised  services:  none (the service offiling with the various regulators is accomplished by the 
entrylexit  broker. 
Role  function(s):  Certify  requirements  have  been met, permit/bar entry/exit 
Information:  ImporVexport  plans as appropriate, elements of signature  list 
Matchmaker  comments: 
Remarks: The agent certifies that  certain conditions are met  and  finally  permit  entry/exit, as the 
case may be. This  role is filled by the  respective customs agencies,  although  other  regulatory 
agencies may  impose  additional constraints. 

Entry/Exit  broker: 
Advertised services: US-export,  Mexican-export,  US-import,  Mexican-import,  US-regulator- 
filing,  Mexican-regulator-filing 
Role fmction(s): Get all the paperwork right 
Information:  ImporVexport  plans as appropriate, shipper, route plan,  elements of signature  list 
Matchmaker  comments: These services are sometimes offered in combination  (e.g.,  Mexican- 
export  and  US-import are closely  coupled). 
Remarks: The broker needs information about virtually  every  aspect of the  shipment  in  order  to 
ensure  that the appropriate regulatory constraints are met  in a timely  manner. Note that 
directionality and nationality  can constrain the information needs; the Mexican  export  broker  and 
the US import  broker don’t need  identical information (although note it is possible for both  to  be 
handled by one  broker,  especially in the maquiladora setting), and  Mexican  import/US  export is 
almost entirely  different from Mexican export/US import in terms of the information  needed  and 
which  regulatory bodies require it. 
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Appendix 11. Publication Reprints 

1. Ontological Leveling and Elicitation for Complex Industrial Transactions 
2. The Role of Conversation Policy in Carrying Out Agent Conversations 
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Ontological  Leveling  and  Elicitation 
for  Complex  Industrial  Transactions8 

Laurence R. Phillips, Steven Y. Goldsmith, Shannon V. Spires 
Advanced  Information  Systems  Laboratory 

Sandia  National  Laboratories 
Albuquerque,  New  Mexico  USA 

{lrphill,  sygolds,  svspire)@sandia.gov 

Abstract. We  present  an  agent-oriented  mechanism  that  uses  a  central  ontology  as  a 
means  to  conduct  complex  distributed  transactions.  This  is  done by  instantiating  a 
template  object  motivated  solely  by  transaction  ontology,  then  automatically  and 
explicitly  linking  each  element  of  the  basis  to an independently  constructed  interface 
component.  These  links  are  then  embedded  in  acquisition  goals  and  delegated  to  an 
agent  that  knows  how  to  carry  out  the  elicitation  process.  Having  accepted  these 
goals,  the  agent  uses  the  links  to  acquire  information  without  reference  to  interface 
components  and  to  register  this  information  with  the  transaction  basis.  Agents  elicit 
information  without  disturbing  the  basis  and  can  inteagate  the  information  into  the 
basis  without  further  reference  to  the  link  once  it  is  validated.  Validation 
information  is  attached  directly to the  links so that  the  agent  need  not  know a priori 
the  semantics  of  data  validity,  merely  how to execute  a  general  validation  process  to 
satisfy  the  conditions  given in the  link.  An  advantage  of  this  arrangement  is  that  the 
transaction  basis,  the  links  with  the  interface,  and  the  validation  requirements  are 
independent  of  one  another  and  of  the  elicitation  agents.  This  independence  enables 
an elicitation  process  to be realized  without  reference  to  the  interface  engine,  which 
is  merely  an  attribute  of  the  links.  This  means  that  in  practice  the  interface  structure 
can  be  instantiated  with  reference  only  to  link  names,  remaining  sufficiently  abstract 
to  enable us to  wait  until  run  time  to  generate  the  actual  interface  seen  by  the 
informant.  It  can  thus  be  idiosyncratic;  when  we  generate  the  interface  we  can  take 
into  account  the  informant’s  identity,  lexicon,  language,  time  of  last  contact,  etc. 
Ontological  leveling  is critical all  terms  presented  to  informants  must  be 
semantically  coherent  with  the  ontologically  motivated  basis. To illustrate  this 
approach  in  an  industrial  setting,  we  discuss  an  existing  implementation  that 
conducts  international  commercial  transactions  on  the  World-Wide  Web.  In  this 
implementation,  agents  operating  within  a  federated  architecture consmct, populate 
by  Web-based  elicitation,  and  manipulate  a  distributed  composite  transaction  object 
to  effect  transport of  goods  over  the  U.S./Mexico  border. 

keywords: elicitation, ontological leveling, computer supported cooperative work 
(CSCW), international commerce 

3 This work was performed at Sandia National Laboratories, which is supported by the 
U.S. Department of Energy under contract DE-ACOP94AL85000 
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Ontological  Leveling  and  Elicitation 
for Complex  Industrial  Transactions5 

Laurence R. Phillips, Steven Y. Goldsmith,  Shannon V. Spires 
Advanced  Information  Systems  Laboratory 

Sandia  National  Laboratories 
Albuquerque,  New  Mexico  USA 

{Irphill,  sygolds,  svspire)@sandia.gov 

Abstract. We  present  an  agent-oriented  mechanism  that  uses  a  central  ontology as a 
means to  conduct  complex  distributed  transactions.  This  is  done  by  instantiating  a 
template  object  motivated  solely  by  the  ontology,  then  automatically  and  explicitly 
linking  each  template  element to an  independently  constructed  interface  component. 
Validation  information  is  attached  directly  to  the  links so that  the  agent  need  not 
know a priori the  semantics  of  data  validity,  merely  how to execute  a  general 
validation  process  to  satisfy  the  conditions  given  in the link.  Ontological  leveling  is 
critical:  all  terms  presented  to  informants  must  be  semantically  coherent  within  the 
central  ontology. To illustrate  this  approach  in  an  industrial  setting,  we  discuss  an 
existing  implementation  that  conducts  international  commercial  transactions  on the 
World-Wide  Web.  Agents  operating  within  a  federated  architecture  construct, 
populate  by  Web-based  elicitation,  and  manipulate  a  distributed  composite 
transaction  object  to  effect  transport  of  goods  over  the  U.S./Mexico  border. 

1 Introduction 

Discussions of elicitation in  the literature involve anthropomorphic  agents [l], belief 
revision to accommodate  heterogeneous distribution of knowledge [2], shared  ontologies 
[3] and [4], and  semantically  denotive labels [5]. The  notion of teleologically motivated 
discovery  presented in [6] is useful since some elicitation situations need partially- 
instantiated information structures-cases- to  guide  the elicitation process. 

Ontological leveling is the construction of  a  central ontology to support several languages. 
Our approach to ontological leveling builds the central ontology to support  one  language, 
then extends  it  as we  add  languages. Sharing among languages  can  occur as the corpus 
continues to provide translations in  both  into  and out of the central ontology.  We use 
denotive labels, but not  in  the sense of [5]; labels  are  used here to maintain the connection 
between  the ontologically motivated basis and  the elicitation forms used to  populate it. 

5 This work was performed at  Sandia National Laboratories, which  is  supported by the 
U.S. Department of Energy under contract DE-ACO4-94AL85000 
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We  have  not yet explored teleologically motivated  discovery very deeply; although  we 
have  extensions in  place to  permit exploration, we have  focused to date on the necessarily 
very structured communication required  by international commerce. 

We are interested in  the process by  which  an agent elicits information  from  another  agent 
when  both  wish to  accomplish a common goal. In general, these agents will  be conversant 
with  a common  ontology  but  may use  widely divergent  syntaxes  to entail the semantic 
content of interest. The efficient mechanism  to  enable semantically laden communication 
in  this  kind of  environment is to explicate the common ontology  and level it with  the 
relevant fractions of the individually languages.  The  formal properties of this mechanism 
are discussed in [7] and include translation, construction, verification,  and  reversibility. 

When an  agent requests information of another (referred to as the informanr), it expects to 
receive  a response.  We are interested in  the subset of responses in which  the informant is 
acting to assist the agent in satisfying some mutual goal, usually  based  on an  agreement to 
do so. This  occurs in  the context of a federated system [3] acting to achieve some goal of 
the virtual enterprise based on either an existing contract [8] or a  trading partner 
agreement 191. We  assume, therefore, that the informant is acting  in  good  faith-that it is 
benevolent [ 101-but does not necessarily provide correct or complete information. 

In this circumstance, the informant  responds  to the request by providing information it 
thinks is correct in  an attempt to satisfy the request. The agent must  determine the  value 
of the information  proffered by the informant.  The  agent  can then either request more 
information  from the informant or go on to other tasks. In any case, the agent will validate 
the informant’s  information, if only by default, and  may elicit further information about 
responses  it is unable  to validate, perhaps ultimately discarding the information as 
unreliable and failing to satisfy its goal. This explicit validation at elicitation time helps  to 
to prevent costly dependency-directed backtracking. 

2 Ontological  Leveling 

Using the notation of [7],  suppose we have several languages La-n; an interlingua 
language Li;  TRANSLa,Li,  a binary relation between top-level forms of  La and  top-level 
forms of  Li; and BTLa, a set of top  level-forms in  Li. Suppose further that by some means 
we have  <TRANSL,Li, BTL,>, an Li-based semantics for La, SO that we  know  how to 
translate back  and forth between La and  Li. Normally, this places a  burden on the 
implementors to verify that all statements SLa really are equivalent to S L ~  (their translated 
TRANSb,Li versions) because La will have an independently  defined semantics. This is 
not so difficult for the first language La, because its translation can drive the  definition of 
Li, but  becomes increasingly difficult as Lb, LC, Ld. etc., are  added (that is, as TRANSLb- 
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n,Li and BTLb-n are defined), each with its own semantics. A situation can  have features 
that will collapse the potential combinatorial explosion: First, the  La,...,” languages will 
have similar semantics when  they are “about” the same context. Second, the La,...,n often 
are not  very expressive, having  small  vocabularies and simple grammars. Third, the areas 
where the  La,...,, overlap  can  be  few and denotationally coincident, reducing conflicts. 
This  process of adding additional languages to the set that  can  be translated into the 
interlingua and  back  is called ontological leveling. 

Suppose  language 1 refers to  a  property named  the  “date-of-record’’  and language 2 refers 
to a property called “date-of-transaction.” In  the ontology, we have an object named 
“filing-date” and another object named  “receival-date.”  We also know, axiomatically, that 
in order for the transaction to be considered  complete,  a record of it must first be  made. 
To preserve the semantics of  the translation, we can  choose to translate date-of-record as 
filing-date and date-of-transaction as receival-date and  mediate during elicitation to 
ensure that  the elicited date-of-transaction is not earlier than the elicited date-of-record, as 
required by the  axiom. Unfortunately, the axioms  operate only  within each  language and 
its translated terms, not between  languages, so formally we can’t guarantee that a 
relationship holds  between  terms in two different languages  just because it  holds  between 
their translations. However, when an  axiomatic relationship that holds in  the interlingua is 
one that we  wish  to hold  between the reverse-translated terms, we can force the 
translation to be reversible at elicitation time.  In our  example, we know  that  the date-of- 
record must be  no later than  the date-of-transaction precisely  because  we  want to force 
that axiom  to hold; we are  not going to let an  informant make  the mistake of saying the 
transaction is complete  before its record has  been filed. In practice, we can  prevent 
closure until filing occurs; formally we would also like to prevent  the denoruhbn of 
closure until we see the denorurion of filing, in order to  maintain registration of the 
internal state with  the state of the world. We would furthermore  maintain the metric 
information-the dates qua dates-as  the denotive markers of  the events, because dates 
already  have  a  common  semantics. In other words, barring formats, there’s a universal 
calendar  already in use, so we  need  not translate actual dates. Each event object in a 
transaction, at  some point during the transaction’s trajectory, will contain  a date object 
that both denotes that  the event  has occurred  and connotes the  time  of occurrence. 

A more difficult case is Total  Value  (What is  the  total  value of items in this {shipment, 
invoice, bill of lading, production request, work breakdown, field proposal, ... >>. 
Leveling consists in growing the interlingua to be sufficiently expressive to maintain 
translation and  reversal among several semantic projections, just as it does with  the dates, 
but this is much more difficult to do. For example, the  axiom  that defines the valuation of 
one  monetary  currency with respect to another is time-varying. Does the transaction 
object contain the  value of the shipment that was computed at some  time  in the past or is 



it determined at the time of the request? If the former, must it then also contain  the  time of 
that valuation and the axiom that  was used?’ Must all such valuation times and 
conversions  be retained? How are we to retain commensurability  among the set of 
valuations in  the transaction object? Theory suggests  the correct answer is “All  such 
information  must  be  preserved to maintain reversibility,” placing the burden on the 
constructor of a functional interlingua for an industrial setting. As  a practical matter, we 
preserve reversibility where reversal will  be applied and denote irreversibility where it 
will not; relying on use-case analysis [ 1 I ]  to  determine which case applies. 

3 The Mechanism 

Work is assigned  to  an  agent by giving the agent a goal. The goal for elicitation is a form 
insranriation goal (FI-goal); the agent is  supposed to return an object that contains the 
validated results of an elicitation process. FI-goals are members of specialized goal 
classes that capture the semantics and syntax of  the information to be elicited. An FI-goal 
is  a composite object initialized to contain several unknown objects (UOs)[ 121. A UO is  a 
class instantiation that has  no  content  but is responsive (in a content-free manner)  to class 
protocol. The  presence of  a UO denotes a  lack of information. The UOs from the FI-goal 
are given to a generating mechanism that creates display code.  The display generator 
knows  an  appropriate display object for each class of UO. Currently, the display page 
class for the FI-goal is fixed  during design, along with an explicit display object 
classname for each UO, e.& “text box” or “radio button.” This  information is maintained 
in  the automatically-generated initialization code for the display page class and is 
therefore fixed at compile time.’ 

Each display object contains the  name of the datum for which it is  the interface. The  agent 
uses this name to re-connect the data retrieved from the informant  to the appropriate 
internal variable. Internally, everything is Connected  by pointers and  composition,  but we 
release “probes”  out to some stateless browser, with  which  we have no contact. At some 
future time, a probe may return‘ ; if it does, it may contain  information we requested, and 
we must at that time  re-connect it to the appropriate data element.  However, all probes 
look alike, so each  must  contain a denotive signal to allow us to identify the internal 
object for whom the probe  bears information. This identifier is the name of  the object. 

Having retrieved the object, the elicitation agent  attempts to verify the information that 
(supposedly)  belongs in it, using verification information  contained in  the object. This 
level of verification is relative to this object only  (e.g.: “X is supposed to be positive 
numerical,” “Y is supposed  to be  pure  text,”  a column of figures may  be  required to add 

’ In practice,  the  axiom  is  embodied in a  conversion  factor. 
* A planned  improvement  is  to  deduce  the  display  object  class  at  display  time  from the UO class. 

We emphasize may; the  network  might  go  down,  the  user  might  decide not to  reply,  etc. 
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up to a  given total,  etc.).  When  the agent fails to verify, it may continue the elicitation 
process  by pointing  out the error and re-requesting the information, perhaps suggesting 
corrections. Ultimately, an intelligent system could make “do-what-I-mean” corrections 
and present them to the informant  for verification. We continue to examine mechanisms 
for robust error detection and recovery. 

Having  completed verification of  the data, the elicitation agent  passes the object to a 
mediation  agent who attempts to reconcile it with  the interlingua-based object. There, it is 
validated against inter-language constraints based  on  the axioms  formed  during leveling. 
This  can  cause further rounds of elicitation if conflicts ares found in  information from 
different informants. For  example,  a receiving entity unable to take delivery at a location 
specified by the sending entity and agreed to by  the transport entity. A  robust general 
mechanism  should  be able to determine  who provided  the conflicting information and  re- 
elicit (using the reverse translation out of the interlingua) in a collaborative mode. This 
general corrective tactic is  useful  because it can deal  with unexpected errors. 

4 The Application 

The Border Trade Facilitation System  (BTFS) [13] is an agent-based collaborative work 
environment that assists geographically distributed commercial and government users 
shipping  goods across the US-Mexico border. This is currently a  complex, paper-based, 
error-prone process that often incurs expensive inspections and delays. In the BTFS, 
agents  mediate the creation, validation and secure sharing of shipment information  and 
regulatory documentation  over the Internet, using the World-Wide  Web to interface  with 
human actors. For each transaction, the BTFS coordinates several business entities and 
their agents, two  national customs offices, hundreds of data, and several non- 
communicating computer  systems. 

The required regulatory documents for each leg of the trip are numerous and bilingual. 
North American  Free  Trade  Agreement (NAFTA) requirements  have  complicated the 
documentation.  A typical package  prepared by a Mexican broker includes the  original 
invoice; the Shipper’s  Export Declaration; a  Spanish  language invoice called thefucturu; 
an import pediment0 (Mexican declaration document;  an  example  form rendered  in 
HTML is shown  in  [fig.  13);  an English  manifest and a  Spanish muni$esto describing the 
physical  nature of the shipment for transport; a  packing list, describing how  the shipment 
is actually  arranged  on  the transport; and  any of several possible Mexican regulatory 
documents.  NAFTA  documents must  be on file certifying the firm as a muquilu, and  each 
pediment0 must be registered by the owners to satisfy year-end material-balancing 
regulations.  The driver and vehicle must  be licensed and certified. The muquilus can 
consolidate several invoicedfucrurus under a single pedimenro. Shipment  into the  US 
involves several additional US import  documents.  The  documents are syntactically 
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Iniciar  un Nuevo Pedimento de  Exportacih 

Pedunento Consolidado? c? si 
.................. 

Fechs de Pnp: 27/5/d? No. Fdmento:~8776-700881 

Tlpo de Opersam: 2 [ A1 T.C.I 
AduanalSEC. 072 Fartm Monedn Exttanlen: ' 1  

~ Clave Pedzmenis: 

....................... .................... 

Bxpoltpdox N m b m  y Domidlie: 
Nombm Wire Cmponents S.R. de C.U. 

Domlnlh?: 1201 Parque Industrial  Ju6rez 
.......................................................................................................................................................... ._ 

FBdUII% (1) T0?478 
......................................................................................................................................... 

Fethw: 27/5/97 

F o r m  de Fsrtuaa&n: FmT------"------ 

S s l l o s  
Vdox  Comexial 

77538.72 

C6digo  de B a l m  Contribacioner: 

Obrenra~roncl: 

Totaler: 

E f M t l M :  0 

Otror : 

_ _  
.......................................... 
-I___ 

Wtsnta : 8776 Nwnbxe . J a i i i  Oo&alaz - 
RFC : GWR-560505gj f F l m  de agente : 

89 

111 I_-. 

Fig. 1. The Pedimento: In addition to the 57 separate  data fields on this form, note that  the section 
between the  horizontal bold lines, containing  fourteen fields, is one line item and can  be  repeated 
any  number of times (although practical considerations limit this to a few hundred). 
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distinct, although  there  is significant semantic overlap. For  example, the  total shipment 
value required  on  many of these documents is not necessarily given  the same  name 
between any  given pair nor  will  the  total always be  computed on the same basis; and there 
are at least two currencies involved. 

Agents  perform  four specific functions on  behalf of their user organizations: (1) agents 
elicit information  from informants; (2) agents translate information into and  out  of the 
central interlingua, thereby eliminating the  need for duplicate data entry; (3) cohorts of 
distributed agents  coordinate the  work flow  among the various  information  providers and 
monitor overall progress so that regulatory requirements are met prior to arrival at the 
border; (4) agents  provide status information to human actors and attempt to influence 
them when problems are predicted. In this paper we discuss functions (1) and ( 2 ) .  See 
[ 141 for a  more  thorough treatment of  the Standard  Agent class. 

We  perceived that any electronic system that was to enable maquila trade  would require a 

Fig. 2. The Maquifa Enterprise  Transaction:  Each  sub-object  is  a  separate  entity  with tens to 
hundreds of its own  attributes. 



central ontology  as  shown in fig. 2. Several  informants would  then be required to interact 
with this ontology  to  conduct  a transaction. Furthermore, the information  provided by  the 
informants  was  to  remain distributed for business, cultural, and political reasons. The 
ontological leveling activity consumed several hundred  person-hours. 

However,  once the maquiZu ontology  had  been explicated and embodied in  the 
interlingua, names  could  be  assigned  to links in generated  software that would  permit 
registration of information  passing  between the BTFS and  the human  informants through 
the  web  pages. The  process  of  using the interlingua during  system realization is: 

Step 1. Generate  a  template of  the form that will  be  used during elicitation. Currently, any 
mechanism that generates HTML can be used. Fig.11 is an  example. 

Step 2. Objectify the HTML using an automated  process attached as  a utility to the BTFS. 
A fragment of such  code follows; note  the “payment-date”  value  given  to the 
“name:” attribute of the “TEXTBOX’ object. This object contains the information 
that  will appear in the “Fecha de Pago” textbox  in pig.  11. 

(01p::make-object 
‘TABLE-CELL t 
:valign ‘TOP 
:components 
(list (01p::make-object 

‘PARAGRAPHS t 
:components 
(list  (01p::make-object 

‘TEXT t 
:visible-aspects  (list  “Fecha de Pago: “ ) 
1 

‘TEXTBOXES t 
(01p::make-object 

IIzF :name “payment-date” 
:size  12 
: old-value “27/5/97“ 
:current-value “27/5/97“ 
:preset-value “27/5/97” 
:instructions  nil 
J 
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Step 3: At elicitation time, using the  code created in Step 2, instantiate the object whose 
translation into HTML will  produce  the display of  [Fig. 11. The  automatically - 
generated "payment-date" object is shown in  [Fig. 31. 

Step 4. The instantiated object is given to an elicitation agent  as part of a form 
instantiation goal.  As part of the process of achieving that goal, the agent 
generates the HTML  for the  web  page  that recreates [fig. 11 for the  informant. A 
fragment of such  agent-generated  HTML follows. Again note  the explicit "name" 
attribute. 

<P><TABLE  BORDER=O  CELLSPACING=O  CELLPADDING=O 
WIDTH="100%"  HEIGHT="100%" 
name="date-&-pedimento-number-table@'> 

<TR> 
<TD  VALIGN=top  WIDTH="34%"> 

<P>Fecha  de  Pago: 
<INPUT  TYPE="text" 

NAME="payment-date" 
VALUE="27/5/97" 
SIZE=12> 

</TD><TD VALIGN=top  COLSPAN=2  WIDTH="63%"> 

Human Actors are people that inhabit the agency through an interface device and interact 
with agents to accomplish tasks.  Human actor objects are  temporary objects that contain 
an interface address, an interface object  that captures the display, data entry and control 
functions currently available to the person, and a persistent person object that holds 
personal data, passwords,  email address, and an account object that provides  access to 
past  and current workspaces.  A workspace object contains objects created and  stored  by 
the person  during work sessions. 

Agents and human actors have  access to resources such as databases, fax  machines, 
telephones, email handlers, and other useful services. Resource objects provide 
concurrency control and access protocols for agency  resources. Subclasses of the  resource 
class implement objects representing data bases, fax  machines, printers, email ports, ED1 
ports and other commonplace legacy devices in  the  agency environment. 

31 



;.:.' ,. ... 3 !  .. I ." Resamy " - 
!o("LRP's 9600 PPC"  :MCL-4.1 3095699948 TEXTBOXES 0 )  

Instance s l o t s  
FIELD: *<OLP:  :SINGLE-FREE-FIELDS 
CLEAR-IWSTRUCTIOWS-P : T 
CHANGED-P: NIL 
DCLOS: :OID: ! i l "LRP's  9600 PPC" 

HD DCLOS: OBJECTiKEY :TIHESTAMP : 49378744" : NIL 

\?$ > WRHE : payment-date" VISIBLE-ASPECTS : NIL 

UIEU-RS-ICON-P : NIL 
VIEU-VISIBLE-STRING-P: T 

UISIBLE?: T 
CURRENT-VALYE : "27,'~/9?" 

c.yp, cant' ' 1 OLD-VALUE: 

*x247CF46> 

:MCL-4.1 30956999481 

ke COLSPRW: NIL 
SIZE: 12 
HAXLENGTH: 150 

CLEAR-P : NIL 

. .  

HD 
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:?cL 
' 
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Fig. 3. The  actual  "payment-date"  object  (nested  several  levels  down  in the page  object)  generated 
when  the pediment0 web  page is automatically  generated for the  informant. 

Agency objects may  be distributed in  a network  environment to create a collaborative 
enterprise structure of interconnected agencies. An electronic commerce agency (ECA) is 
a specialized subclass of an agency that implements architectural features specific to 
electronic commerce applications. An ECA  has the additional attributes of transactions 
and organizations.  The transactions attribute holds a collection of open and closed 
transaction objects. The organizations attribute holds a collection of public  proxy objects 
pointing to agencies that represent trading partners. 

The BWS agent society comprises several federated ECAs  analogous to the  interested 
business entities. Each ECA is  populated  by  a heterogeneous collective of agents, each of 
which  is able to perform a fragment of  the information tasks needed to effect trans-border 
shipment.  Business rules are idiosyncratic, so an operational ECA  must be  tailored  and 
situated for each business. Constructing the ECA and  the agents that  make it up consists 
in specializing agents  from a set of standard  agent classes constructed for commerce. 
ECA classes are also pre-defined for the various  required roles: originator, receiver, 
transport provider, and import/export broker. 
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In addition to domain and task specialists, several varieties of housekeeping  agents 
perform  maintenance tasks for the  ECA. Security agents control access by  human actors 
to each  agency within  the  parent organization. A human actor logged into the ECA 
“inhabits” the agency for the duration of  the work session. An agent  handles all 
interactions with the human  actor. Task  agents initiate requirements  to  obtain information 
based on activated goals, monitor  the appropriate information sites to see  whether  the 
goals  have  been  achieved, and  take corrective or  contingency  measures when failures 
occur. Dispatch  agents allocate new transactions to the appropriate agents. Supervisory 
agents allocate work to task agents, deal  with rejected goals, collate agency-level data, 
and  respond to outside requests for task status information. Various agents incorporate 
reporting facilities for humans,  including  customs offices of both governments. 

5 Conclusions  and  Remarks 

The BTFS prototype  demonstrates a multi-agent  approach to coordinating a complex, 
knowledge-intensive  shipping process. We  have  demonstrated the following  agent 
behaviors: elicitation, mediation  with  a central ontology, negotiation, delegation, 
monitoring,  and  goal satisfaction. 

The  most  challenging aspects of integrating a diverse enterprise such as  border trade  are: 
(1) knowledge-intensive elicitation of form  information;  (2)  mediation and ontological 
leveling of information across multiple organizations; (3) knowledge  engineering in 
general; and (4) secure distributed object computing. 

Ontological leveling proved to be  a demanding  but effective strategy for centralizing and 
making coherent a diffuse and permanently decentralized operation. Current research is 
looking  at further automation of the realization process that produces  usable applications 
with demonstrable  formal properties. 
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The  Role of Conversation  Policy  in 
Carrying  Out  Agent  Conversations 
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Abstract. Structured  conversation  diagrams,  or  conversation  specifications, 
allow  agents  to  have  predictable  interactions  and  achieve  predefined 
information-based  goals,  but  they  lack  the  flexibility  needed  to  function  robustly 
in  an  unpredictable  environment.  We  propose  a  mechanism  that  dynamically 
combines  conversation  structures  with  separately  established  policies  to 
generate  conversations.  Policies  establish  limitations,  constraints,  and 
requirements  external  to  specific  planned  interaction  and  can  be  applied  to  broad 
sets of  activity.  Combining  a  separate  policy  with  a  conversation  specification 
simplifies  the  specification  of  conversations  and  allows  contextual  issues  to  be 
dealt  with  more  straightforwardly  during  agent  communication.  By  following 
the  conversation  specification  when  possible  and  deferring  to  the  policy  in 
exceptional  circumstances,  an  agent  can  function  predictably  under  normal 
situations  and  still  act  rationally  in  abnormal  situations.  Different  conversation 
policies  applied  to  a  given  conversation  specification  can  change  the  nature  of 
the  interaction  without  changing  the  specification. 

1 Introduction 

A: An argument is  a  connected  series of statements  intended  to  establish a 
proposition. 

B: No, it  isn’t! 
A:  Yes, it  is! It isn’t  just contradiction! 

Policy  discussion,  Monty  Python, 
Argument Clinic Sketch 

Software  agents  communicate  while  they  pursue goals. In some  cases,  agents 
communicate specifically in order to accomplish  goals.  We restrict our interest in  this 
paper to goals that can be described as information states, that is, information goals. 
We  discuss  agents  that  intend  to  accomplish  information  goals by communicating. 

Although individual speech  acts  have  been  well-characterized,  consensus on 
higher-order structured interactions has  not  been  reached.  There is little or no 
discussion in the literature of how to constrain the behavior of  an agent  during 
communication  in  response  to a dynamic  environment. 
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When a  set of communication acts among  two or more agents is specified as a unit, 
the set is called a conversation. Agents that intend to have a conversation require 
internal information structures that contain the results of deliberation about which 
communication acts to use, when to use them, whom the communications should 
address,  what  responses to expect, and what to  do upon receiving the expected 
responses. We call these structures conversation specifications,  or specifications for 
short. We claim that specifications are inadequate for fully describing agent behavior 
during interaction. 

Consider two agents who are discussing the location of a surprise party for  a third 
agent, who is not present. When  that agent enters the room, all discussion of the  party 
suddenly ceases. The cessation occurs because the first two agents understand that the 
third agent cannot receive any information that such a party is being considered. 
Conversely, suppose that the conversation is about a party in honor of the third agent 
and all three agents know the third agent is aware of it. Now, when the third agent 
enters the room, the conversation continues. 

Are the first two agents having the same conversation in  both cases? We claim the 
answer is “Yes, but they’re’ operating under different policies.”  In  both cases, they  are 
having a conversation whose essence is organizing the party. The conversation might 
roughly be specified to contain information exchange components (e&, to establish a 
set of possible locations), allocation components (“I’ll call these two restaurants, and 
you call this other  one”), and a continuation-scheduling component (“I’ll call you 
tomorrow  with  what I find out and  we’ll take it from there”). These are all matters that 
we expect to find in a conversation specification. On the other hand, the decision of 
whether to stop talking when a specific third party enters the room is based on  a 
mutually understood policy and might reasonably be  applied to any number of 
conversations, for example, negotiations about the price of a commodity on which the 
third agent is bidding. 

Historically the agent communication literature has used the word “policy” to refer 
to the description of  the structure of interaction between a number of agents, generally 
two but sometimes more (Bradshaw et al. 1997). The dictionary, however, defines 
“policy”  as “a high-level  overall  plan  capturing  general  goals and acceptable 
procedures.” This coincides with what we expect of a conversation policy: An agent 
using a conversation policy would operate within certain constraints while attempting 
to  satisfy  general  information-based  goals.  When  discussing  procedures and 
constraints of interaction beyond the basic structure of a  conversation, the word 
“policy” has connotation that we feel is more appropriately bound to the procedures 
and constraints rather than to the basic structure. For the latter, then, we will instead 
use the word “specification,” and  use the word  “policy” to refer  to the former. 

2 Policies  for  Interaction 

The  focus of our work is to create a mechanism for combining specifications with 
policies that constrain the behavior of an agent in order to generate conversations 
among agents. 
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We have  begun to design a  mechanism that uses  the specification’s description of 
input states and actions based on them and  the policy’s description of constraints, 
limitations, and requirements  together to determine an agent’s response to a message. 
Given a suitable mechanism, the specification and the policy  can be implemented as 
data objects. The specification defines the structure for the conversation,  and the 
policy  defines  the  acceptable procedures, rules, and constraints for the  conversation. 

We can interact with  and speak of agents  as intentional systems  (Dennett 1987). 
We  assume that agents are able to  emit illocutions and that illocutions can have 
perlocutionary  effect on other  agents  that  “hear”  them (Searle 1969). (We follow 
Searle in using illocurion to mean an utterance intended to affect the listener and 
perlocurion to mean  the production of effect on  the listener). This means  that an agent 
can  emit  information with  the intent of altering the information state of  some other 
agent, that the information  can be received by some other agent, and that receipt of 
this information  can  cause the recipient to be  in  an information state intended by the 
emitter. The emitter desires the recipient to be  in a certain state because the emitter 
believes  that  this either is or assists in achieving one  or more of its  goal  states. 

Conversation specifications are distinctly similar to KAoS conversation policies 
(Bradshaw et al.  1997). The specification dictates the transitions and outputs made by 
the agent in response to input. A  conversation  policy is a set of constraints on  the 
conversation specification that limit the behavior of an  agent beyond  the requirement 
of following the procedures and structures of the conversation specification. The 
policy object is  used  by  the mechanism to make decisions about  acceptable  courses of 
action  when  the conversation specification fails to completely  determine a course of 
action.  Lynch  and Tuttle said  it  well: “Our correctness conditions are  often of the  form 
‘if  the environment  behaves correctly, then  the  automaton behaves correctly.”’ (Lynch 
and Tuttle, 1989)  This  stems  from the constraint that IOA’s  cannot  block inputs, the 
automaton  is  permitted to exhibit arbitrary behavior when “bad”  or unexpected inputs 
occur.  What happens when  the environment doesn’t behave “correctly?” This is  where 
policy  applies. 

Policy differs from specification in that specifications describe individual patterns 
of interactions, while policies are sets of high-level rules governing interactions. It is 
possible for a class of conversation policies to have  subclasses. For  one policy to be a 
subclass of another, the subclass  must be more strict (more constraining) in at least 
one  attribute  and  no less constraining in  any. 

Our new  mechanism combines the policies and specifications to determine the set 
of conversations that can  be  generated.  When policies change in the midst of a 
conversation, the  goal  may become infeasible. In our  formulation, the conversation 
policy  does  not  specify the types of messages that can occur. It is made up  of 
constraints on  who  can participate, and  under  what  circumstances,  whether  sub- 
conversations  can  be  initiated  within  an  existing  open  conversation,  whether 
equivalent conversations can  take place in parallel with  the  same participating entities 
(e.g.,  an agent can’t carry  on two price negotiation conversations with  the  same entity 
w.r.t. the same object). We claim that issues of specification are orthogonal to issues 
of policy; specifications define the structure of interactions, while policies govern  the 
way interactions  are  carried  out. 

e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 

e 
e 
e 
e 
e 
e 
e 
e 37 
e 
e 

a 



3 Methods 

We developed  our current agent  conversation  mechanism  using the Standard  Agent 
Architecture  (SAA)  developed by the Advanced  Information  Systems  Lab 
(Goldsmith, Phillips, and Spires 1998)  at  Sandia  National Laboratories. The  SAA 
provides  a  framework  for  developing  goal-based  reasoning  agents,  and we are 
currently using  a distributed object system  that enables  agents to send each  another 
simple objects or  sets of information. We are using the Knowledge  Query  and 
Manipulation  Language  (KQML)  (Labrou  and Finin 1997) as our  message  protocol. 

Interacting with an  agent first requires that  the agent be able to correctly identify 
and respond to illocutionary messages. A situated agent in pursuit of goals must  be 
able to answer  two questions: To which, if any, of its current  goals  does new 
information  relate,  and  what  actions, if any, should  it  execute  based  on new 
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Fig. 1. A conversation specification that does not specify a 
variety of potential  constraints  on  the agent’s activities 

information  that  relates to a given  goal?  In  the SAA, the  primary structure that 
enables this  is  the agent’s stimulus-response table (SRT). An agent anticipating input 
of a certain type puts an entry into  its SRT, which  maps stimuli (by class or instance) 
to the appropriate action. Our  system currently requires messages  to  contain  an 
explicit  reference  to the context  within  which the SRT  entry was created. The 
reference is realized as the object identifier (OID) of the current conversation object 
that  gave  rise to the  message. 

When  an  input  arrives, the appropriate  SRT entry is retrieved and its  goal is 
undeferred  (having  previously been deferred, presumably  awaiting relevant input), 
which activates the goal. The  agent now determines how  the  new information in the 
context affects the  goal  and either marks  it satisfied, failed, or deferred or  continues to 
attempt  to satisfy the goal. When satisfaction of  the  goal requires a  speech act, the 



agent creates an utterance, delineates the context, embeds the context signature in  the 
utterance, attaches the  goal  to  the context, places  the entry in the SRT, defers  the goal, 
and executes the utterance. In short, illocution is a deliberate act that creates an 
utterance and sets up  an  expectation of the  response  that  the  recipient  will  make. 

To engineer  a conversation, the entire set of context descriptors of interest is laid 
out  as  a set of subgoals, each  of  which  is satisfied by gathering specific information. 
We have  automated the construction of  an utterance from a context, the updating of 
the context to reflect the  new  information  conveyed by the input, and  the connectivity 
that enables the utterance and the input to refer to the same context. Specialized code 
is written to construct goals, execute  side effects, maintain  the  SRT,  and so on. 

Composing speech acts in a theoretically predictable fashion is  more difficult; this 
is the motivation for creating a structured way  of merging specification and  policy at 
run  time  to  get  a structured interaction that is forced  to  remain  within  certain 
operational boundaries. 

In our current mechanism, policy  is  embedded  in  the conversation mechanism as 
part of the design. A policy  change,  for  example, that an agent  should institute a 
timeout and ignore all messages  responding to a particular request after the timeout 
expires, would require reengineering the conversation.  The  mechanism would  be 
much  more maintainable given  an explicit policy object that  could just be  changed  to 
reflect the fact that there’s now a timeout. Our essential thesis is that policies and 
conversation specifications should be independent so that conversations  could be 
switched  under the same  policy and policies could  be  changed  without  changing 
existing conversations. 

4 Conversation policy 

Consider the conversation in Figure 1. It describes  a session allowing  agent A to 
determine  agent B’s identity, offer B a  choice of services and ascertain B’s selection, 
and perform  a task  based  on  the selection. Describing the conversation is generally 
simple for such  things:  when a  request  or assertion comes in, the agent deliberates, 
returns  information to the initiator, and anticipates the continuation.  The  two 
participants are responding to one another  in turn, barring interruption, retransmission, 
or  communication failure. There is no  representation of what happens when the 
conversation is interrupted or when  an agent retransmits a message. These issues are 
matters of policy  that  must  be  dealt  with  separately. 

KAoS conversation “policies” enable definite courses of action to be established 
and fail-stop conditions to be dealt with (Bradshaw  et al. 1997). They also imply 
mechanisms for initiating and concluding  conversations. Specifications play the 
crucial role in agent  communication of providing structure, but they do not, for 
example,  describe  whether  a  discussion  can be postponed, or, if so, under  what 
conditions  or  for how  long. Indeed, KAoS conversation “policies” appear to concern 
matters of conversation specijcution, fundamentally  how  to  respond to input  given  the 
current information state, rather than matters of conversation policy, such as what to 
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do when interrupted, whether the conversation can  be postponed, or whether  there  is a 
time  constraint  on reaching an  end  state. 

Policy issues are  important.  One constraint imposed  by the policy in Figure 1 is  that 
it requires turn-taking. If agent  A receives several messages in a row,  it may  respond 
to each in turn without realizing that, say, B’s third message was sent before  A’s 
second  response. If agent  A  cannot detect the violation of the turn-taking policy, it 
might  consider the second  and third messages in an  outdated context. A similar 
situation  could occur if several agents  were communicating and one were speaking  out 
of  turn. Without policy, designing  a  mechanism to deal with these violations means 
that a conversation specification that enforced turn-taking and  one that  merely  allowed 
it would be  two different things that would  need to be  maintained separately and 
activated separately by the agent. Furthermore,  designing them into a system that had 
no notion  of  turn-taking  would  require  that  every  state/action pair of  every 
conversation specification be examined to see what should now happen if turn-taking 
is violated. At worst, accommodating  a single policy issue doubles the number of 
conversation specifications an  agent might be called  upon to employ. 

Examining constraints immediately leads to ideas for policies that replicate familiar 
patterns of interaction, such as a  forum  policy or a central-point-of-contact policy. 
Different  classes of states,  changes in context,  and  the  particular  protocol of 
communication used  are independent of  the conversation policy, although  some  make 
more  sense  in  one policy or another. The web  page  and information-state context, for 
example, make the most  sense in a 1:1 turn-taking policy when dealing  one-on-one 
with a number of individual humans. KQML, in contrast, has many performatives that 
support  broadcasting to a group of agents  involved in the same  conversation. In 
practical terms we  may  end up  having to constrain which policies can  be  upheld  based 
on  communication details. 

An explicit representation of policy also enables  an  agent to express the policy 
under  which it is operating. It is easy to transmit, say, a  policy  message outlining the 
level of security required  for any  of several possible  upcoming  conversations  for 
which  the recipient already  has the specifications. In contrast,  without policy, the 
“secure”  version of each  conversation specification needs  to be transmitted anew.  If 
two  agents  agree on a  policy  at  the  beginning of a  conversation, the amount of 
communication required to determine  a  course of action once  a violation has occurred 
can  be  minimized. 

The structure of the conversation  depends thus  on  the nature of the  information  and 
how  this changes the state of the conversation. By abstracting to the  policy level, we 
enable a set of constraints to support the execution of several conversations, as long as 
they  have  the same kinds of states and the same kinds of frunsirions, i.e.,  the  nature  of 
information  in a state does not matter as long as there is a common  means  of  mapping 
input and state  to  another state in the conversation. If the conversation can be 
described as a collection of states with transitions between  them, then  the  conversation 
policy  should  be describable  as a form of transition function  operating on  the current 
perceived state of  the  world  and  the communications the agent is  receiving. 

This abstraction is powerful  because the individual conversation policies can be 
combined  with specifications to create several classes of conversations, all similarly 
constrained. The constraints the framework  imposes are then  the conversation policy; 



and  specializations of  the  conversation  policy  framework  methods  are 
implementations of particular transition functions, which operate on particular classes 
of conversations. These  conversation policies would support  transformations by our 
mechanism, each of  which defines a range  of possible specializations within  the high- 
level constraints. Radically different behavior  between  two sets of conversations 
would  imply radically different frameworks,  just as the difference between context- 
free grammars and regular languages  implies  a greater difference in both  the  nature  of 
states  and  the transition function forms  of finite automata and  stack  machines. 

5 Example 

Consider the specification in Figure 2. Agent A,, the announcer,  broadcasts  a message 
to a  group of agents A, ... A, and gathers responses  from the group  before continuing. 
By itself,  however, this specification  leaves  many  questions unanswered-for 
example, if some agent  doesn’t  respond at all, or  responds more  than  once in a cycle, 
what  should agent  A,  do?  These  questions may  be asked of  many specifications, and 
may  have different answers  even from  one interaction to the  next. 

Conversation  Policy 
turn-taking 

timeout-loses-turn 
timeout  after 1 
interrupt  postpones 

Announce 

Timeout or 

Responses 

Fig. 2. Policy  and  specification as seen  by  the  announcer.  The  policy  allows 
conversations  to  be  postponed,  which  the  conversation  specification  need  not 
explicitly  state. 

The policy  in Figure 2 provides  answers to some questions of this  sort.  The policy 
enforces turn-taking, meaning that agents in the group  have only one  opportunity to 
respond  to  each  broadcast. If  they do  not respond  within one minute of each broadcast, 
they lose the chance to do so during that turn. This  might  be the case if broadcasts 
were frequent. If  more pressing matters  come up during  a session, the discussion is 
postponed (perhaps leaving messages in the announcer’s  queue to be dealt with later), 
but it can be expected that  the  session  will resume at some future time. 

How might  we tailor policies to get usefully different  behavior?  For policies 
concerned  with fault-tolerance, the same policies could be used in many conversations 



to  handle the same  expected  problems,  but  policy  can  also  be  used  to control 
conversations during  the course of normal  interaction as well. 

Suppose we combine the specification above with a policy that does not enforce 
turn taking, but rather says that newer  messages  from an agent take precedence  over 
older messages. The  announcer is forbidden  from  sharing  message data among group 
members,  and the time  allowed  for  responses to each  broadcast is 24 hours. 
Combining the policy and specification with a sales announcer  produces  a silent 
auction. If  the  policy were  replaced with one that had a time limit of a  few  minutes 
and required the announcer to rebroadcast new information to the group, the same 
specification could  be  used to  produce an English auction. Using different policies 
with the same  specification  as  a  foundation  can  produce  a variety of desirable 
behaviors  with  minimal changes to the agent’s code. 

6 The Impact of a  Policy  Mechanism 

In this section we discuss the relationship between  conversation  specifications, 
policies, and  an operational mechanism. We show  how  policy information can  be  used 
to direct the action of an  agent  without  reference to the conversation that agent is 
having. 

Consider  a set of statejaction pairs with  the  property  that  when an  agent  perceives 
the  world  to  be in a  given state and executes the corresponding action, the  world  state 
that results is  described by the “state” component of one of  the pairs (I/O automata fall 
conveniently close to this). States with no  corresponding actions are end  states.  Such a 
set embodies no  notion of intent, but  an agent can  commit  to achieving  one of  the  end 
states by executing the actions. The point of  an action specification is to explicate a 
series of acts that  will result in one of a known set of  states. 

A  conversation specification is  such a set of state/action pairs; the specified states 
are information states and the specified actions are speech acts. A  conversation 
specification explicates a series of speech acts and their triggering states that will 
result in a  one of a known set of information states. An  end state may  be a goal state, 
i.e., a state whose achievement is  the agent’s intent, or a state in  which  the desired 
state is  known or believed to be either no longer desirable or unachievable. 

The conversation  specification may specify  states  and  actions that are never 
realized; e.g., failure-denoting states or error-correcting actions.  All actions and states 
are  only  partially specified, in  the sense that  none  specify  the entire state of the  world, 
because the number of features that might be observed at execution time  is infinite, 
and only  a  few of these are perceived  at specification design  time as having any 
material effect on  movement  towards  the  goal. 

For  example,  a plan that includes  forming  a team might specify neither who is to 
fill  every role on  the team, though a specific agent must  be cast in each role, nor in 
what order the roles are to be filled, because the specific order  has  no effect on the 
goal  state. 

Neither the conversation  specification  nor the policy  controls the thread of 
conversation; the specification specifies the invariant part of the conversation’s course, 
and  policy specifies constraints on behavior,  not the behavior itself. Control falls to 
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the  mechanism that combines the  specification object and  the  policy object to arrive at 
an executable action at deliberation time.  In  the  remainder of this section, we examine 
team formation with respect to what  is determined. by  the conversation specification 
and  what  is  determined  by  policy. 

Assume  that  an agent is  in a state where  will listen until it receives a message  from 
another agent.  When a message arrives, the agent’s policy  is  to select and commit to 
achieve  one of  the  end states of a particular conversation  specification; in other words, 
the agent’s policy is to have a conversation when contacted. Leaving aside for the 
moment the question of how  the agent  makes the selection, assume  the agent receives 
a message  asking it to commit to achieving  a goal  and  that  it selects a  conversation 
specification wherein it will inform the requester that it has committed if it commits 
and that it will not  commit if it doesn’t. This  could be a matter of policy; suppose 
there were  many agents available and  this  was  known to the agent. The  agent might 
reason  that  the best policy  would  be to report only  when it could commit and to keep 
silent otherwise, in order  not to use bandwidth. 

Now what  happens  when  an  agent  achieves a goal to  which it has  committed? 
Should the agent report satisfaction to  the requester, when  there  is one? If this  were a 
matter of policy, it  could  be  turned on or off as overarching issues (security, priority, 
traffic levels, etc.) dictated and  overridden as needed by specific  policy overrides from 
the  requester. 

What  should the agent do when it is  asked to achieve a goal it believes it cannot 
achieve by itself? It might be  the agent’s policy to refuse  to  commit  and  to so report. 
An alternative policy  would  be to attempt to acquire commitments  from other agents 
to assist. This would  begin  the  team  formation  phase. 

When the agent  has  acquired  commitments  from  agents whose combined effort it 
believes can achieve the goal, it builds the  team roster of  agents {A,, ... , An},  marks 
the  team formation goal satisfied, and ends the  team  formation  phase (this ignores the 
issue of whether everyone on  the  team  must believe the  team  can achieve the  goal in 
order to commit). It might be  the case that the agent must  form the team  within a 
given  time period; what the agent  should  do when it does  not  receive sufficient 
commitments within  the allotted time  is a  matter of  policy. A reasonable  policy  would 
be to report to the original requester that  the  goal  is  unsatisfiable. This  can be enforced 
at a high level, that is, whenever the agent  has committed  to  achieving a goal, and  the 
source of that goal is another agent, the agent must  notify  the  source agent as to the 
achievement or non-achievement of that goal. The  agent holding a team roster for a 
given  goal  constructs a joint persistent goal  (JPG)  (Cohen and Levesque 1991), 
allocates the subgoals  (assume the goal is linearizeable so that allocation is 
deterministic) and sends  each  subgoal and  the JPG to  the appropriate team  member. 
The  JPG contains a  statement of the original goal  and  the  team  roster.  When  an agent 
Ai has  achieved its subgoal, it multicasts this fact  to the rest of  the  team using the 
roster in  the JPG. Here, policy to notify  only  the requester must be overridden by JPG- 
specific policy.  Every  team member now believes Ai has achieved its subgoal.  Once Ai 
believes that every team member  has achieved its subgoal,  it  believes  that  the  JPG has 
been satisfied and  it multicasts this fact to the rest of the  team.  At this point, Ai 
believes that every team member believes  that  the JPG  has been satisfied and  is free to 
leave  the  team. 
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7 Conclusions 

A conversation policy must be established so that the communicating  agents  (who 
may have differing languages)  have  a  common logical and contextual structure for 
communicating.  This  allows  each  agent  to establish predictive models of one 
another’s  behavior in response to information and to plan and reason  about the 
outcome of conversations with  the other agent. Each agent  can establish this model 
based  on  information  that  another  agent  can  perform  a  certain  conversation 
specification  while  conforming to certain  requirements. 

We  advocate  a separate conversation policy structure that embodies the constraints 
that will be enforced  while  a  conversation is going on-using a  conversation 
specification as a  template or model.  A participant in a  conversation  must have  some 
means of determining  whether  events that transpire during the conversation  bear on 
the realization of its goals. It is relatively straightforward to specify the normative 
events in a conversation; the speaker intends  to  have engendered  a specific state in the 
listener, and  the normative  response  types are limited. On the other  hand, it is not 
generally possible to  specify all the exceptions.  Even if we could, the necessary 
responses depend  on states of  the environment,  not states of the conversation. To take 
the state of  the environment into consideration, a policy  must  be  able  to constrain the 
behavior of virtually  any  conversation  specification  to  which it is  applied. 

8 Future  Developments 

It would  be useful to  define and prove certain formal properties of policies when 
combined  with specifications, for example, 
1. Is the  question of whether a  conversation  conforms to a given conversation policy 

2. Does  conversation X conform to some  conversation policy, and if so, which  one? 
3 .  What is the maximally  confining  policy to which  a  set  of  conversations 

conforms? 
4. Will  the conversation  generated  from  a specification terminate when following  a 

particular  policy? 
5. Under  certain circumstances,  a policy  may  render  given specifications impossible. 

What  is  the  minimal set of constraints that can  be established that  will still allow a 
set of conversations to take  place? 

6 .  Given a policy  that has the potential to render  a  conversation impossible, what 
should  an agent do? 

Consider for a  moment the agent  as  an  I/O  automaton  (IOA) (Lynch  and Tuttle, 
1989). The IOA’s I/O table specifies the agent’s behavior.  The  IOA’s input column 
describes  agent’s  information  states.  These  states  can  be  entered as an  agent 
internalizes information in messages it has  received (i.e., as those  messages  have 
perlocutionary effect). The  agent then executes the specified internal and external 
actions specified by the right-hand side of  the automaton’s  I/O table. This  formalism 
has  some  appeal  because it makes  a very clear distinction between actions under 

decidable,  and if so, how  can  this  be  tested? 
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control of  the automaton and those  under control of the environment and allows  a 
readable  and  precise  description  of concurrent systems. 

Analyzing collections of speech acts in terms of YO automata  would  be possible if 
it were not  for the dependency of the proofs  about the IOAs on their being input- 
enabled. Agents that filter their stimuli before taking action or  replying  do  not  meet 
this requirement, so the  applicability  of  the  IOA  theory  is  questionable. 

A formal  theory  that  establishes  conversation  semantics,  describes how the 
semantics of individual  speech acts contribute to conversation, and allows us to 
demonstrate certain characteristics of combinations of specifications and policies may 
or may  not be useful. When discussing  a system  whose purpose is  to deal with  the 
unexpected,  it  may be more  reasonable to engineer  a  policy that provides  some 
reasonable capstone when  an unanticipated problem  arises. Engineering  conversations 
that meet certain requirements,  dynamically  generating policies and specifications 
based on beliefs and intentions, and  modifying  conversations  based  on  changing 
constraints may allow  productive  agent  behavior  even in  the absence of a  complete 
theoretical description. 

9 In  Context 

Throughout these papers we  see two common  issues  being  addressed: by what  means 
can  an agent intend to have, and  then have,  a conversation, and  by  what means can  an 
agent  manage the process of having  conversations in a  dynamic  environment?  Two 
recurring subproblems are declaring  behavioral  models for an agent’s  own use  and 
transmitting these models to other agents; agents need  to  be able to  express the 
following in  both internal and external settings: “This <conversation-spec> is 
the conversation I want to have” and “This <conversation-policy> is the 
policy I want to follow.”  In this paper we have labeled  these structures conversation 
specijications and conversation  policies, respectively. 

A primary question roughly separates the  papers  in  this  volume  into two categories: 
Are issues of specification and policy to  be  addressed by a single structural form  that 
unifies specification and  policy (Category l), or by two separate structural forms, one 
for specification and one for policy, that are somehow  composed during the conduct 
of a  conversation  (Category 2)? We are in category 2, having explicitly proposed  a 
policy  object to be communicated among conversing  agents. 

An essential question, approached by some authors, but  not genuinely  disposed of, 
is:  what, exactly, is gained by having two structures? Although efficiency, complexity, 
and realizeablility have been used as motivators, we’d like to see a  formal approach 
that enables decisions of where a particular aspect of  discourse should be represented 
and, in particular, how  such decisions are realized  when  policies  and specifications are 
composed  during a conversation. 
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Abstract 
There  are  currently two proposed  standards  for  agent  communication  languages,  namely,  KQML  (Finin, 
Lobrou,  and  Mayfield 1994) and the FIPA  ACL.  Neither  standard  has yet achieved  primacy,  and  neither 
has  been  evaluated  extensively in  an  open environment  such as the Internet.  It  seems  prudent  therefore to 
design a general-purpose agent communications  facility  for  new agent architectures  that  accommodates 
many  agent  communications  languages. In this  paper  we  exhibit the salient  features of an  agent 
communications  architecture  based  on  distributed  metaobjects. We are primarily  concerned  with the 
pragmatics of  agent communications  using  objects  rather  than  agent  communications  languages  per  se. We 
are  particularly  concerned  with  agent  communications in the  open  Internet  environment.  Our  architecture 
captures  design  commitments at a metaobject  level,  leaving  the  base-level  design  and  implementation up to 
the agent  developer. The  scope  of the  metamodel  is  broad  enough to accommodate  many  different 
communication  protocols,  interaction  protocols,  and  knowledge sharing regimes  through  extensions to the 
metaobject  framework. We conclude  that  with a powerful  distributed  object  substrate  that  supports 
metaobject  communications, a general  framework  can  be  developed  that  will  effectively  enable  different 
approaches to agent  communications in the same  agent  system.  Moreover, we explicate some  seeming 
peripheral  issues to ACL  (e.g.  authentication,  integrity,  reasoning  and  memory)  that  are  actually  critical to 
the concerns of agent  communications  and  that  certainly  impact effective communications in an  open 
environment. 

Keywords: agent  communication  language,  multiagent  system,  metaclass,  metaobject  protocol, 
distributed  objects 
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1 Introduction 
Communication  among  autonomous  asynchronous  agents  is an essential  function in network-based 
multiagent  systems. There are  currently two proposed  standards for agent  communication  languages, 
namely,  KQML (Finin, Labrou,  and  Mayfield  1994)  and  the  FIPA  ACL.  Until a standard  emerges, an agent 
designer  must  accommodate this uncertainty in agent  designs.  One  approach  is to exploit the  considerable 
syntactic  commonalities  between the two,  but  this  can  produce  implementations  with  serious  semantical 
problems, at least  from  the  perspective of the  speech acts underlying  both  languages.  Moreover,  both 
languages  have  inherent  problems  with  semantics  based  on  modalities that are not  supported by the 
components  that  interface closely with  the  language,  primarily  the agent’s deliberative  mechanisms  and  its 
implementation of ontologies in an agent’s  long-term  memory.  Unless the agents  implements a belief, 
desire,  intention  (BDI) architecture (georgeff,  et  al). the semantics of objects  communicated  through 
KQML  or  the  FIPA ACL is  limited to modal  propositions  and  cannot  be  readily  interpreted by another 
deliberative  architecture. 

Our  design  philosophy  is to develop  a general  object-centered  framework  that enables programming of 
multiple  protocols  for  communication  and  interaction  alongside  multiple  approaches to deliberation  and 
action  (of  which  BDI  is  an  instance).  Figure 1 shows the general  architecture for agent  communication, 
discussed  in  detail in subsequent sections.  The  components  are: (1) the  send-object  protocol  that  provides a 
standard  interface  for  remote  communication  of  objects; ( 2 )  a message  object  protocol  that  interprets  the 
structure of the message  object,  enabling  multiple  communication  protocols  (e.g.  KQML,  ACL); (3) a 
metamodel  that  manages the update of remote  agent  models  and the local agent’s model;  and  (4)  the  model 
of local  agent  and  models of remote  agents. The framework  includes  an  infrastructure  for  agent  modeling 
because  communication  among  two  agents  requires  both a common  message  format  and a shared  ontology. 
Since  agents  may  be in different states, communications  is  mediated  through the receiver’s  model  to  ensure 
common  semantics. The agent’s self-model  contains the deliberative  mechanisms  and  knowledge  bases  that 
are  exclusive to itself. The self-model has control  over  the  operations of the remote  agent  models 

Restricted  Protocol 
Interface 

Agent  Models 

a-334 ,* 
/ 0 

messages 
-....) Send 

0 - 
+ Object 

4 Protocol 4 
h a-124 

self 
Distributed Object  System 

Figure 1. Distributed  Object  Agent  Communications  Architecture 

through  the  metamodel. We assume  that the agents  communicate  both the structure and  the state of their 
models to one another  for the purpose of collaboration by trading  objects.  The entire architecture  is  based 
on the  object  framework  concept. The classes  and  methods  comprising the architecture  are  designed to be 
specialized  with  subclasses  and  methods  that  implement the agent  designer’s favorite communication, 
interaction,  reasoning  and  representation  mechanisms.  Our  objective  is to provide  both a research  tool  for 
evaluating  new  regimes  and a practical  system  capable  of  operating in heterogeneous  environments  such  as 
the  Internet. 
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2 Distributed  Objects 
Our  approach to the  design  and  implementation of network  agents  relies  heavily on a  comprehensive 
distributed  object  subsystem  implemented in the Common  LISP Object System  (CLOS).  Agent designs 
involve  compositions of objects  and  metaobjects,  many of which  are  intrinsically  capable of distribution in 
a network  environment.  Communicating  among agents that  are  described as compositional objects has  a 
natural  interpretation;  it  is  an  instance of message  passing  among  objects  and as such  has a well  understood 
syntax  and semantics. A distributed  object is an object  that  has a commonly-known  identity  and  is 
represented by some  form  of  surrogate  object in multiple address spaces around the network.  Distributed 
object surrogates are of three  primary  types:  proxies,  copies,  and replicants. (There can also be a fourth, 
hybrid  type  which  combines  features of the main  three.) 
Proxies are  pure  surrogates. A proxy  object  “stands in” for a real  object  that  is  located elsewhere.  The 
proxy  accepts  messages  destined  for  its  “real” object, delegates  them to the real  object for processing, 
receives  the  result of the message,  and  passes  the  result  along to the original  message  sender. Proxies are 
very  handy for projecting an object’s capabilities from  its  current  location to other places on a network. 
They are immune  to  update  issues, since any  change to a real  object  will  be  immediately  reflected in the 
responses of all of its  proxies.  Proxies are the  primary  object  distribution  mechanism of CORBA [ref 
http://www.omg.org]. The downside of proxies, of course,  is  that  every  message sent to a proxy invokes a 
network  transaction. 

Copies are just that; an  object  is  copied  and  sent  from one network  location  to another. Pure copies keep no 
information  about  their  “source”  object  (and  vice-versa) so they cannot be  updated  if the source object 
changes.  But of course,  if  the  data  and  functionality  contained in the copy  is  needed  frequently at  another 
location, this may  be  an acceptable price to pay to avoid  the  network  overhead of  a proxy. 

Replicants are copies  that  keep  track of their source (and/or  vice-versa)  such  that  they  can  be  updated if 
their  source  object  changes.  Replicants thus provide the best  features  of  both  proxies  and  copies: 
information  currency  with  low  network  overhead, as long as accesses are  more frequent than  updates  and 
we are  willing to pay the price of more  bookkeeping. 

Hybrid objects  can  exhibit  proxy, copy, or replicant  behavior  on a slot-by-slot  basis.  Hybrids are probably 
the most  useful  form of object  distribution in general  because the distribution  mechanism choice can  be 
made at a fine level  of  granularity. 

In our  discussion of copies  and  replicants  above,  we  omitted  one  nasty  detail: objects in a modern 
inheritance-based  dynamic 00 system  [in  which class and  method  meta data exist at runtime] never exist 
alone.  Objects  themselves  are  but the tips of two  massive  icebergs:  an  inheritance  graph  and a  containment 
graph. In order to truly  copy an object  from  Point A to Point B on a network,  we  must  also  copy its 
inheritance graph-its class,  and  its  class’s  superclasses,  and  methods  thereof-and  we  must also somehow 
distribute  any objects it references or contains. In an 00 system  like  C++  where classes are not first-class 
objects, this can  only  be  done  if  the  requisite classes and  methods  already exist on the destination machine. 
But in an 00 system  like  CLOS  where classes and  methods  are first-class objects,  we  can treat the classes 
and  methods  themselves as merely  more  objects to be  copied  and  copy  them  on-demand,  using the same 
mechanism  we  use to copy  pure  instances. It  is the classes and  methods  that  we  refer to with the term 
metaobjects. 

Distribution by proxy  is  popular in the  distributed  object  community  because  it  is  immune to update 
problems  and  it does not  require  that  classes or methods  be  present at the target  node; it  is fundamentally 
based on delegating  messages  to a remote “real” object.  But as we’ve  already  noted,  the performance 
penalty for such  delegation  can  be  large  and sometimes must  be avoided. Therefore  distribution by 
transporting  whole  copies of objects  is essential, especially  when  moving  an agent on a network or sharing 
ontologies  among  fixed  agents.  But copying objects also requires  copying class lattices (distributing class 
lattices by proxying  them  usually  won’t  work)  and  methods.  And  even  if the objects we  move are pure 
copies (no updating  expected), we must  usually transport their class lattices  and  methods as replicants, not 
pure copies, because if a class  definition or method  changes,  the  changes  must  be  promulgated. This is  why 
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most  distributed  object systems either make no attempt  to copy or replicate objects or do so in only a 
limited  fashion.  Solving the replicant  problem in general  is quite dificult, especially in static 00 
languages.  It gets even  worse: in CLOS,  classes themselves are instances of metaclass  objects.  If  any 
transported class is an instance of  a special  metaclass,  the  metaclass  must be transported also. Fortunately, 
the replication  problem  is soluble in CLOS because of its  extensive  introspective capabilities and  its 
metaobject  protocol. 

The  actual  movement of  a CLOS object takes place in two  stages: serialization and  materialization.  To 
serialize  an  object means to flatten it into a sequence of bytes  that  can  be  used to reconstruct the object  at 
another  place. In CLOS, the essential  information  that  must  be  serialized  is the object’s class name  and  its 
slot  contents.  Serializing  an  object  is  relatively straightforward, provided we are carehl to maintain 
referential  integrity among slot contents, and  to  recursively serialize any other objects that may  be 
referenced in its  slots. Once  a  sequence  of bytes  is  produced,  it  is  transmitted  over the network to the 
receiver. 

At  the  receiver,  materialization  begins. The receiver  looks at the class name of the  incoming  object  and 
checks to see  if  that class is  present  locally. If not, it asks the sender to serialize and transmit the  class 
metaobject.  (When the class metaobject  is  materialized at the  receiver, the receiver  will  check  to  see  that  all 
its  superclasses  and  metaclasses are also present  and  may  recursively  request their transmission as well.)  If 
the class is already  present at the  receiver,  the  receiver  may  check  its timestamp, hashcode, or some  other 
version-maintenance  identifier to ensure that it has the latest  version.  If  not,  it  may  request  that  the  sender 
transmit the latest  version of the class. Methods  and  generic functions are also  transmitted or updated  along 
with  the class metaobjects  that specialize them.  Finally,  once the receiver is satisfied that the object’s 
requisite  infrastructure  is  present, it simply allocates space for an object of the appropriate class and  fills in 
its  slots  with the original  serialized data. 

The  above  is  the  standard “pull” mechanism  for  demanding  an object’s infrastructure  when the object  is 
pushed. Objects that are replicated,  not  merely copied, can  also  be  updated on a “push”  basis by the sender 
when  necessary. 

Proxies  are still very  useful in  many cases and  can  be  implemented in CLOS much  more  dynamically  than 
in CORBA:  no a priori  knowledge of allowed  messages  is  needed.  Any  message  sent to a proxy  that  the 
proxy  does  not  immediately  understand  can  be  automatically  delegated to the proxy’s “real”  counterpart by 
overriding the CLOS  no-applicable-method  mechanism.  New  messages  can thus be  created  on-the-fly  for 
real  objects  and  any  proxies to  those real  objects  can  immediately take  advantage  of them. 

We have  demonstrated  that there is no inherent barrier to  providing copies, replicants, and  proxies as 
distribution  mechanisms for objects and  metaobjects.  Nevertheless, the reader  will  have  noted  we  have  said 
nothing  yet  about the security implications of such  wide-open  distribution.  Even  though our basic 
mechanism  is  quite general, it is  usually  necessary to impose  some  limitations  on  its  power  because  of 
security  considerations. The architecture discussed in subsequent sections addresses  some  security  issues. 

Our distributed  object substrate provides a general  purpose  communications  mechanism capable of 
implementing  many  different agent communication systems, including  KQML.  However,  most  standard 
distributed  object systems are  not  powerful  enough to implement  the features needed to provide  security, 
shared  knowledge/ontologies  and agent modeling.  [JAVA  and CORBA discussion  here]. 

3 Autonomy,  Identity,  and  Integrity 
Autonomy  is a cornerstone in the modem specification of intelligent  agents.  Roughly speaking, autonomy 
implies an agent acts  without the direct intervention of humans or others, and  have  some  king of control 
over their actions  and  internal state (Castelfranchi 1995). Our operational  definition of autonomy is: 

1. An agent is a locus of unique,  persistent  identity 
2. An agent is a unique  locus of self-control 
3. An agent is a unique  locus of reasoning 
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An autonomous  agent  will  be  self-determined  with  respect to its  beliefs,  goals  and  actions. It will  be  known 
to other agents by a unique  name  that  identifies it as an independent  entity  within the agent  community. In 
a multiagent  collaborative  system, agents rely  on the autonomy of  one another to make  certain  inferences 
about  the other agents.  Casterfranchi (1995) identifies two distinct classes of  autonomy:  stimulus  autonomy 
and  executive  autonomy. A message  from another  agent qualifies as a stimulus to the receiver. An agent 
may  choose to respond to a stimulus or not to  respond, depending  on the current state of the agent’s 
deliberations.  Executive  autonomy requires that  an agent cannot  be directly motivated  with the goals  of 
another agent unless  the  agent  decides  that the goals are congruent  with  its  own.  Under  no  circumstances 
should an agent attempt to satisfy a goal object obtained  directly  from  another  agent  without  first 
evaluating  and  criticizing the goal  within the  context  of its  own  knowledge  state  and  goals. 

Implementing  stimulus  autonomy  and executive autonomy  requires the design of a safe communications 
protocol  that  maintains the integrity of the agent  while allowing  effective  communication. We propose  that 
the functional property of agent integriv is a necessary  element  for agent autonomy.  Integrity  is  an 
operational  concept  that seeks  to protect the agent’s internal structures from  direct  manipulation by another 
agent,  including  human  actors. An agent  cannot be  self-determined or self-controlled  unless it  is impossible 
for  others to directly  influence  its  beliefs  and actions unbeknownst to the  agent.  Distributed  object 
protocols  can  introduce  vulnerabilities that undermine agent integrity. The Nefarious  Neurosurgeon of 
Dennett ( 1  984) introduces  electrodes  into the brain of the victim  Jones  and  controls  his  every thought in an 
undetectable  manner. An agent that  can dispatch an arbitrary method  invocation on  an object  argument in 
the address  space  of another  agent  is capable  of direct intervention in the agent’s  deliberations  and actions. 
Agents  operating  within a multiagent  system that does not  restrict the remote  method  invocation (RMI) 
process  cannot  believe in a distinct  locus of identity  and  control  for one another,  since  control  of  an  agent 
by another  nefarious  agent is possible.  Integrity  mechanisms  force  RMI  to  implement a restricted  protocol 
that  cannot address arbitrary  objects  and methods within an agent  program. In its  full  exposition, this 
problem  is  identical to security  concerns  identified for mobile agents (Chessman 1994, Vigna 1998). Since 
our agents are composite  objects  with  full support for object  distribution,  they can potentially  send one 
another  any of their  structural  and  procedural components, including the entire  agent  corpus of the sending 
agent, to function as an  endosymbiont  within  the  receiving  agent, for example’ . Unrestrcited trading of 
metaobjects, i.e., classes  and  methods  can  pose a serious threat to the receiver  agent. An agent  must  have a 
restricted  object  trading  protocol  that  implements a criticism  policy to protect  it  against  dangerous  foreign 
objects. 

Agents  operating in an  open  network environment are also vulnerable to impersonation  through active 
attacks on the  communications  links. The  maintenance  of  agent integrity  requires a cryptographic 
authentication  protocol  among collaborating agents. Agents  must  have a high  degree of trust in the 
authenticity of the  source of  a message in order  to ascribe attributes such as beliefs  and state to the sending 
agent.  Models of other agents must  be  managed as distinct loci  of  reasoning  and  knowledge  to detect 
inconsistent states among  agents  and to effectively maintain  reputation  structures  (Zacharia 1999) for  other 
agents . 

4 Object  Communication 
A careful  look at the  life  cycle  of a single agent-to-agent  message,  i.e.  the  simplest an instance of  agent 
communication,  reveals that messaging  involves the most  fundamental  actions of an agent.  Messaging is a 
deliberate,  motivated  action,  designed to achieve  a specific goal. In the speech  act  interpretation of  a 
message, the agent  desires to entrain a specific mental state in the receiver.  Our  model of agent 
communications is more  general,  enabling agents  to share both  communicated  objects  and  other elements 
of  their  implementation  such as ontologies  and goals. Figure 2 represents  the  sequence of events  leading  to 
transmission. 

’ An endosymbiont  is  an  agent with persistent  identity  operating within the  address  space  occupied by another  agent. 
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Figure 2. Events  Leading  to Transmission 

motivation 
The motivation  for  transmission  is generally derived  from  some  higher  goal of  the agent.  Fundamentally, 
the agent  must  inform another  agent or obtain  information  from  another agent, obviously in a social  setting 
with  other  known  agents. 

goal-formulation 
The agent creates a goal  object  that  encapsulates  the details of the  communication act. Satisfaction of the 
goal is complete  when  the object closure is  obtained  with  respect to the goals of the communicative  act. 
This involves  spawining subgoals to receive a response,  if  any,  and to evaluate the response in the context 
of the  goal. 

message-formulation 
The  actual  message is formulated  with a sender,  receiver,  and  content  object.  Depending  on the 
communication  protocol employed (e.g. KQML), additional  information  may  be  added. The exact 
formulation  is  compatible  with the communication  protocol  employed by the receiver object. 

message  construction 
A specific class of message object is  constructed  for  transmission as copied distributed object. The copied 
object  will  be  transmitted directly to the receiver. 

transmission 
The  message  object  is  transmitted to the receiver. 

The Send-Object  method (Figure 1) implements  transmission of  a message object. Each  agent  is  registered 
in the  network  with a well-known  proxy  object. An agent  holds  the  proxy to another  agent in the agent 
model  (discussed  below). 

Send-object(agent-proxy, message-object) 

The  send-object  method  is  invoked in the target  agent’s  environment  through  remote  delegation  via  the 
proxy.  The  invocation  is  restricted  to a specific  namespace in the target  agent that contains the  agent  proxy 
and  proxy class, the send-object metaobject, the  classes of possible  message objects, and filtering functions 
to evaluate the message  and  its content. The distributed  object  system checks the serialized message  for 
references to other  namespaces  and rejects the  message  it  contains  other references. Thus the send-object 
protocol is a virtual chokepoint for messages,  preventing  direct  invocation of  methods on  objects  outside 
the restricted  namespace. We call this element  the  Restricted  Protocol  Interface. 

Receiving an object  from another  agent is  also a deliberate  act on the part of the receiver. It requires  the 
necessary  motivation  and  goal creation to create the context  for  evaluating the communicated object. In 
general, an agent must associate the communicated  beliefs  with  persistent goals to determine their salience 
and to formulate the proper actions in response. 

motivation 
The  motivation  for  reception  is  derived  from a normative  persistent  goal  provided by the  framework  that 
creates  within the agentthe desire to receive  information  from  other agents. 
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Poal-formulation 
The agent creates a goal  object  that  determines  which agents will  be  considered  for  interaction. The goal  is 
mutable,  and agents may  be  removed  from  consideration  for a variety of reasons,  including security, 
chronic  poor  performance  on  collaborative  tasks,  and  prioritization  under severe resource  constraints. 

messape-exDectation 
Certain  messages  or classes of messages may  be expected,  perhaps in response to a previous  transmission 
in the context  of  a conversation. The framework enables  a message object to directly invoke a specific 
achievement  goal in the self-model  that  has  been  deferred  pending  more  information. An expectation 
mechanism  within the Message-Object  element (Figure 1) can  directly  determine the context  for  message 
processing  through a reference to the  context  goal. This provides a mechanism for implementation 
continuous conversations between agents. 

messape  deconstruction 
Each  message  must  be  deconstructed  according to its  class.  For example, a KQML message  will  be  reduced 
to  its  component fields and the salient  objects  extracted by the Object-Message  protocol.  The  components 
representing the percepts are  then  passed  to  the  metamodel for processing. 

receDtion 
The new beliefs are presented to the self-model  and  updates  the  remote  agent  model. 

elaboration 
A deliberation  mechanism  within the receiving  agent  is  activated to determine the ramifications of the new 
beliefs  with  respect to the agent’s goals. 

goal-formulation  message-deconstruction  elaboration 

I 1 
motivation  message-expectation  reception 

Figure 3. Events  Leading to Reception 

The architecture provides the source of motivation  for social interaction  among  agents.  The  framework 
provides classes and  and  method  metaobjects  that enable the construction of  sending and  listening goals. 

5 Agent  Models 
Agents  have  local beliefs about  other  agents  and the world. In order  to distinguish  its  local  beliefs  from 
those of other agents, each  agent  has a distinct  model of itself and distinct models of other agents. The 
object  constant self denotes  the  local  agent  and constants of the form a-I, a-2 , and a-100 denote  the  other 
agents in the environment. Models of other  agents  allow the local agent to reason  about the beliefs, goals, 
and actions of others. The Agents  Metamodel  (Figure 1) manages the update of an agent’s models  from 
communicated  information. The communications  protocol  passes  message  objects to the Agent  Metamodel 
(Fig 1) for  elaboration  and  interpretation.  The  metamodel  makes  certain  inferences  about  the beliefs of the 
local  agent  and  other  agents  based on communicated  messages.  First, the receiving agent must  be able to 
recognize the sender  agent  as the  true  source  of a message.  Each agent in the  system  has a unique, 
persistent,  and  verifiable  identity.  Cryptographic  authentication of each  message by digital signature 
enables the receiver to attribute the  message to the identified sender with  certainty.  Although the exact 
operation of the metamodel  depends  on the particular  representation of belief, the following  logical  model 
based  on deductive belief  (Konolige 1984) illustrates the point. The predicate message(y,x,z)  denotes  a 
message  with content object x sent  from  agent y signed  with  digital signature z. The metamodel computes 
the signature using the digital  signature  function,  reified as a trinary relation dsa(x,y,v), where x is the 
message, y is the agent id (used to obtain  the  public  key)  and z is the computed  digital signature. Note  that 
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this digital  signature scheme is distinct from the authentication  protocols  used at the transport level.  Agents 
require a different signature scheme to authenticate their identity to one another at the knowledge level. 
Certain  collaborative activities may require  more  specialized signature schemes still. Protocols  for 
encryption  and  authentication at the link level  may  be  constrained  by the network  and transport layer 
underlying the communications system. 

Validation of the  digital signature sanctions the belief by the  local agent in the belief of the sender via the 
schema: 

message(a-123, x, z) (( dsa(x,a-I23,v) eq(z,v) K: Bel(serf, Bel(a-123. x)) 

Bel(serf, Bel(a-123, x)) is  asserted in the local (self) model ofthe agent, while the argument BeI(a-123,  x)  is 
asserted in the model of  agent a-123.  Alternatively,  an  invalid  message  is  not  believed by the local  agent2 : 

message(a-123,  x, z) (( dsa(x,a-I23,v) (( ’eq(z,v) E -tBel(serf, Bel(a-123, x)) 

The conclusion  Bel(c, x), where c is an arbitrary constant, is  asserted in the model corresponding to the 
“unknown agent”. This captures the notion  “somebody  believes  x”. 

Control of an agent’s  models of other agents is  mediated  through the metamodel. The local agent may  wish 
to check an agent’s  model  for  consistent  beliefs.  The  metamodel  provides a uniform  protocol to the local 
agent  for  performing  queries,  proving assertions, and  importing  hypothetical beliefs from a model  into  its 
self-model. 

Each  model of a remote  agent  comprises a distinct namespace, a set of  metaobjects (classes and  methods) 
that  implement  the  interface to the metamodel,  and a separate  thread to control  execution of methods. At 
the  framework  level,  instances  and  metaobjects  transmitted by the actual remote agent are  represented as 
simple  beliefs of the form  Bel(& x), where a is the agent name  and x is any  object or metaobject. This 
captures the primitive  notion  that an agent believes in the  existence of the referenced object or metaobject. 
Included are complex  compositions of objects implementing  part-whole relationships. Compositions are 
handled  naturally by the  underlying  distributed object system by coercing the message content object and 
all  its  components  into  copied objects during  materialization. 
The framework is easily  specialized  for a particular  representation. Candidates include categorical 
taxonomies  such as description  logics ( e.g. CLASSIC,  LOOM,  KL-ONE ), KIF (Finin, Labrou,  and 
Mayfield 1994 ), first-order  logic  and  theorem  provers,  deductive data bases, BDI architectures, and so on. 
Custom  representations  rendered in the object  language are also  possible.  These different representations 
may  be active simultaneously in different agent models  provided  the  necessary interface protocol to the 
metamodel exists. 

Direct  communication of metaobjects  between  agents  enables  agents to share their models of  one another 
and the environment. An agent  decides which elements  of its  representation  and in what  representational 
scheme  will be  used  by other  agents to model  its  reasoning  and  behavior.  Through  an  interaction  protocol, 
agents  can  negotiate  detailed descriptions of their shared  models, enabling cooperation  on joint tasks. The 
framework  supports  this in two  ways.  First,  every  model  is  ultimately  rendered in CLOS through 
metaobjects  and  instances,  providing a common  programming  language  with  which  the agents remotely  but 
safely  program their corresponding  models  residing in other  agents. This in effect creates an endosymbiont 
within the local  agent  representing a special  projection of the  remote agent without degrading the integrity 
of the  local  agent.  Secondly, a model of  another  agent is a dynamic  process  under the control of the local 
agent. The local  agent  can  use  the  model to predict the behavior of  a remote agent, to the extent that model 
allows. This enables a powerful  simulation  mechanism  within an agent  that facilitates cooperative actions. 

The  metamodel will attempt  to  validate  the  message for all  agents in its  knowledge  base. If  this  fails.  the  message  is 
invalid. If it succeeds,  the  valid  agent id is  substituted in the  message. 
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6 Conclusions 
We have  discussed  several  pragmatic  issues  associated  with  agent  communications in an  open  network 
environment. We  have  described a general architecture that  ensures  agent  integrity,  supports agent 
modeling,  and  enables  multiple  representations  and  communications  protocols to coexist in the same agent. 
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Appendix 111. Code and Programs 

1. Code file of the  ontology  of “documented-transportings” in  Common  Lisp  Object  System 
(CLOS) form 

2. Code file showing a “DocumentedTransportings” act in  LARKS format 

3. Code file of frame specification for exporting goods to Mexico  with  Ontology  information in 
LARKS  format 

4. LARKS  language support functions for generating ontologies, etc. 

5. Code  enabling an SAA  agent  to interact with the CMU  Agent Name Server (ANS) 

6.  Code enabling an SAA  agent  to interact with the CMU  Matchmaker 

7. Code enabling an SAA  agent  to process and transmit  KQML 
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; ; Code  file of the  ontology  of "documented-transportings" in Cmmn Lisp  Object 
; ; System ( O S )  fom used by the  Standard  Agent  Architecture (SAA) agents 

;The  service  to be advertised is: 

; (our agent)  will  (generate)  and  (execute) all (necessary  documents) for the 
; (transport)  of  (goods)  between  the (US) and  (Mexico) 
(defpackage : ONTOLOGY 
(:use :ut-lrp :a : a - U S E R  :ELo!3 :AISL :chi) 
( : nicknames : ONT) 

1 

(in-package :ONT) 

( #+Allegro  excl : without-package-locks # + K L  progn 
(defmethcd  slot-unbound  :around ( (me # + K L  ccl : :class #+Allegro class) 

"Override  default  slot-unbound  behavior.  Return nil if slot  unbound. 
(declare  (ignore instance slot-name) ) 
(if  *su-override* 

instance? slot-name) 

nil 
(call-next-mew) 
1 

1) 

(defun  class-instance-slot-names (class) 
(mapcar #'ccl::slot-definition-name (#+Kt,  cc1::class-instance-slots 

#+Allegro ais1::class-instance-slots class))) 

(defmethd  instance-slot-names ( ( m e  standard-object) ) 
"Returns  list  of  names  of instance slots of object. II 

(class-instance-slot-names  (class-of m e ) ) )  

. . . .  
, 1 1 1  

(def  class  larks  -frame ( ) 
( (context : initarg  :context  :accessor  context : initfonn  nil) 
(types : initarg  :types  :accessor  types : initfonn  nil) 
(input : initarg : input  :accessor  input : initfonn n i l )  
(output : initarg  :output  :accessor  output : initfonn nil) 
( inconstraints : initaq : inconstraints  :accessor  inconstraints : initform  nil) 
(outconstraints  :initary  :outconstraints  :accessor  outconstraints  :initform nil) 
(condescriptions  :initarg  :condescriptions  :accessor  condescriptions  :initform n i l )  
1 

1 

(defmethcd  completed-p ( (the-frame  larks-frame) ) 
(funcall  (outconstraints  the-frame)  the-frame) 
1 

(defmethod  actionable-p  ((the-frame  larks-frame)) 
(funcall  (inconstraints  the-frame)  the-frame) 
1 
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(defclass  transportable-things ( )  
((object-id  :initarg  :object-id 

:accessor  object-id 
:type 'OE?JECT-ID 
: initform  nil) 

(custmr-id :initarg  :custamer-id 
: acc&sor  custamer-  id 
: initform  nil) 

(transport-id  :initarg  :transport-id 
:accessor  transport-id 
:initform n i l )  

(nl-description  :initarg  :nl-description 
:accessor  nl-description 
: initfonn nil) 

(weight  :init-  :weight  :accessor  weight  :initform 5000) 
(height  :init-  :height  :accessor  height  :initform 3.0) 
(width : initarg  :width  :accessor  width : initfonn 3.0) 
(depth : initary  :depth : accessor  depth : initfonn 3.0) 
1 

1 

(def  class documented-transportings ( larks - frame) 
((goods  :initarg :goods 

:accessor goods 
: initfonn  nil) 

(the-dmuments : initarg : the-docunents 
: accessor  the-documents 
: initfonn nil) 

(start-location  :initarg  :start-location 
:accessor  start-location 
: initfonn nil) 

(desired-end-location  :initarg  :desired-end-location 
:accessor  desired-end-location 
:initform nil) 

1 
1 

(dehethd in ((the-location  t) (the-country t))  t) 

(defparameter *US* "Stand-in  for an object  that  represents the United  States") 

(defprameter *Mexico* "Stand-in  for an object  that  represents the United  States" ) 

(olp: : d e m e r  ( (prototype documented-transportings &key 1 
(setf  (context  prototype)  :ccPnnercial-transprt) 
(setf  (input  prototype)  (list (goods prototype) 

(start-location  prototype) 
(desired-end-location  prototype))) 

( setf  (output  prototype ) 
(list  (01p::make-object  'bill-of-lading t :shipat prototm) 

1 
(o1p::make-object  'brder-crossing-permit  t)) 
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(setf  (inconstraints prototype) 
# ' (lamWa (item) 

(and (or (and ( i n  (start-location item) *Mexico*) 
( i n  (desired-end-location item) *US*) 
1 

(and (in (desired-end-location item) *Mexico*) 
( i n  (start-location item) *US*) 
1 

1 
(< (length (goods item) ) 500) 
(<= (apply # 'max (mapcar # 'weight (gads item) ) ) 

(< (apply #'max ( m a p c a r  #'depth (goods item) ) ) 4) 
(< (apply # 'max (mapcar # ' w i d t h  (goods item) ) ) 4) 
(< (apply #'m (maw #'height (goods item) ) ) 4) 
(eval (cons 'and 

10000) 

(mapcar # '  (1- (doc) 
(not  (signed-p d o c )  ) 
1 

(the-documents item) ) 
1 

1 
1 

1 
1 

# '  (lamWa (item) 

1 

(setf  (outconstraints prototype) 

(and (mapcar #'signed-p (the-documents item)))) 

1 

(def class documents ( ) 
( (signature : initarg  :signature 

: accessor signature 
: initform n i l )  

1 
1 

(defmethd  signed-p ( (the-document  documents) ) 
(signature the-document) 
1 

I ,  
.. 

; ; "shipment" w i l l  conta in   an   ins tance  of "documented-transprtings" 
; ; This is the po in te r  fran the documentation to what it documents 

(defclass shipment-documents  (documents) 
I ,  
. .  

( (shipent :initary :shipnent 
: accessor shiprent 
: initform n i l )  

1 
1 
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(defclass  bill-of-lading  (shipnent-documents) 
((goods-listing  :initarg  :goods-listing 

:accessor  goods-listing 
: initfom  nil) 

1 
1 

(olp::deMer2 ((prototype  bill-of-lading)  &key) 
(loop for unit in (goods  (shipnent  prototype) ) 

do 
(Push 
(format nil 

(goods-listing  prototype) 
1 

'I [Description]  -a  [weight in kg]  -a"  (nl-description  unit)  (weight  unit) ) 

1 
1 

(defclass  border-crossing-permit  (documents) 
0 
1 

(defclass LARKS-INTERFACES (interfaces) 
0 
1 

(defparmter  "larks-interface*  (make-instance 'LARKS-IN"ACES) ) 

(dehethd chi:  :view-as-interface  ((myself  lark-frame) 
( interface  interfaces ) 
stream &key  &allow-other-keys ) 

(format stream "-a-% = (and -{ -% (all has--a) -} -% ) "  
(class-name  (class-of  myself)) 
( n a p c a r  #'car (cc1::class-instance-slots (class-of  myself))) 

1 
1 

# I  Ekecution  test  and  expected  results 

(defparameter  *some-goods* 
(list  (01p::make-object 

' transportable-things t 
:object-id  (format  nil  "OID-a"  (randcm  10000) ) 
: custmer- id  "Hewlett-Packard" 
: transport-id  (format  nil  "CUSTOKS-MARK--a--a" 

(randcm 1000) 
(randcm 100000) ) 

: nl-description  "16 4-gross cases  single-use  surgical  gloves  palletized" 
:weight  186 
:height  1.86 
:width 1.45 
:depth  2.16 
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) 

' transportable  -things t 
:object-id  (format  nil "OID-a" (random 10000)) 
: customer - id  "Hewlett - Packard 
:transport-id  (format  nil  "CUSTOMS-MARK--a--a" 

(01p::make-object 

(random 1000) 
(random 100000) ) 

: nl-description  "21  cartons  outer  shell  electronic  amplifier  palletized" 
:weight  131 
:height  2.45 
:width  2.45 
:depth  2.45 
) 

1 

(olp:  :make-object 
' documented-transprtinqs  t 
:goods *some-goods* 
:start-location  '(:latitude  95.34.123  :longitude  123.78.342) 
:desired-end-location  '(:latitude  51.32.239  :longitude  111.03.893) 
) 

(defparameter *the-doc* 
(01p::make-object 'documented-transpoortings t 

:goods *some-goods* 
:start-location  '(:latitude  95.34.123  :longitude  123.78.342) 
:desired-end-location  '(:latitude  51.32.239  :longitude  111.03.893) 

I 

*m-m* 

? (outconstraints  *the-doc*) 
#~onqmous Function  %x6BAC306> 

? (funcall  (outconstraints  *the-doc*)  *the-doc*) 
NIL 

? (inconstraints  *the-dm*) 
#Ifinonynous  Function  #x69C5DAE2 

? (completed-p  *the-doc*) 
NIL 

? (actionable-p  *the-doc*) 
T 

I #  
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; ; Code f i l e  showing a "DocumentedTransprting" act i n  LARKS f o m t  

DocumentTransprtableGoods 

Context _ _ _ _ _ _ _ _ - _  

DocumentedTransprting * DocumentedTransprtings 
- - _ _ _ _ _ _ _ _  Tvpes 

; ; u1 tlrpes are def ined  as components of WCUMENTED-TRANSPORTINGS 

- - - - - -____ Input 

DocumentedTransprting 

- - - - - -____ output 

Documents 

- - _ _ _ _ _ _ _ _  InConstraints 

; ; YOU ' Lzi NEED TO  TRANSIATE THE CONSTRAINTS INIO LARKS 
; ; NB : contents   of  the "goods" slot are TRANSPORTABLE-THINGS 
; Let ' s pretend the "in" predicate exists 
; note  "item" is the arg to  the Lambda funct ion 

(and (or (and (in (start-location  item) *Mexico*) 
(in (desired-end-location  item) *US*) 
1 

(and (in (desired-end-location  item) *Mexico*) 
(in (start-location  item) *US*) 

1 
(< (length (goods item) ) 500) 
(<= (apply # 'mx (mapcar # 'weight (goods item) ) ) 

(< (apply #'max (mapcar #'depth  (goods  item))) 4) 
(< (apply # ' m x  (maw #'width  (goods  item) ) ) 4) 
(< (apply # ' m x  (mapcar #'height  (goods  item) ) ) 4) 
(em1 (cons 'and 

10000) 

( m a p c a r  # ' ( l e  (doc) 
(not  (signed-p doc) ) 

(the-documents  item) ) 

) 

- - _ _ _ _ _ _ _ -  OutConstraints 

(and (mapcar #'signed-p  (the-documents  item))) 
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DCCUMENTED-TRANsPoRTINGs 
= (and (all h a s - g d  (list-of TRANSPORTABLE-THINGS) ) 

(all has-the-d~uments (list-of ECUMENTS)) 
(all has -s tar t -  location LKATION) 
(all has-desired-end-location  LCCATION) 
1 

TRANsPoRTmm-THINGS 
= (and (all has-object-id I D E t T F I E R )  

(all has-custaner-id  IDENTIFIER) 
(all has-transprt-id  IDENTIFIER) 
(all nl-desctiption TEXT) 
(weight REAL) 
(height REAL) 
(width FE%) 
(depth -1 
1 

DCCUMENTS 
= (and (all has-shiprent  (list-of  IDENTIFIER) ) 

(all has-signatures  (list-of SIGNATURE)) 
1 

LOCATION 
= (and (all has-latitude REAL) 

(all has-longitude REAL) 
1 

SIGNATURE [this is a primitive] 

IDENTIFIER [this is a primitive] 

TEXT [this is a primitive] 

REAL [ this is a primitive] 
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; ; W e  file of frame specification  for expr t ing  gcds  to Mexico with ontology 
; ; information in IARKS format 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

...................................................................................... 
I ,  
.. 
; ; mane specification  for lARKs 
.. 
I ,  ...................................................................................... 
l , , , , , , , , , , , , , , , , , , , , , , , , , , , , l l l l , , , , ~ l ~ ~ , , , , , , , , , ~ , , , , , , , , , l , / l l l , , l l l l / , , l f l ~ l f l f ~ ~ f  

ExportUsGooasToMexico 

context shipFer*shipFer 

mt 
originator : 
country-of-origin: 
invoice-number: 
lading-infomtion: 
shiprent-initiator: 
shiprent-init-date: 
consignee: 
arrival-time-window: 
arrival-time: 
arrival-date : 
departure-time-window: 
departure-tine: 
departure-date: 
ship-fm: 
ship-to: 

output 
US  -carrier : 
bkx-carrier: 
drayage-carrier: 
exit -broker : 
ent ry-broker :  
scheduled-departure-time: 
scheduled-departure-date: 
predicted-mival-time: 
predicted-arrival-date: 
fee: 

USFh*Firm; 
comtry*country; 
integer; 
ListOf(piece-description*piece-description) 
USFh*Firm; 
date*date; 
M&?irm*Fh; 
duration*duration; 
timerime; 
date*date; 
duration*duration; 
time-ime; 
date*date ; 
USLocation*loCation; 
MexT-mation*lccation; 

USTransportProvider*~ansportPravider 
"ransprtProvider*TransportProvider 
DrayageFmvider*DrayageProvider 
USEXitEzoker*broker 
M&3ntryBroker*broker 
timerime 
date*date 
timerime 
date*date 
Price*prices 

Inconstraints 

outconstraints 

le(departure-time,+(scheduled-departure-time,departure-tine-window),) 
le(scheduled-departure-timel+(departure-tine,departure-time-window)) 
le(arrival-time,+(predicted-mival-time,arrival-time-window)) 
le(predicted-arrival-tine,+(arrival-time,arrival-time-window)) 
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.. 
I ,  
. .  

; ; 0ntolq-y for llwcs 

USFirm 

bmkex 

USExitBroker 

USEntryBroker 

MedZxitBroker 

MexEntryBmker 

location (and (all has-address physical-addresses) ) 

USLocation (and location 
(all has-address (all country-of aset(US))) 
1 

MexIaxtion (and location 
(a l l  has-address (all country-of aset(P&xico)) ) 
1 

TransportProvider 

USTranspxtProvider 

MexTransportProvider 

Drayageprovider 
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I ,  
. .  
; ; LARKS language support functions for generating  ontologies, etc. 
. .  
I ,  

(def  class  LARKS - INTERFACES (chi : : interfaces ) 
0 
( :documentation  "The  dispatching  class  for all VIEW-AS-INTEXFACE methcds. ' I )  ) 

(defparameter  "LARKS-interface*  (make-instance 'LARKS-INTERFACES) ) 

(defun convert-slotname-to-LARKS-name (s lotnm) 
(convert-thing-to-L-name (first ( t h i r d  slotname))) 
1 

(defun convert-thing-to-1.9-name (thing) 
(apply  #'concatenate 

'string 
(mpcar # ' string-capitalize 

(cl-user::listify-string (chi::prettify  (string  thing))) 
1 

1 
1 

(defun CREATE-LARKS-ONTOL-FILE (classname  &optional 
(the-pathname  nil) 
&key  (overwrite-existing?  t) ) 

(when  (not  the-pathname) 
(setf  the-pathname 

(de-pathname :directory  (pathname-directory  (choose-directory-dialog)) 
: mure "Larks  -ontology" 
:type "txt '1 ) 

1 
1 

(with-open-file  (the-filestream  the-pathname  :direction  :output 
:if-does-not-exist  :create 
:if-exists  (if  overwrite-existing? 

: supessede 
: append) 

1 
(view-as-interface  classname  *LARKS-interface*  the-filestream) 
1 

1 

(defmethd  view-as-interface  ((myself  t)  (interface LARKS-INTERFACES) 
stream &key  &allow-other-keys ) 

(declare  (ignore  myself  interface stream) 

1 
1 

(defmethd  view-as-interface ( (myself  string)  (interface LARKS-INTERFACES) 
stream  &key  &allow-other-keys) 

(view-as-interface  (find-class  myself)  interface  stream) 
1 
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(defmew view-as-interface  ((myself symbol) (interface LARKS-INTEWACES) 
stream &key  &allow-other-keys) 

(view-as-interface  (find-class  myself)  interface  stream) 
1 

(defmethod  view-as-interface ( (myself  standard-class) 
(interface LARKS-INTERFACES) 
Stream 
&key  (visited-hash-table  (make-hash-table)) 
&allow-other-keys) 

(let ( (method-namelist nil) 
(method-arglist nil) 
(method-name nil) 
(the-methd  nil) 
(its-a-class-p nil) 
(classes-yet-to-be-visited nil) 
1 

(loop  for method in  (remove-if # '  (1- (item) 
(or  (typep  item 

(typep  item 
'standard-reader-mew) 
'standard-writer-method))) 

(inspect0r::specializer-direct-methcds myself) 
1 

when  (not (member (ccl:  :method-name mthcd) method-namelist  :key  #'first) ) 
do 
(push (cons (ccl:  :method-name methcd) method) method-namelist) 
1 

(and ((gethash  myself  visited-hash-table) 
nil) 
(t  (setf  (gethash  myself  visited-hash-table)  t) 

(let*  ((superclasses  (class-direct-superclasses  myself)) 
(classname  (class-name  myself)) 
(indent (+ (length  (string  classname))  (length I' = (and " ) ) )  

1 
(when  (not  (listp  superclasses))  (setf  superclasses 

(fomt stream  "-a = (and I' classname) 
(list  superclasses))) 

for  superclass in superclasses 
cb 
(fomt stream  '1-a-8"  (class-name  superclass)) 
(dotimes  (i  indent) ( fomt stream I' I' ) ) 
1 
for  slot in (class-direct-instance-slots  myself) 
cb 
(when ( q u a l .  'quote  (fourth  slot)) 
(setf  its-a-class-p 

(find-class  (intesn  (string-upcase  (symbol-name 
(fifth  slot) ) ) 

:chi)) 
1 

1 
(when  its  -a-class-p  (pushnew  its-a-class-p 

classes-yet-to-be-visited)) 
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(format stream 
''(all has--a+[ TYPE: -a-I)-%" 
(convert-slotname-to-LARKS-name  slot) 
(class-name  its-a-class-p)) 

(dotimes  (i  indent)  (format stream '' ) ) 
1 
for  method-name-pair in (reverse  method-namelist) 
cb 
(setf  method-name  (first  method-name-pair) ) 
(setf  the-mthod  (rest  method-name-pair) ) 
(setf  method-arglist  (cc1::arglist  the-method)) 
(format stream "(Provides  -a-@[  inputs:-{  -a-}-])-%" ; ** -a-8'' 

method-name 
(reverse 
(set-difference 
methd-arglist 
(list '&METHOD 'NEXT-METHOD-CONTEXT 

:key # 'symbol-name 
:test # ' string-equal 
1 

'&REST 'the-rest  '&key  '&allow-other-keys) 

1 
;methd-arglist 
1 

(dotimes  (i  indent) ( fomt stream '' " ) ) 

1 
(format 
(mapcar 

stream ' 1 ) - % - % " )  

# (lambda (item) (view-as-interface 
item  interface stream 
:visited-hash-table  visited-hash-table)) 

superclasses 
1 

1 
1 

1 
(lap for  one-class in classes-yet-to-be-visited 

do 
(view-as-interface  one-class  interface stream 

1 
:visited-hash-table  visited-hash-table) 

1 
1 

(defmethd ccl: : class-name ( (myself symbol) ) 
myself 
1 

$ 1  
(mapar #'(lambda  (item)  (view-as-interface  item  *larks-interface*  t)) 

(class-direct-instance-slots  (find-class 'btfs::us-manufacturer)) 
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Appendix IV. Reprint of CMU reference that  defines LARKS 
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1 Introduction 
Due to  the  esponent,ial  increase of offered services in the  most  famous offspring 
of the  Internet, t,he JVorld Wide  Web,  searching  and  selecting  relevant services is 
essential  for  users.  Various  search  engines and software  agents  providing  various 
different  services are a.lrea.dy deployed  on the. Web.  However,  novice  users of 
the  Web  may  have  no  idea where to   dar t  their  search,  where to  find  what  they 
really want,  and  what agenbs are  available  for  doing  their job.  Even experienced 
users may  not  be  aware of every change in the  Web, e.g.,  relevant web pages 
might, not  exist  or  their  content,  be  valid  anymore,  and  agents  may  appear  and 
disappear  over time.  The user is simply  overtased by mmually searching  in t,he 
Web for information  or  appropriate  agents. 

On the  other  hand, a.s the  number  and  sophistication of agents  on  the  Web 
that  may have  been  developed by different  designers  increa.ses, there is an obvi- 
ous  need  for a sta.ndardized,  meaningful  communication  among  agent,s  to  enable 
them to perform  collaborative t,ask esecution. We distinguish  two  general  agent 
categories,  service  providers a.nd service  requester  agent,s.  Service  providers 
provide  some  t.ype of service, such as finding  information, or performing  some 
particular  domain specific  problem  solving  (e.g. number  sorting).  Requester 
agents need provider  agent,s to perform  some. service  for them. Since the In- 
ternet  is  an  open  environment, where information  sources,  communication  links 
and  agents  themselves  may  appear aad disappear  unpredictably,  t.here is a need 
for  some  means to  help  requester  agents  find  providers.  .4gentes  that.  help  locate 
others a.re called middle  uyents. 

We have  identified  different,  types of nliddle  agents  in  the  Internet,  such 
a3 ma.t.chmakers  (yellow  page services),  brokers,  billboards,  etc. [3], and  es- 
perimentally  evaluated different protocols for interoperation  between  providers, 
requesters and  various  types of middle  agents.  Figure 1 shows the  protocol  for 
two  different types of middle  agents:  brokers  and  matdlmakers. &‘e have  also 
developed  prot,ocols  for  distributed  ma.tchma.king [12]. The process of finding 
an appropriate  provider  through a middle  agent is called ,m.utchm.ubing. It has 
the following general  form: 

0 Provider a.gents  advert,ise  their  capabilities  such as know-how, expertise, 
and so on, to nliddle  agents. 

0 Middle  agents  store  these  advert,isements. 

0 -4 requester asks some  middle  agent  whether it. knows of providers  with 
desired capabilities. 

0 The  middle  agent ma.t.ches the request  against  t,he  stored  advertisements 
a.nd ret,urns  t,he  result,. 

While  t,his process a t  first  glance  seems very simple. it, is  complicated by the 
fact  t,hat  providers and requesters are  usually  het,erogeneous  and  incapable in 
general of underst,anding ea.ch o th r .   Th i s  clifficult,y  gives  rise to t,he  need  for a 
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common 1arlgua.ge for describing t,he capabilit,ies and requests of softwa.re agents 
in a convenient way. In  addition,  one  has  to devise a meclmnism for mat,ching 
descriptions in t,hat.  language.  This  mechanism  can  t,hen be used by middle 
a,gents t,o efficiently select, relevmt a.gent,s for  some  given  tasks. 

In the  following, we first ela.b.orat,e the  desidera.ta of an agent  capabilit,y 
description 1angua.ge (ACDL),  and  propose  such an ACDL, called LARKS, in 
detail.  Then we will discuss the  matchmaking process  using LARKS and give a 
complete  working  scenario  with  sonle  esalnples. We have  inqdemented LARKS 
and  the  associated powerful ma.t,chmaking  process, a.nd are  currently  incorpo- 
rat,ing it  wit,hin  our  RETSINA mu1t.i-agent infrastructure fra.mework [22]. The 
paper  concludes  with  coinparing ow la,ngua.ge a.nd t*he matclmaking process 
wit,h related works. 

2 Matchmaking  Among  Heterogeneous Agents 
111 the  process of ma.t~chmal;ing  (see Fig. 1) are  three  different.  kinds of  collabo- 
rating  agents  involved: 

1. Provider agents  provide  their  mpabilities,  e.g..  informat.ion  search ser- 
vices,  retail  electronic  commerce for special  products,  et,c., to their users 
and  other  agents. 

2. Requester agent,s  consume  informat,ions and services offered by provider 
a.gent,s in  the  system.  Requests for any  provider a.gent capabilities have to 
be  sent  to a ma.tchmaker  agent. 

3. Matchmaker agents  mediat,e  among  bot,h,  requesters and providers, for 
some  mut,ually beneficial cooperation.  Each  provider  must  first  register 
himself  with a matchma.l;er. Provider a.gent,s advertise  their  capabilities 
(a.dvertisements) by sending  some  appropriate messages  describing  the 
kind of service the; offer. 

Every  request a ma.t.chma,ker receives will be  nla.tched  with  his act.ual set 
of advertisement,s. If the  nmtch is successful  t,he  matchmaker  returns a. 
ra.nl;ed set of appropriate  provider  agents  and  the  relevant  a.dvertisements 
t#o the request,er. 

In  contmst,  to a broker agent, a matchmaker does not. deal  x411 the t,ask of 
conta.ct,ing  t,he  relevant  providers.  transnlitting  the  service request. to  t,he service 
provider and communicat,e  t,he resu1t.s to t,he  request,er.  This  aroids data trans- 
lnission  bot,tJenecks,  but it. might.  increase  the  amount of interact,ions anlong 
a.gel1t.s. 



Brokering 

Request-for-Service 

e Matchmaking 

Reply-Result-of-Service - 
I 

Requesr-for-Sew ice Provider I adverrise/unad?enise-Services 

Figure 1: Service  Brokering vs. Matchmaking 

2.1 Desider.ata for an Agent Capability Description Lan- 
guage 

There is an obvious need t,o  describe  agent  capabilities in a colmnon  language 
before any  advertisement,  request or even matchmaking  among  the  agents  can 
ta.ke pla.ce. In  fact.  the  formal  description of ca.pabilities  is  one of the major 
problems  in the  area of softxa.re engineering and -41. Some of t,he main desired 
fea,tures of such a agent ca.pa.bilit,y descript,ion 1angua.ge are t4he  following. 

0 Expressiveness. 
The  language is expressive  enough  t,o  represent. not. only data  and knowl- 
edge. but also to describe the  meaning of program code. .+gent capabilities 
are  described at  an abst.ract. rather  than irnplement,a.t.ion level. Most. of 
existing a.gent,s ca.n be  distinguished by describing t,lleir ca.pa.bilities in  this 
language. 

0 Inferences. 
Inferences on  descript,ions  writt,en in this 1a.ngua.ge are support,ed. A user 
can read a.ny st.at,ement in t.he language, and soft,ware a.gent.s a.re able to  
process.  especially bo compa.re  any  pair of stat,enlent.s a.ut.oma.t.ically. 

0 Ease of Use. 
Every clescript.ion should not. only  be easy to read  and  understand,  but 
also  easy t,o writ,e by the user. The language support,s the use of donlain or 
colnnlon  ont,ologies for specifying agenbs ca.pa.bilit,ies. It. a.voids redundant, 
work for the user and  improves  the  readability of specifica.tions. 
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Appl ica t ion  in the Web. 
One of the  nnin applica.tion  domains  for  the 1a.ngua.ge is t.he specifica.tion 
of advert.isement,s a,nd requests of agent,s in  the \J'eb. Tlle  language allows 
for aut,omated esclmnge a.nd processing of information anlong these  agents. 

In  addit.ion. the  matchmatching process on a. given set of capability descrip- 
t,ions and a request, bot.11 writt,en  in the chosen XCDL:  should  be efficient, most 
accurat,e,  not.  only rely on keyword est,ract*ion aad  comparison.  and fully auto- 
mated. 

3 Tlle Agent Capability  Description Language 
L.ARI<S 

R.epresenting capabilities is a difficult. problem t.11a.t. has  been  one of the major 
concerns  in the a.reas of soft,ware  engineering,  AI.  and  more  recently.  in the 
area of internet  comput<ing.  There a.re many program description la.ngua.ges, 
like VDM or Z['28], to  describe the fuuct.iona.lities of programs.  These  languages 
concern too much  detail to  be  useful  for the  searching  purpose. Also,  reading 
and  writing specifica.tions in  t8hese  languages  require sophisticated  tmining. On 
the  other  hand, t.he  interface  definition 1angua.ges. like IDL,  WIDL, go to  the 
other  extreme by omitting  the funct.iona1  descriptions of the services a.t all.  Only 
the input. and  output  information  are provided. 

In AI, knowledge  description hnguages, like KL-ONE, or KIF  are  meant  to 
describe the knowledge  instea,d of the  actions of a. service. The a.ct,ion repre- 
sent,at,ion formalisms like STRIPS  are t,oo restrict,ive to  represent cornplica.t,ed 
service. Some agent.  communicat.ion  languages like KQML and FIPA concen- 
tmt,e  on t,he  communica.tion  prot,ocals  (message  types)  betmeen  agent,s  but,  leave 
t,he  content  pa.rt of the language  unspecified. 

In  internet  computing, various description  format,  are  being  proposed, no- 
t,ably the  WIDL a.nd the R.esource Description  Franlework(RDF) ['Zi]. Although 
t,he R.DF also a.ims a.t, the int.eroperab1ity  between  web  a.pplicat,ions, it, is rat,her 
intended to  be a. basis  for  describing metachta. R.DF  allowes different. vendors 
to describe t,he propert,ies a.nd relations bet,ween resources on bhe Web. That. 
ena.bles ot,her progra.ms, like IVeb robots,  to easily est.ra.ct, releva.nt. infornmtion, 
and  to build a. gra.ph struct,ure of t.he resources  availa.ble on  the Web, without 
the need t.0 give any specific informa.tion. However: the description  does  not 
describe  t,he  functionalities of t.he Web se?vices. 

Since  none of t.hose languages sat,isfies our  requirement,^, we propose  an 
ACDL,  called  LARKS  (Language for Advertisement. and Request.  for  Knowledge 
Sha,ring) t,ha.t enables  for  aclvertising,  requesting and  mat,ching agent,  capabili- 
t.ies. It satisfies the desiclera.ta given in t,he  former  section. 

3.1 Specification in  LARKS 
.A specifica.t,iou in LARKS is a. fra.nle wit.11  bhe following slot,  st,ruct,ure. 
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Context Contest. of specification 1 
Types Decla.ration of used  va.riable  t,ypes 
Input Declarat*ion of input,  variables 
output Declaration of outnut,  vmiables 
Inconstraints Constraints on input  variables 
Outconstraints C!onstraint,s on output variables 
ConcDescriptions Ont.ologica1 descriptions of used words 

~~ 

The  frame slot. types lmve the following meaning. 

Context. 
The  contest of the specification in the local  domain of the  agent. 

Types. 
Optional  defidion of the used data  types. If not,  used, a.11 data  types  are 
assumed  to be defined in  the following slots for input.  and  output.  variables. 

Input and Output. 
Input,/out$put varia.hles for required input/output, knowledge t,o describe a 
capabi1it.y of an agent: if t.he input given  t>o an agent, fit>s with  t,he specified 
input  declaration p x t ,  then  the agent, is a.hle to  process an  output as 
specified  in the  out,put  declaration pa.rt,. Processing  takes all specified 
constra.ints  on  the  input, and output variables  int,o  consideration. 

Inconstraints and Outconstraints. 
Logical  c0nstraint.s on input,/output  variables  in  t,he  input./output de&- 
ration  part.  The const,raint.s are specified as Horn  clauses. 

ConcDesriptions. 
0ptiona.l descript,ion of the meaning of words used in the specifica,tion. The 
description relies on concept,s  in a. given  local  domain ont,ology.  Xttache- 
ment of a. concept. C t-o a. word w in  any of the  slots a.bove is done  in  the 
form: w*C. That  means  that  the concept C is the ontologica.1 description 
of t,he word w. The concept. C! is included  in trlle slot. ConcDescription. 

In our current. illlplelllellta.t.ioll we assume ea.ch local domain  ontology t.0 be 
writt,en  in the concept language  ITL (1nforma.tion  Terminological  Language). 
the  synt,a.s and sema.nt,ics of the ITL a.re given in t h e  a.ppendis. Sect,ion 3.3 gives 
an esanlple for how t.o atta.ch concept,s  in a. LARKS specificat,ion, and a.lso shows 
a n  esalnpie  donmin ont.ology in  ITL. A generic int>erfa.ce for using  ontologies 
in  LARKS expressed  in 1angua.ges other than  ITL will be  inlplen1ented  in  near 
fut,ure. 

E\Tery specifica.t.ion in LARKS can be  int,erpret,ed as an advertisement as well 
a.s a. request.; this  depends on t,he  purpose  for which a.n agent,  sends a specification 
t,o sonle ma.t,chma.l<er agent,(s). Ever?; LARKS specification  must be  wrapped up 
in a.n appr0pria.t.e IiQiCIL messa.ge by the  sending a.gent. indica.ting if t,he messa.ge 
cont.ent. is to  be t,rea.t,ed as a. request, or an a.duert,isement. 
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3.2 Examples of Specifications in LARKS 
The following t.wo esanlples show llow to describe  in LARKS t.he capa.bi1it.y to 
sort a. given list, of items, a.nd ret,urn  t,he sort.ed list,.  Esanlple 3.1 is  the  the spec- 
ification of the ca.pabi1it.y t,o sort, a. list. of at  most, 100 int,eger numbers, whereas 
in esanlple 3.2 a more  generic kind of sorting  red  numbers or strings is specified 
in L.4RE;S. Note t11a.t t,he ConcDescriptions slot, is empt,y,  i.e. the  semantics of 
the words in t,lle specifica.t,ion are assumed  to  be known t,o t,he mat~chmaker 

Int,egerSort, 
Context Sort 
Types 
Input 

ys: ListOf  Integer; output 
ss: ListOf  Integer; 

before(s,y,ys) < - ge(s.y);  Outconstraints 
le(lengt,h(ss),lOO); Inconstraints 

ConcDescriDtions 
in(stys) < - in(s,ss):  

1 1 1 

Example 3.2: Generic sort of r r d  numbe.rs 01’ strings 

Genericsort, 
I Context I Sort#ina 

output I ys: ListOf Real I St,ring; 
I Inconstraints I 1 
Outconstraints before(x,y:ys) < - ge(s ,y) ;  

hefore(s,y,ys) < - preceeds(s,y); 
in(s.vs) < - in(s.ss): 

I , \ , \ I .  1 1 ConcDescriptions 1 
0 

The  nest  esa.mple is a. specificat,ion of an agent,‘s ca,pa.bilit,y t,o buy st.ocks at 
a st.ock nmrket..  Given t,he name of t,he  stock,  t,he a.rnount. of money  available for 
buying  st,ocks a.nd t,he shares for one  stock,  the agent.  is a.ble t,o order stjocks at, 
t.he stock nlarket,. The constra.int,s on t,he  order are t1la.t. t,he a.mount, for buying 
st,ocks given by t,lle user covers t,he  sha.res  times the current,  price for one stmock. 
Aft,er performing t.he order t.he a.gent will inform  t,he  user  ahout. t.he stcock,  t<he 
sha.res, a.nd the gained  benefit.. 
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- 
sellStock 
Context 
Tvpes 

St.ocl<, Stockklarket,; 

Input symbol:  StockSymbols; 
yourhloney:  Money; 
s h e s :  Money; 

yourShares:  Money; 
vourChanae: Monev: 

output yourSt,ock:  St.ockSymbols; 

Inconstraints I yourMoney >= sl~a.res*current,Price(s~mb): ~ 

Outconstraints 1 yourChange = yourMoney - da.res*currelltPrice(symb); 

~~~~ 

I yourSlmres = shares: yourSt,ock = symbol: 
ConcDescriptions I 
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3.3 Using Domain Knowledge in LARKS 

As mentioned  before, LARKS offers t,he  opt,ion t.0 use applica.tion  domain knowl- 
edge in  any  advert,isement,  or request,. This is done by using a local ontology  for 
describing the  meaning of a word in a LARKS specificat.ion.  Local ont.ologies can 
be formally  defined  using, e.$., concept 1angua.ges such as ITL (see Appendix), 
BXCII;, LOOM, CLASSIC or KRIS, a. full-fledged first  order  predicate logic, 
such as t8he  knowledge  interchange format (KIF), or even the unified modeling 
language (UML).  

The  main benefit of t,ha.t opbion is twofold: (1) the user can specify in  more 
detail wlmt, he  is  requesting or a.dvert.ising, and (2) the  ma.tchmaker a.gent is  able 
to make automated inferences on such kind of additiona.1 senm.ntic descriptions 
while matching LARKS specificat,ions,  thereby improving t,lle  overall qua1it.y of 
matclling. 

Suppose t,lmt, a provider agent, such a,s, eg . ,  Hot,Bot., Escit,e, or even a Ineta- 
searchbot., like  SavvySearch or hIetaCrawler.  a,dvertises the ca.pa.bility to find 
informabions about ally t,ype of comput,ers. The  administ~rator of the  agent  may 
specify t8ha.t  ca.pabilit,y in LARKS as follows. 

a 



1 FindClomnut.erInfo 1 
Context 

brand: Brand*Brand, 

Computer*Computser: 

price:  Price'Money,  color:  Color"Co1ors); 
Input brands: SetOf Brand*Brand: 

areas: SetOf St.at,e: 
processor: Setof CPU*CPU: 
priceLow*LowPrice: Integer: 
priceHigh*HighPrice: Integer: 

Types InfoList. = Listof (model: Model*C'omput~erModel. 

output Info: InfoList,: 
Inconstraints 
Outconstraints 

Computer = (and Product. ( ex i s t s  ha-processor CPU) ConcDescriptions 
sorted( Info). 

( a l l  has-memory Memory) ( a l l  is-model Computerhlodel)); 
LowPrice = (and Price (ge lSOO)(exists in-currency aset(USD))): 
HighPrice = (and Price (le  50000)(exists in-currency aset(LJSD))): 
Comput.erMode1 = 
ase t (  HP-Vectra,PowerPC-G3.Thi~~~adT;O.Sat.elIite315); 
CPU = aset(Pentium.IiG,PentiumII!G3!Merced) 
[Product, Colors, Brand. Money] 

Most. words in  this specification  have been at,tached  with a name of some 
concept. out of a. given ont,ology. The definitious of these  concepts  are  included 
in  the  slot ConcDescriptions. Concept defiuit,ions  which were already  sent 
to  t,he  ma.t,chmaker a.re enclosed in  brackets. In t.his example we assunle  the 
underlying ont.ology to  be writt.en in  the concept.  langua,ge ITL. -411 example for 
such an ontology  is  given  in the  nest,  section. 

Suppose t h t  a.n agent,  registers  himself a.t. some luat,chma.ker  agent.  a.nd  sends 
t1he above specifica.t.ions as a.dvert,isernent,s. The  nmtchnmker \vi11 t.hen t,reat t.hat, 
a.gent as a provider  agent,,  i.e., a n  agent,  who is capa.ble tso provide d l  these  kinds 
of services. 

3.3.1 Example for a Domain Ontology in the Concept Language ITL 

As ment.ioned  before, our current,  illlplelllellt,at,ioll of LARKS assumes the  donmin 
ont,ology t,o be writ,t.en in  the concept, language ITL. 

The research  area. on concept languages (or description logics) in  AI  has 
it,s  origins  in the t.heoret.ica1 deficiencies of senlantic net,works in the  late 70's. 
IiL-ONE was t,he first, concept. language  providing a well-founded selnantic for a. 
more  na.tive language-lnsed  description of knowledge.  Since then different, con- 
cept. languages  are int,ensively  invest,iga.ted; t.hey are a.lmosts decidable  fra.gment,s 
of first,-order  predicat,e  logic.  Several  knowledge  represent,at,ion and inference 
syst,ems.  such as CL.L\SSIC, BAC'Ii. I<R.IS, or CR,-ACI<, based on such  languages 
are ava.ilable. 

Concept,ua.l knon-ledge about. a given  a.pplicat,ion domain, or even  colnnlon- 
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sense,  is  defined by a set of concept,s and roles as t,ernls in  the given concept, 
1angua.ge; ea.ch t,erm as a. definibion of some concept. C is a conjunct.ion of  1ogica.l 
constra.ints  which  are necessa.ry for any object t,o be a.1 inst<ance of C. The 
set, of t.ernlinologica1 definitions  forms a terminology. Any canonica.1 definition 
of c0ncept.s  relies  in  pa.rt,icular on a. given  basic  vocabulary of words (primitive 
compo11ent.s) which are not, defined in the t,erminology,  i.e..  their  semant.ic  is 
assumed t.o be known and consist,ently used a.cross boundaries. 

The following  terminology.  is  written  in t,he concept language ITL and de- 
fines concept,s in t.he comput,er a.pplica.t.ion domain. It. is in  pa.rticular  used  in 
t,he example 3.4 in t,he former  section. 

0 

(and ( a l l  is-manufactured-by Brand) (atleast 1 is-manufactured-by) 
( a l l  has-price Price)) 
(and Product. ( e x i s t s  has-processor CPU) (all  has-memory hlemoryj 
( a l l  is-model Comput,erModel)) 
(and Comput,er ( a l l  has-price 
(and (and (ge 1000) (le 2999)) (a l l  in-currency ase t (  USD)) ) 
( a l l  has-weight. (and kg (le 5 )  ) (all is-rnanufact,ured-by 

( a l l  is-model aset~(Thinkpad3~0.ThinkpaclTO.Satellite315)))) 
(and Company (a l l  is-locat,ed-in State)) 
(and ( a l l  part.-of  Connt.ry) aset( V-4tP.4?TX,0H,NY)) 
aset( IBM.Toshiba.HP.4pple.DEC,Dell,Gat,eway) 
aset(Blue,Green.kellon:Red) 
(and Real ( a l l  in-currency aset(USD.DM,FF,Y,P))) 
Money 
(and Price (ge  1800)(exists in-currency aset(USD))), 
(and Price ( l e  50000)( e x i s t s  in-currency aset(USD))) 
aset(HP-Vect . ra .PowerPC-~3,Thinl ;pad380,a~~~O,Sat .e~i t~e315)  
aset(Pent~ium,I<G,PentiumII.G3.Merced) 

Company)) 

3.3.2 Subsumption Relationships Among Concepts 

One of t,he ma.in  inferences on  ontologies  writaten in concept, lmguages  is  the 
comput,at,ion of t,he subszrmption relation among two concepts: A concept C 
subsumes  anot>ller concept. C," if t.he extension of C' is a subset of that of C. 
This means. t,llat t,he  logical  const,ra.int,s defined in t,he term of the concept C" 
logically ilnply those of the  more  general concept, C'. 

Any concept 1a.ngua.ge is  decidable if it, is for  concept, subsumpt,ion  among 
t,wo c0ncept.s  defined  in t(1m.t 1a.ngua.ge. The concept. language ITL we nse is 
NP-complete  decidable. 'The well-1;nown trade-off hebween expressiveness and 
t,ract,a.bilit,y of concept 1angua.ges in  pract,ice is surrounded a.lnlost. by subsump- 
t.ion algorit,hms which axe correct  but. incomp1et.e. We use a.n inconlplet,e in- 
ference  algorit,hm  for  colnput,ing  subsumpt,ion rela.tions a.mong conceptas  in ITL. 
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e Inform t,he requesting  agent by sending  t,llenl t.he cont,a.ct. a.ddresses and 
rela.t,ed capability clescript,ions of t,he relevant.  provider  agents. 

Matchmaker A, Oent x 

Matching AdvertisementDB 
ConceptDB 
AuxiliaryDB 

Resuit-of-Matchin 

Requester  Agent 
Provider  Agent 1 

Figure 2 :  Matchn1al;ing using LARI~S:  .4n Overview 

4 The Matchmaking Process Using LARKS 
.As mentioned before, we differentia.t*e  between three different, 1;inds of col1a.b- 
ora.t.ing infornlation  agents:  provider, request,er a.nd ma.t.cllmaker a.gent.s. The 
following  figure shows an overview of t,he n~at,chmaking process usillg LARKS. 

The matchmaker agent. process a. received request in the following main  steps: 

e Compa.re t,he request wit,h all a,dvertkement,s in the  a~lvert~isement  database. 

e Det,ernline t,lle provider  agents whose ca.pa.bilit.ies ma.t.ch best. wit.11 the 
request. Every pair of request. and a.dvertisement, 11a.s t.0 go through  several 
different, filt,ering during  t,he  mat,chma.king process. 

For being a.ble t.o perform a. stea.d?;. just>-in-t,ime  ma.t,chmaking process the in- 
forma.t.ion  model of bhe mat~c:hma.ker agent.  comprises t.lle following components. 
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1. . ~ d ~ w t i s e n m ? t  d U t c l k L S €  (XDB). 
This da.t.a.ha.se cont*ains a.11 a.dvert.isements  writt,en in LARKS t.he match- 
ma.ker receives from provider a.gent,s. 

2 .  Part ial  global ontology. 
The ont.ology of the ma.t.chma.ker consists of all ontological  descriptions 
of words in  a.dvert,isement,s  st,ored  in  t,he ADB. Such a description is  in- 
cluded  in t.he slot. ConcDescriptions a.nd sent, t.0 tahe  matchmaker  with 
any a.dvert,isement. 

:3. Au.dia,yy dc/~tuhux. 
The a.usilia.ry data  for  t,he matchmaker comprise a da.ta.ba.se for word pairs 
and word dist8ances,  basic  t,ype  hierarchy, and imernal  data.. 

Please  note  that  the onbology of a. ma.t.chma.ker agent  is not. necessarily  equal 
t,o the union of local doimin ontologies of a.11 provider agents who are  actually 
regist.ered at  the mat,chmaI;er. This also holds  for t,he advert.isement database. 
Thus, a. mat,chma.ker  agent. has only  pa.rt>ial g1oha.l knowledge on available in- 
format.ion  in  t.he  overall mu1t.i-a.gent system;  this  partial 1;nowledge might also 
be not. up-t.o-date  concerning t.he a.ctua1 t,ime of processing  incoming  requests. 
This  is  due tso the fa.ct that for efficiency reasons  changes in  the  local  ontology of 
an provider  agent, will not. be propaga.t,ed  imnmlia.t.ely t.0 all ma,t,chmal;er agent,s 
he is registered at,. In the following we will describe t,he matachmaking process 
using LARKS in a. more detail. 

4.1 The Filtering Stages of the Matchmaking Process 
The 1na.tching  process of the ma.tchmaker is designed  with  respect t.0 t,he follow- 
ing criteria: 

The  matching  should not Le hosecl on keyword rrtrieoal! only. Inst,ea.cl, 
unlike the  usual free tes t  sea.rch engines,  the  semant,ics of requests and 
advertisenleat,s  should be taken  into  consideration. 

The  matching process  should be uuto,matt;d. A vast  a.mount. of agents 
appea,r a,nd disappear  in  the  Int,ernet.  It is  nearly  impossible for a user to 
lna.uua,lly  searcli or browse all  age&  capabilities. 

The ma.tching process should  he crccwclte. For esample, if the  matches 
returned by the ma.tch  engine are cla.inled t,o be exact ma.t,ch or the plug- 
in  ma.tch,  those  mat.ches shoulcl sa.t.isfy t.he clefinitmiom of esa.ct, nntching 
a.nd plug-in  ma.t,chiug. 

The  ma. tding process should  be ~JSicIe77t, i.e., it. should he fast,. 

The mat,ching  process  should  he effecfire, i.e., t.be set, of ma.t.ches should 
not, be t.oo la.rge. For the user.  t,yping in a request, and receiving hundreds 
of ma.t.ches is not. necessa.ril\. very useful. Inst.ea,d, we prefer a slna,ll  set of 
highly rat.ed mat,ches t,o a. given request. 
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To fulfill t.he mat,ching  crit,eria  listed  in t.he a.bove section, the mat,ching 
process is orga~lized a.s a. series of increasingly  st,ringent, filt,ers on candida.t,e 
a.gent,s. That.  means  that. ma.t,ching a. given request, int,o a. set. of a.dvert,isenlents 
c*onsist,s  of  t.he following five filt,ers that, we organize in t,hree  consecutive  filt,ering 
st,a.ges: 

Select t.hose advert.isement,s in t.he ADB which can  be  conlpared  with  t,he 
request, in  the  sanle or sirnilax  cont,est.. 

This filt'er con1pa.res the request wit,h an?; advert.isement, select.ed by the 
cont>est,  mat.ching in t.hree steps: 

(a) Compa.rison of profiles. 
(b) Simila.rit,y matdling . 

The request  and  a.dvertisement profile comparison uses a weight.ed key- 
word represent,at,ion  for  t,he specifica.tions aad a. given tern1 frequency 
ba.sed simila.rit,y measure  (Salt,on, 1989). The  last t,wo st,eps focus on the 
(input/out,put,) const,ra.int,s and declaration  part,s of t,he specifications. 

3. S~~n.untico1 Matching 
This final  filter checks if t.he input,/out,put, c0nstra.int.s of any  pair  ofrequest. 
and  advertisement 1ogica.lly match (see sect,ion 4.1.5). 

For reasons of efficiency t,he contest.  filter roughly prunes off advertisements 
which a.re not. relevant  for a given request.. In  t,he following t,wo filtering  stages. 
synt.act,ical a.nd semant,ica.l  ma.t,ching, t,he remaining  advertiselnents  in the  ADB 
of t,he ma.t.chma.ker are checked in a. more det,a.il. -411 filters a.re independent  from 
each other: ea.ch  of  t.11em lnrrows t,he set. of mat.ching  ca.ndidat,es with respect 
to a given filt,er c:rit,eria.. 

modes of lilat,ching a. request. t,o a. given set of aclvert,isements. 
111 our current,  inlpiement,a.t,ion t,lw ma.tdu~la.ker offers different. t>ypes and . 

4.1.1 Different Types of Matching in LARKS 
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4.1.1.1  Exact  Match Of course, talle most. a.ccura.t,e ma.t,ch is when both 
descriptions a.re equivalent, eit,her  equal 1itera.lly. or equal by rena.ming the vari- 
ables, or equal  logitally  obtained 11y logical  inference. This  type of nmtching is 
t.he most,  restrictive one. 

4.1.1.2  Plug-In  Match A less accurate but,  lnore  useful ma.t,ch is the so- 
called plug - in. nmtch. R.oughly spea.l;ing, plug-in nnt.ching  means  that  the 
a.gent. which  capabilit,y  descript,ion 1nat.ches a given request  can be  "plugged  int,o 
t.he place" where t,lmt. request wa.s raked.  -in? pa.ir of request and advert,isement. 
can differ in the signat.ures of t,heir input,/out,put,  declarat.ions, t.he number of 
constmints, a.nd t,lle const.raint,s t.henlselves. -4s we can see, exa.ct, ma.t,ch is a 
specid case of plug-in ma.t,ch, i.e., wherever t,wo descript,ions  are exact, mat&, 
t.he): are also plug-in ma.tch. 

A simple  esample of a. plug-in mat.ch is that. of t.he ma.t,ch bet8ween a request. 
t>o sort. a. list, of imegers ancl an advert.isement, of a.n agent. that. can sort,  bot,ll 
list of int.egers and list, of st,rings. This exa.mple is elabora.t,ed  in  sectmion 5. 
Anot,ller exa,nple of plug-in  ma.tcll is bet.weea t,he request. t,o find some  computer 
infornmtion n:it,llout. an?;  c:onst.raint. on the out,put. ancl the a.dvert,isement of an 
a.ge1-k tl1a.t. can provide  t,hese  infornmtions and sort,s t,lle respect,ive out,put. 

4.1.1.3 Relaxed Match The least. a.ccura.t,e but.  most' useful ma.t,ch is the 
so-ca.llec1 w1a.red ma.tch. A rela.sed nmtch has a. much more weaker semantic 
int,erpret,ation t h a n  a. exact, nmtch  and plug-in ma.td1. In fact,.  relaxed match 
will not, tell  whetther t,wo descript,ions  senlnnt,ically ma.t,ch or not,.  Instead  it 
det.ermines how close the two  descript,ions a.re by returning  just. a numerical 
distance value. Two clescript,ions ma.t.ch if the dist,ance  value  is  slnaller t1la.n a 
preset  t,hreshold va.lue. Normally t.he plug-in  match a,nd tShe  exact. match will 
he a. special  mse of t.he relaxed  rnatch if t,he  t,hreshold  value  is not t,oo sma.11. 

.?In esample of a. relased nla.t,ch is t,hat, of t,he  request t,o find talle pla.ce (or 
a.ddress) where t>o buy a Co1npa.q Pentium2:33 comput,er  and t,he capabi1it.y de- 
scriptmion of a.n agent t , lm  ma,y provide  t,he  price  and coat.a.ct, phone nunher for 
t,llat computer  dealer. 

Different. users in different. situation may want. to  lmve different. t,ypes of 
mat,ches.  .ilt,hough  people  usually ma): prefer t.0  lmve plug-in ma.t,ches, such 
a. kind of ma.t'cl1 does not exist. i n  nmny ca.ses. Thus.  people rimy try  to see 
t.he result. of a rela.sed match first.. If there is a. sufficient number of relased 
mat,ches  retwrled a refined search n1a.y he  performed t,o 1oca.t.e plug-in ma.tching 
a.clvert.isement.s. Even wllen people are int.erest,ed in a plug-in  mat,ch  for  t,heir 
request,s only, t,he  computa.t.iona1 cost,s for t,llis t,?;pe  of ma.t.ching might out,weigh 
it.s henefit.s. 

As nlentioned  above we have five different. nmtching filt,ers: 
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1. signa.t,ure  ma.t,ching 

5. sema.nt.ica.1  ma.t8c1ling 

The first. t,hree filt,ers a.re meant'  for  relaxed matdling, a.nd t,lle signatmure and 
sema.at,ica.l mat.cl1ing filter are mea.nt. for  plug-in  mat.ching.  Please  notme, t,ha.t, 
t,he  comput,ationa.l c0st.s of t,hese filt,ers are in  increasing order. Users may select, 
any conlbina.t,ions of t,hese fibers a.ccording t,lleir demand. Since the  similarity 
filter also performs int.ensive comput,a.t,ion one n1a.y just select, t,he  cont.est  filter 
and t-lle profile filter if efficiency is of major concern. 

Based  on  the given not'ions of ma.t.ching we did  inqdelnent,  four different, 
nlodes of mat,chiag for bhe ma.t,chma.ker: 

1. Complete  Matching  Mode. All filt.ering stages a.re considered. 

2. Relaxed  Matching  Mode. The first t,wo filt.ering stages  are considered 
except,  signa.txre mat,cl1ing, i.e.,  the  cont,est, profile and  similarit,y filter 
only. 

3. Profile  Matching  Mode. Only  the cont.est. matching  and  coinparison 
of profiles is done. 

4. Plug-In  Matching  Mode. In  this  mode,  the ma.t,cllmaker  performs the 
signat.ure and semantical  mat,ching. 

As wid a.hove, the ma.td1ing  process  proceeds  in different. filt,ering  st.ages. If 
t,he  considered advert.isement. a,nd request  cont.ain conceptua.1 at,t,a,clm1ents (on- 
t,ological  descript,ion of used words), t,llen i n  most. of t,he  filtering  stages (except. 
for t,he  conlparisou of profiles) we need a wa?; t.0 det.ermine t,lle semant,ic dist.a.nce 
I)et,ween the defined concept,s. For t.11a.t.  we use t,he comput,at.ion of subsulxption 
relat.ionships aad a, weight.ed  a.ssocia.tib-e net.work. 

4.1.2 Conlputation of Semantic  Distances  Among  Concepts 

iVe have present,ecl t,he not,ion of concept. sulxumpt.ion in  sect,ion 3 . 3 . 2 .  But the 
concept  subsunlpt,ion gives only a generaliza.t.ion/specialization rela.t,ion lxsed 
on t,lle definiteion of the concept,s via. roles and a.t,t,ribut.e sets. In  pa.rt,icular  for 
ma.t.chmal;ing t,he ident,ifica.t.ion of a.dditiona1 rela.t,ions among concept,s is very 
useful because it. leads to a. deeper semant.ic  underst.anding.  Moreover,  since 
t,he e1pressivit.y of t,he concept. language ITL is rest,rict,ive so t,hat. performance 
can  be  enhanced. we need some w a y  t,o express  addit,ional  a.ssociat,ions among 
coi1cept.s. 

For t.llis purpose we use a. so-called weigl~t,ed  associat,ive netsvork. that. is a. 
sema.nt.ic net.worl; wit,h c1irec:t.ed edges het,n:een concept,s as nodes. A n y  edge 
denot.es t.he 1;ind  of a. bina.ry rela.tion a.nlong t.wo  col1cept.s. a.nd is  labeled  in 
a.ddit,ion wit,h a numeric-a1  n-eight. (int,erpret.ed as a f u z z y  number).  The weight. 
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i11dicat.e~ t,lw st.rengt,ll of helief i n  t,ha.t rela.t,ion. since its real world senlantics 
ma? vary'. We a.ssunle t,ha.t, t.he sema.nt,ic net,work consist,s of three  kinds of 
binary, weight,ed relationships: (1) generalizat,ion. (2 )  specia.lizat,ion (as inverse 
of genera.lizat,ion), and ( 3 )  posibive associat,ion among concept,s  (Fanklmuser 
et. al.. 1991). The pos i t ic~  association is the most.  general  relationship  among 
 concept,^ in the net,work indicat,ing  t,hem as synonyms in some  cont.est. Such a 
senlantic net.worl; is called an associatirre nef tr!or-k (AX).  

In our implement.ation we crea.t.e an a.ssociative  network by using the con- 
cept,  hierarchy of a given  t,erminology defined in t.he concept 1a.nguage ITL. All 
subsumption  relations  in  this concept.  hierarchy  are  used  for  sett,ing  the gen- 
eralization and specialization  relat,ions a.mong concepts  in  the  corresponding 
associat,ive net.work. Posit.ive  a,ssociat,ions nmy be set. by t,he a.dminist,rat.or or 
user.  Posit,ive  a,ssocia,t,ion,  generalization and  specia.lization are transitive. 

As nlentsioned  a,bove, every edge in t.he associative net,wrork is  labeled  with 
a fuzzy weight. 'These w e i g h  are set, by t,lle user or a.ut.omat,ica.lly by default. 
The dist,ance  between two concept,s in an associa.t,ive network is then  computed 
as t.he strengt,h of t,he  short.est.  pa.th a.mong  them.  Combining  the st,rengt.h of 
each  relat,ion  in  t,his pa.t.11 is done by using t,lle following  t,riangula.r norms for 
fuzzy set int,ersect,ions (Iiruse et, a.l., 1991): 

Since we h v e  t.hree different  kinds of relakionships among two  concept,s  in 
a n  XN t,he kind  and  st.rength of a path a.mong t,wo a.rbit.rary  concepts in the 
network  is  det,erlnined a.s shown in  t,he  following tables. For a formal discussion 
of t-hat.  issue we refer t,o  t,he work of Fanklmuser et. a.1. (1991), 1l;ra.cker (1992), 
and Fankhauser  and  Neuhold (1992). 

a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 

a 
a 
a 
a 
a 
a 
a 
a 

100 a 
a 
a 

a 
Ta.ble 1: Iiind of pa.t,hs in an AN. Table 2 :  St,rength of p a t h  in an AN. 

lThe relat.ionships are fuzzy, and one cannot possibly associate all concepts with each 
ot,her. 
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Table 3 :  Con1puta.t.iona.l precedence  for t,he strength of a. path. 

The computa.t,ion of semant,ic dist.a.nces a.mong concept,s  is used in most of 
the filt,ering  st.ages of the mabching process. lye will now describe  each of the 
filters in det,ail. 

4.1.3 Context Matching 

It, is  obvious tl1a.t any ma.t.ching of two specifica.t,ions has  to be in  an appropria.t,e 
cont,est,.  Suppose a. provider a.gent. advertises t,o sell several different. types of 
procluct,s. like cars, comput.ers,  shoes,  et,c.  Further  assume t11a.t. all  his  adver- 
t,isement.s include t.he only input va.ria.ble declarat,ion: bra.nd: Setof Brand; 
But,  wlmt is  meant  by  the type 'Brand' in  t,he contest of any  specification of 
a. ca.pabilit,y of finding a p o ~ t i c , c d a ~  it.em'! Wit.llout. a.ny a.ddit,ional  knowledge 
about.  t<he partkular  cont,est, a, request. t o  find infornntion  about a, particu1a.r 
item. like comput.ers.  would n l a t d ~  \yit,h all product.  advertisements. 

In LARKS there are two  possibilit.ies t o  deal  with t.his probleln which is con- 
nected t o   t h e   ~ ~ ~ l l - k a o w n  ont,ological misma.t.ch problem.  First., t,he Context slot. 
in a specifica.t,ion S cont,a.ins a. (list. of)  words denot,ing  the  donlain of discourse 
for ma.t,ching S wit,h a.ny  obher specifica.t,ion. When  conqmring t,wo specifica.t.ions 
it is assumed  tha.t.  t,heir clonmins. 1nea.m their  contest. a.re the  same (or at,least. 
suf€icient,ly similar) as long as t.l:e red-va.lued dist.ances bet,ween these words do 
not. esceecl a. given t,hreshold'. The ma.t,ching process only proceeds if tlmt is 
tme. 

Second, every word in a LARKS specifica,tion may  be associa.t,ed with a con- 
cept. in a. given  donv.in  ontology.  Aga.in. if t,he  cont,est. of  bot.11 specifications 
t.urned out,  t,o be sufficient,l; similar in the st,ep before t,llen t,he concept, defini- 
t,ions describe  t,he  meaning of t,he  words the?; are a.t,tached t.0 in a. nlore  detail 
in  t,lw sa.me donnin.  In  t,his  case. t,wo co1lcept.s wit,h same  name  but different. 
definit,iolls will l x  stored sepa.ra.t.ely by extending each concept. name by the 
idehfier  of the agent. who did smd this concept.. 
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1. For every pair of n-ords { I ,  ( 1  given in t.he context slots  conlput,e  t,he real- 
d u e d  word dist,ances d p ( .  ( [ I .  , I * )  E[0.1]. Det,ernline the most. similar ma.t.ches 
for any word I I  by selecting words 1 1  n.it,ll t.he nlillinlunl  distance value 
d,c ( u ,  2:).  These dist,ances must,  not. esceecl a. given threshold. 

2 .  For every pair of most. similar ma.t,ching words, check t h t .  the  semantic 
dista.nce a.mong t,he  at,tached co11cept.s does not.  esceed a. given threshold. 

4.1.4  Syntactical Matching 

4.1.4.1 Comparison of Profiles The compa.rison of two profiles relies on a 
st,a.ndard  tecllnique  from t.be Infornlat,ion R.et,rieval area.. called t,erm frequency- 
inverse  document,  frequency  weighting (TF-IDF) (see Sa.lton. 1989). According 
to t h t ,  any specificat,ion  in LARKS is t.reated as a. document,. 

Each word '11) in a. document. R , E ~  i s  weight.ed for t11a.t document, in the fol- 
lowing way. The number of times 21: occurs  t,kroughout, a.11 document,s is called 
the document.  frequency d f ( , w )  of 21:. The used collection of document,s is not, 
unlimited,  such a.s t,he a.dvertise1nentJ dat.a.ba.se of t,he  mat,chma.ker. 

Thus, for a. given  docunlent. d ,  the  relevame of d ba.sed on a word 'IO is 
proportional t.0 t.he number z c ~ f ( n : .  d )  of t.imes  t,he word u' occurs  in d a.nd inverse 
proportiona.1 to d f ( u : ) .  A weight, h.(zo, d )  for a word in a doculllent, d out of a set 
D of documents denot,es the significance of t.he clnwification of for d ,  and is 
defined ns follows: 

h ( W , d )  = Wf(.IO, d )  . log(  df). ID1 

The weight,ed keyword represent,at.ion tr!k,u(d, 1.') of a. document. d contains 
for every word 'tl: in a. given  dict,iona,ry 1,' t,he weight I r (  to, d )  as an element,.  Since 
most dictionaries  provide a. huge \-ocabula.ry w e  cut, down t<he  dimension of the 
vect.or by using a fixed set. of appropria.t,e  keywords  det,erlnined by heuristics 
a.nd t.he set of keywords  in LARIG itself. 

where Req 0 -4d denotes t,he inner  product. of t,he \veight.ed keyword vect.ors. 
If  t.he value d p s (   RE^, -4d) does exceed a. given tJ1reshold ;3 E R t,he  nlat.ching 
process  cont.inues wit.11 t,he following steps. 
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4.1.4.2 Similarity  Matching Let Ei. Ej be va.ria.hle decla.ra.t,ious or con- 
stmint.s, a,nd S ( E )  the set of words in E .  The similariby a.nlong t.wo expressions 
E; a.nd E-.j is det,ennined by pairwise  comput,at.ion of word dist,ances a.s follows: 

4.1.4.3  Signature  Matching Consider t,he  declara,tion  pa.rts of the request 
and the a.cl\.ert,isemeIlt., and det,ermine  pairwise if their  signatures of t,he  (input. 
or out,put.)  variable  types ma.tch following the t,ype inference rules  given below. 

Consider  two types f l  and t 2  a.s part, of an input, or output  mriahle declarat.ion 
pa.rt. (in  the  form Input  z! : f 1; or Output 'L' : t 2 ; )  in a LARKS specification. 

Subt.vne-  Inference R.ules: 



Having  described bot.11 filters of t8he s!;ntact,ica.l ma.tching we now define the 
meaning of syntsa.ct,ica.l ma.t,ching of t,wo specifications  writt.en  in LARKS. 

Definition 4.2: Syntactical .mczfchin,y of specifications in LARKS 

The declarations Di and Di syntactically  match if t,hey are suffi- 
ciently simi1a.r: 

The constraints C.'i and C j  syntactically  match if  the!; a.re sufficient.ly 
similar: 
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4.1.5 Semantical  Matching 

By using the synt,a.ctical filt,er lnany mat8ches might, be found  in a large a.gent 
societ*y. Hence, it is import,ant, t,o use some  kind of sema.nt,ic  informa.tion to 
narrow  the sea.rch, and to pin down more precise mat,ches. 

The most,  colmnon and na.t,ural int,erpret.a.t.ion for a. specifica.tion  (even  for 
a soft,ware program) is using set,s of pre-  and  post,-conditions,  denot,ed a.s P r e s  
and  post.^, respectailrely. In a simplified  llot.at,ion, any specificat.ion S can  be 
represented by t,he pair (Pr'e.5. Post,$).  

The specifimtion 5' semantically  matches t,he specifica.t,ion T if 

(P~e .5 .  + P I . ~ T )  A (P&T + Po.~f.,s) 

Tlmt,  means. t,he set, of pre-conc1it.ions of S logimlly  implies t,ha.t. of T .  and 
t,he  set of post,-condit,ions of .S is logically  implied by t,hat, of T .  
a 
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capability 5 

1 
PreT 

plug-in 

<- Capability T 

PostT 

Posts / 
Figure 3 :  Plug-In hla.t,ch of Specifica.t.ions: T plugs into S. 

4.1.5.1 Plug-in Semantical Matching i n   L A R K S  Its is  proven  in the 
soft.wa.re engineering area. bha,t. if t.lle condit,ion of selnant,ical nmtching: in defi- 
nition 4.3 holcls, and  the signa.t.ures of hot,h  specifications ma,t.ch, t,lIen T can be 
direct.ly  used  in the  phce of ,5'> i.e.. T plugs  in S (see  figure 4.1.5). 

Definition 4.4: Pluy-Itl, .s~.~nonticul m a t c h i n g  of tu:o syecijicntions 

Given t.mo specifications S p e c 1  a.nd Spec2 in LARKS t,hen Specl plug-in matches 
S y c 2  if 

0 Their  sigmtures  1mt~ches (see sect.ion 4.1.4.2). 

0 For every c h s e  c'1 in tslle set, of input.  const,raint,s of S p e c l  t.here is a 
clause C'2 in t,he set of input.  const,raillt4 of Spec2 such t,llat C1 50 C2. 

0 For every &use C'2 i n  the set. of output. const,ra,int.s of Spec2 t,here is a 
clause C'1 in  t,he set. of out,put, const.ra.int,s of Spec1 such that. C'2 50 C'1. 

where <# denotes t,lle 8-subsumptmion rela.t.ion het,ween const,ra.ints. 
e 
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P(u) C Q ( u )  5 s  P ( S )  t Q(-S) 

Since a. single cla.use is not. expressive enough, we need  t,o  use a. set, of cla.uses 
t.o express  t,he pre and post. conditions (Le.,  t,he input, a.nd output.  coast>ra.int,s) 
of a specificat,ion in LARKS. -4 set. of clmses is t,rea.t,ed a.s a. conjunction of those 
clauses. 

Subsumption bet,ween t,wo set, of clauses is defined in t,erlns of t,he subsump- 
t,ion het.ween single clauses. More spccifica.lly, let. S and T he  such set,s of clauses. 
Then, we define t,hat. S 8-subsumes T if every cla.use in T is &subsumed by a 
cla.use in 5'. 

There is a. colnplet,e algorithx to test, the 8-subsumpt.ion relation, which is 
in general NP-co1nplet.e but.  polynomial  in cert,a.in  cases. On  the ot,her hand, 
0-subsumpt.ion is a. w d e r  relat,ion than 1ogica.l implica.t,ion,  i.e., from C.' D 
we can only illfer t11a.t C,' logically  implies D but. 1101, vice versa.' 

5 Examples of Matchmaking using LXRIS 



1 Integersort. J 

output vs: ListOf Integer: 

GenericSort, 
Context 
TvDes 

Sort.ing 
1 

~ 

Input I xs: Listof Real I Sbring: 
OUtDUt 1 YS: Listof Real I St.rine: 

I Inconstraints I I 

1 in(x.ys) < - in(x.xs): 
ConcDescriptions I 

Xssume t.11a.t bhe request,er and provider  agent.  sends the request. Int,egerSort 
a.nd advert,isment,  CenericSort  to the ma.tchma.l<er,  respectively. Figure 5 de- 
scribes t.lw overa.11 nla.t,chma.l<ing process for t,hnt. request. 

1. Contfxf  Mcrtching 
Bot,h words in t.he Context declaration parts are sufficiently similar. We 
11a.w no referenced concept,s t,o check for t~erminologicall\;  equit,y. Thus, 
the ma.t.ching process proceeds with t,he following t,wo filtering stages. 
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Figure 4: An  Exa.nlple of Matchmaking using LARKS 

(c) Similurity Alutchiny 
Using the  current  ausilia.ry  database for word distance  values  simi- 
larit,y matdling of const.ra.int,s yields: 

le(lengt,h(ss),100)) null = 1.0 
before(x,y,ys) < - seis,.) in(s,ys) < - in(s,ss) = o..jj'2(3 
in(x,ys) < - in(x,ss) before(s.y,ys) < - preceeds(x,y)) = 0.4375 
before(sty,ys)< - ge(s.y)) before(s,y,ys) < - preceeds(s,y)) = 0.281'25 

The sin1ila.ritmy of both specifica.tions is comput.ed a.s: 
Si?n.(IntegerSort, Genericsort) = 0.64. 

3 .  Sm~.unticctl Matching 
The a.dvertkenlent GenericSort also  matches sema.nt,ica.lly wit,h t,he re- 
quest, Integersort, because  t,he  set of input.  const,ra.ints of Integersort f?- 
subsumes t1la.t. of Genericsort ~ and t,he out,put  const,raintss of Genericsort 
8-subsumes t,ha.t of Int egersort. Thus Genericsort plugs  int,o Integersort. 
Please note t11a.t tsllis does not hold vice versa.. 

6 Related works 



unificat.ion wit.11 t,he equalit,y  predica.te. i\Ia.t.chma.king using LARKS performs 
bet,t,er t.1la.n ABS1 in both, t,he language  and  the ma.t.ching  process. The plug-in 
mat,ching  in LARKS uses the Q-subsumpt,ion  test, which select. n1ore matches 
t,hat. are also semant.ica.lly  ma.t,ches. 

Tlle SHADE and  COINS[l-i] are mat,chma.kers ba.sed on IiQML.  The cont,ent. 
1angua.ge of COINS allomes for  t,he  free  t.est and it,s  ma.t,ching  algorithm ut.ilizes 
t,he t,f-idf. The  contect  language of SHADE mat,chmaker consist,s of two parts, 
one is a subset. of KIF,  anot,her is a structured logic representation called RL4S. 
MAS use logic frames to declara.t.ively store  the 1;nowledge. SHADE uses a 
frame like represent,a.t,ion aad t.he ma.t.cher use t,he prolog like  unifier. 

A more recent. service  broker-ba.sed  infornmtion  syst,em is InfoSleuth[lO, 
111. The content, 1a.nguage support,ed by InfoSleut,h is IiIF a.nd the deduct,ive 
dat8a.base language LDL++, which has a senmlt,ics  similar  t,o Prolog. The con- 
snaints for bot.11 t,he user requestt. a.nd t,he resource d a h  are specified  in  t,erms 
of some given  cent.ral  ont,ology.  It. is tShe use of this co1n1non vocabulary  t,hat. 
enables  t,he  dyna.mic  lnat,ching of recluest,s t,o t,lle amilable resources. The ad- 
vertisen1ent.s specify agents' ca.pabilit.ies in  t,ernls of one or more  ontologies. The 
constraint,  ma.tching is an intersect,ion  function bet,ween t.he user query  and t,he 
da.ta  resource  const.raint,s. If t,he  conjunct,ion of all the user  const,raint,s  with a.11 
the resource constraints is  sat,isfiable, then  the resource contains  data which are 
relevant, t.0 the user  request,. 

-4 somew11a.t. rela.t.ed research area is t,he research on informa.t,ion mediators 
among  heterogenous informa.t.ion s?;st.emsrLS] [ 13. Ea.ch local  infornmtion  system 
is wrapped by a. so-called wra.pper agent, and  their ca.pa.bilities are described  in 
t,wo levels. One is w11a.t. they  can  provide,  usually  described in the local data  
model and lo(-a1 clat,aba.se schema. .4nother is what.  kind of queries t,hey can 
answer:  usually it  is a. subset, of the SQL 1angua.ge. The set of queries a service 
can accept. is  described using a grammar-like  not.a.tion. The ma.tching between 
t,he query and t.he service is simple: it  just, decides whether  the  query  can  be 
generat.ec1 by t.his gramnm. This a.rea emphasizes the  planning of dat.abase 
queries  a.ccording t,o het,erogeneous  informa.tion systems not,  providing  complete 
SQL sevices. Those syst.ems a.re not. supposed t,o be  sea,rched for among a vast. 
number of resources on t,he Inbernet,. 

The desfription of ca.pa.bilit,ies and nmt,clling a.re not. only st.udied  in the a.gent, 
communit,y,  but. a.lso in  ot,her rela.t.ed a.rea.s. 

6.1 Works related  with  capability  description 
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way, t,he specifica.t.ion usudly  contains boo much det,a.ils to  be of int,erest.s 
to  other a.gent,s. Besides, t,hose esist,ing  langmges  are so complex that t.he 
senlantic  comparison I>et.ween t,he specificakions is impossible. The  reading 
a.nd writ.ing of t,hese specifica.tions also  require  subst,ant,ial  t,ra.ining. 

2. Action  represent'ation  formalisnls. 
Agent  capa.hilit,y can be seen a.s t,he a.ct.ions t h t .  the  agents  perform.  There 
are a. number of art,ion represent.at,ion  fornlalislns  in AI phnning like the 
classical  one the STR.IPS. The  action represent,at,ion  fornlalisln  are i11a.d- 
equa.te in our task in t.hat,  t,hey are proposit,iona.l a.nd not. involving dat,a 
types. 

3 .  Concept. 1a.ngua.ges for knowledge represent.a.t.ion. - 
There a,re various  t,erminological  knowledge  represent,a.t.ion  languages. How- 
ever.  ontology iwelf does not, describe  capabilitsies. On t,he other  hand,  it 
provides a.usilia.ry concept,s to assist.  t,he  specifica.tion of the capabilities of 
a3ent.s. 

4. Dat,abase  query ca.pabilit,y descript,ion. 
The  database query  capa.bilit,y  descript,ion  t,echnique is developed as a.n 
a.t,tempt, to  describe the  informatmion sources on t,lw Int.ernet,  such  t,hat 
an a.ut,oma.t.ed int.egra.tion of informa.t.ion is  possible.  In  t,his  approa.ch 
t,he infornmion source is modeled  as a. dat.a.base  with  restricted  quering 
trapbilities. 

6.2 Works related with service  retrieval 
There  are  three broad approa.ches to service  retxieual.  One is  the informa.t.ion 
ret,rieva.l t.echniques to sea.rch for relevant  inforlnat,ion based  on test,. anotSher 
is the soft.ware component. ret.rieval t.echniques[.X][8] [I31 t.o sea.rch for  software 
conlponent,s ba.sed on softxwe specifica.t,ions. The t,hird  one is t,o search for web 
resources t,llat. a.re t*ypica.lly described as da.t,a.base 1xodels[l8][23]. 

In the soft.wa.re component,  search  t,echniques, [26] defined severa.1 not.ions of 
ma,t.ches, including t,he esa.ct.  mat,ch a.nd the plug-in ma.t.cl1,  a.nd formally  proved 
t,he  relationship  Ixtween  t,hose  matches. [8] propsecl to use a. sequence of filters 
t,o sea.rch for soft.ware components.  for t.he  purpose  t,o  inrrease t,he efficiency of 
t~he search process. [I:]] comput,ecl t,he dist,ance bet,\veen sinlilar  specificat,ions. 
All t>hese work a.re k e d  on the a1gehra.k  specification of comput,er  progra.ms. 
No concept. descript.ion a.nc1 concept. hierarchy a.re considered  in t,heir work. 

In Web resource sea.rch t,echniques, [18] proposed a lnet,hocl t,o look  for het.t,er 
sea.rch engines  t,hat. ma.y provide  more relevant,  da.t.a  for the user concerns.  and 
ra.nk t,llose sea.rch engines  a.ccording t.o their releva.nce t.o user's query. They pro- 
pose t>he c1irect.ory  of services t.o record  descript,ions of ea.ch informa.t.ion server, 
mlled a server  descript.ion. X user sends  his query t,o t,he  direct,or): of services, 
which determins and ranks  the servers  relevant. t.0 the user's request. Bot,h t.he 
query and t,he server a,re descrihed  using hoo1ea.n expression. The sea.rcl.1 1net,hod 
is ba.sed on the  simila.rity mea.sure Ixt.ween t.lle two  boolean  expressions. 
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7 Conclusion 
The Int,ernet. is a.n open syst.em where  lleterogeneous  agent,s can  appear  and 
c1isa.ppea.r dynamically. As t.he number of agents on t,he  Internet. increa.ses, 
t.here is a need t,o define nliddle agent,s t.o help  agent,s 1oca.t.e others t.ha.t, provide 
requested  services. In prior  research. we have identified a. variet,y of middle agent. 
t.ypes, t,heir  protocols and t,heir performance cha.ract.erist.ics. hlat,chmaking is t,he 
process t.hat.  brings  requester a.nd service  provider  agent,s together. .4 provider 
agent  a.dvertises it.s know-how. or ca.pahilit,y to a. middle  agent  t,hat. st.ores the 
a.dvertisement,s. An agent.  t,hat.  desires a pa.rt.icu1a.r service sends a middle agent, 
a. service  request, t h t  is  subsequent,ly ma.t,ched with the  middle a.gent,‘s stored 
advert,iselnent,s. The middle  agent  communicat,es  t,he resu1t.s t o  the requester 
(t,lle m y  this  lmppens  depends  on t,he type of middle agent, involved). We 
have also defined prot,ocols  tlmt, a.llow more than  one  middle a.gent, to  maintain 
consist.ency of their  adevertisenlent. datahses .  Since  nlatPchnlal&lg  is usually 
clone dyna.mica.lly and over l x g e  net,works. it  must  be efficient,. There is an 
obvious trade-off het.ween t,he  qua,lit,y and efficiency of service  ma.t,ching in the 
Internet. 

We have defined and implement.ed a la.nguage, ca.lled LARKS, for agent. ad- 
vert,isement and request, and a matchmaking process using LARKS. LARKS  ju- 
diciously ba.la.nces 1a.ngua.ge espressivit.!. and efficiency in ma.tching.  LARKS 
performs bot,ll synt.a.ct,ic and  senlantic  matching.  and  in  addition  allow t,he 
specifica.t.ion of concept,s (1oca.l ontologies) via. ITL. a concept  1angua.ge. 

The mat,cllirlg process uses five filt,ers, na.mely cont.est  ma.tching,  compari- 
son of profiles, simila.riby matching, signa.t.ure nmtching  and s e n m h c  matching. 
Different. degrees of pa.rt,ia.l matching  can result. from utilizing different. combi- 
nat,ions of t.hese filt,ers. Selection of filters to a.pply is under  t<he  control of the 
user (or the request,er a.gent). 
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We would like t,o t,ha.nk Daxide  Bruga.li for helpful  discussions aad Set,h Widoff 
for help with  the  implement.a.t,ion. This resea.rch has been sponsored by ONR. 
grant, n’-OOO14-96-16-1-1222. 
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A Syntax of LARKS 
Definition A. l :  S:ynto.z: of Lurks 

The synt.ax of LARKS is by t.he following production system in EBNF-grammar: 

< speci f icatiolz > 

< TDec > 
< Dec > 
< DecList > 
< OptDecList > 
< OptDec > 
< TErp > 
< PType > 
< CType  > 

< E t p  > 

< E:rpList > 

< IdentList > 
< C‘onstraint.s > 

< f o.mttlnLi.st > 
< for~mzdn > 
< utom.Li.st > 
< at0.m > 
< predicate > 
< uur > 
< const > 

< UEJ13 > 

..- ..- 

..- ..- 

..- 

..- 

..- ..- 

..- 

. .- ..- 

..- ..- 

..- 

. .- ..- 

..- 

.._ 

. .- 

. .- 

..- 

..- 

< Ident > [< CDeclaration >] [< TDeclurations >] 
[< Declaration-s >] [< Constraints >] 
‘Context‘ < CDec > 
< Iclent >’ *’ < Terrn.de f init ion > I ; ’  

< TDec > I < TDec > ‘ ; I  < TDeclnrntions > 
’Input‘ < OptDecList > ‘Output‘ < DecList > 

’type’ < Irlent > [I::‘< T E z p  >]‘;’ 1 ’basicType’ < IdentList > ’ ; I  

< Ident > I : ‘ <  T E J ~  > E’=’< Erp >I1:’ 
< Dec > I < Dec > ’ ; I  < DecList > 
< OptDec > I < OptDec >’;’< OptDecList > 
[’Optional’] < Dec > 
< T1.-ar > I < BTt~pe > I < PType > I < CType > 
Bool’ I Int’  I Real‘ I ’Str ing 
’(‘[< Iclrnt >’:’I < T E r p  > ’ , I  [< Iclelzt > ’ : I ]  < TE:rp > ’ ) I  I 
< T E x p  > ‘1’ < TEzp > I 

’Setof’ ’ ( I <  T E r p  >’)’I 
’Listof ’( ’TErp’)’I 
I { ‘ <  ErpList > ’ } I  

< aErp  > I ’ ( I <  EzpList > ’ ) I  I ’ { I <  EzpList >’}’ I 
<  EX^ >’ (’< EspList > ‘ ) I  I < Ezp >‘ .’ < Ident > 
< E J : ~  > I < Ezp > ’ , I  < EzpList > 
< sC‘onst > I < m r  > I < const > 
< Iclent > I < Idrnt >’ . I  < IdentList > 
[’Inconstraints < formrclaList >] 
[‘Outconstraints’ < for,mulaLi.st >] 
< for,m.zcln > I < f ornaccla > ‘ ; I  < f or.rn.daList > 
< ato.mList > 
< atorn > I < ntorn > ’ , I  < cctonrList > 
< predicate > 1 ’not’ < predicctte > 
< Idfl l t  > 
< Iclent > 
< Ident > 

< TEl:p > ’- >’ < T E x p  > I 

1vit.h non-terminals < Iclent >. < zwr >. and < comt > denoting an ident,ifier. 
variable and const.ant . respect.ively. The non-t.ermina1 < Termde f inition > refers 
t,o t . l m  in t,he concept language ITL (see 1)elon). t,llus denot,ing a kind of a so-called 
‘escape hat.ch’ from LARKS t,o ITL. 

Convention: 
In a capability cleecript.ion or  request, any t,ernl definit.ion will be replaced by t.he name 
of t,he corresponding concept or role which is assumed t.0 be available in t.he local 
knowledge base. 
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B The concept  language ITL 
Definition B.l:  Syntcrx OJ ITL 

The synt,ax of t,he concept, language ITL is given by t.he  following production  system 
in EBNF-gammar: 

< Term.ino1og.y > < Te:r,m.de:finition >+ 
< Te~-mcle f inition > ::= < C'onceptde f inition > I < Rolede f inition > 
< C'onceptrle f init ion > ::= < uto.n?.icC'oncept > ' =' < Concept > I 

< Role& f inition > ..- . .- < cubmicRole > ' =' < Role > 1 

< Concept > ..- ..- < C O I Z C  > I < -4tt).Conc > 
< Conc > < ctto.m.icC'oncept > j 

< c~tom.icC!oncept > ' =' < Concept > 

< clto.rn.icRole > I =* < Role: > 

< primC!o.m.ponent > I '(not' < prim.ColzcCo.nlpolze~lt > j  I 
'(and' < C'oncept >+ ')' I 
' (at least '  11 < Role > ' ) I  I 
'(atmost' 'm. < Role >'j' I 
' ( ex i s t s '  < Role > < Concept > ' ) I  I 
' ( a l l '  < Role >< Concept > ' ) I  I 
' ( l e '  < num. > ' ) I  I '(ge' < nerm >")' I 
' (1t '  < n.um > ' ) I  I '(gt' < n z m  >')' 

< .4ttrC'onc > ' aset('< a m 1  >+ ' ) I  

< Role > '(androle' < Role: >+ I ) '  I 

< atomicConcrpt > ..- < identif ier > I 'nothing' 
< uto.m.icRole > ..- < identifier > 
< pri.mCompone nt > ..- < pri,m,C?oncCo.m.ponfnt > I < pri~mRoEeCo~m.ponent > 
< primC'olzcC.'ompo~zerlt > ::= < identif ier >'.' 
< primRoIeCompo~?ent > ::= < idrnti f ier >'.' 

< Ter,m > ..- < Concept > I < Role > 
< ObjectSet > ..- < Instance >+ 

< utornicRole > I < pri,n,RoleCo,mpolzent > 

< Clt'CLl > < identi f ier > 

< ll?.stance > < ConceptIn.stnnce > I < Rolelnstance > 
< C'o7lc~ptIll.stnlrc~ > ' ( I <  0l) ject  > < nto~n~.icC!oncept > I ) '  I 

'(< Object > not' < p~,ifnConcCo.m.pone~zt > ' ) I  

< R f ~ k I n . s t f ~ n c e  > ' ( I <  0lj;je:ct > < nto,m.acRole > < OhJect > I ) '  I 
' ( I <  0bje:ct > < NwmRe:str > < uto.m.icRole >')' 

< StrrnRestr > 'a t least '  < n z m  > I 'atmost' < num > 
< Object > < iclenti f ier > 

The meaning of (atomic) concept or role. at.t.ri1mt.e concept.. concept. and role 
clefinit,ion. term definit.ion. t.erm, t.erminology and object set, is defined as rhe set. of 
st.rings bvvhich can be reduced t.o the respect.ive non-terminal syn~l~ols in t,he product,ion 
syst.em. 

It, is assurned that i n  every t.errttirlology T (u.rit.terl  in ITL) all used at.omic concept,s 
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and roles are unique iclent,ifiers and defined in she enumerable set,s of identifiers for 
concept,s and roles! at.t,ribut.e values and ol1ject.s. as well as primit,ive concept. and role 
components  are assumed to be pairwise disjoint,. In addision. every prirnit,ive compo- 
nent, (undefined iclensifier) in a terminology is assigned a given. fixed meaning'. 
e 

Definition B.2: S ~ n ~ a n t i c  of ITL 

Let G be a. gra.mnlar. 'P int,erpret.a.t.ion domain a.nd D, D, disjoint.  subset,s wit.11 
T, = D u Do. P ( S )  denot.es the power set of any set S. The senmnt,ic of ITL 
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