A preliminary comparative study of the electron-cloud effect for the PSR, ISIS, and the ESS

PDF Version Also Available for Download.

Description

We present preliminary electron-cloud simulation results for the Proton Storage Ring (PSR) at LANL, ISIS at RAL, and the European Spallation Source (ESS). For each storage ring, we simulate the build-up and dissipation of the electron cloud (EC) in a representative field-free section of the vacuum chamber. For all three cases, we choose the same residual gas temperature, secondary emission yield (SEY), and secondary emission spectrum. Other variables such as proton loss rate, bunch profile, intensity and energy, residual gas pressure and chamber geometry, are set at the corresponding values for each machine. Under these assumptions, we conclude that, of ... continued below

Physical Description

vp.

Creation Information

Furman, M.A. & Pivi, M.T.F. June 20, 2003.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

We present preliminary electron-cloud simulation results for the Proton Storage Ring (PSR) at LANL, ISIS at RAL, and the European Spallation Source (ESS). For each storage ring, we simulate the build-up and dissipation of the electron cloud (EC) in a representative field-free section of the vacuum chamber. For all three cases, we choose the same residual gas temperature, secondary emission yield (SEY), and secondary emission spectrum. Other variables such as proton loss rate, bunch profile, intensity and energy, residual gas pressure and chamber geometry, are set at the corresponding values for each machine. Under these assumptions, we conclude that, of the three machines, the PSR is the most severely affected by the electron cloud effect (ECE), followed by the ESS, with ISIS a distant third. We illustrate a strong sensitivity of the ECE to the longitudinal bunch profile by choosing two different shapes for the case of the PSR, and a weak sensitivity to residual gas pressure. This preliminary study does not address the ECE in other regions of the machine, nor the beam instability that might arise from the EC.

Physical Description

vp.

Notes

INIS; OSTI as DE00815509

Source

  • Other Information: PBD: 20 Jun 2003

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: LBNL--52872
  • Report No.: CBP Note 516
  • Grant Number: AC03-76SF00098
  • DOI: 10.2172/815509 | External Link
  • Office of Scientific & Technical Information Report Number: 815509
  • Archival Resource Key: ark:/67531/metadc739531

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 20, 2003

Added to The UNT Digital Library

  • Oct. 18, 2015, 6:40 p.m.

Description Last Updated

  • April 4, 2016, 2:08 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 8

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Furman, M.A. & Pivi, M.T.F. A preliminary comparative study of the electron-cloud effect for the PSR, ISIS, and the ESS, report, June 20, 2003; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc739531/: accessed September 19, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.