TRANSPORT BY INTERMITTENCY IN THE BOUNDARY OF THE DIII-D TOKAMAK

PDF Version Also Available for Download.

Description

A271 TRANSPORT BY INTERMITTENCY IN THE BOUNDARY OF THE DIII-D TOKAMAK. Intermittent plasma objectives (IPOs) featuring higher pressure than the surrounding plasma, are responsible for {approx} 50% of the E x B{sub T} radial transport in the scrape off layer (SOL) of the DIII-D tokamak in L- and H-mode discharges. Conditional averaging reveals that the IPOs are positively charged and feature internal poloidal electric fields of up to 4000 V/m. The IPOs move radially with E x B{sub T}/B{sup 2} velocities of {approx} 2600 m/s near the last closed flux surface (LCFS), and {approx} 330 m/s near the wall. The ... continued below

Physical Description

30 pages

Creation Information

BOEDO,JA; RUDAKOV,DL; MOYER,RA; MCKEE,GR; COLCHIN,RJ; SCHAFFER,MJ et al. November 1, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A271 TRANSPORT BY INTERMITTENCY IN THE BOUNDARY OF THE DIII-D TOKAMAK. Intermittent plasma objectives (IPOs) featuring higher pressure than the surrounding plasma, are responsible for {approx} 50% of the E x B{sub T} radial transport in the scrape off layer (SOL) of the DIII-D tokamak in L- and H-mode discharges. Conditional averaging reveals that the IPOs are positively charged and feature internal poloidal electric fields of up to 4000 V/m. The IPOs move radially with E x B{sub T}/B{sup 2} velocities of {approx} 2600 m/s near the last closed flux surface (LCFS), and {approx} 330 m/s near the wall. The IPOs slow down as they shrink in radial size from 4 cm at the LCFS to 0.5 cm near the wall. The skewness (i.e. asymmetry of fluctuations from the average) of probe and beam emission spectroscopy (BES) data indicate IPO formation at or near the LCFS and the existence of positive and negative IPOs which move in opposite directions. The particle content of the IPOs at the LCFS is linearly dependent on the local density and decays over {approx} 3 cm into the SOL while their temperature decays much faster ({approx} 1 cm).

Physical Description

30 pages

Notes

INIS; OSTI as DE00813999

Source

  • THIS IS A PREPRINT OF A PAPER TO BE PRESENTED AT THE 44TH ANNUAL MEETING OF THE DIVISION OF PLASMA PHYSICS, ORLANDO, FL (US), 11/11/2002--11/15/2002

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: NONE
  • Grant Number: AC03-99ER54463
  • Office of Scientific & Technical Information Report Number: 813999
  • Archival Resource Key: ark:/67531/metadc739494

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 1, 2002

Added to The UNT Digital Library

  • Oct. 18, 2015, 6:40 p.m.

Description Last Updated

  • Jan. 4, 2017, 1:55 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

BOEDO,JA; RUDAKOV,DL; MOYER,RA; MCKEE,GR; COLCHIN,RJ; SCHAFFER,MJ et al. TRANSPORT BY INTERMITTENCY IN THE BOUNDARY OF THE DIII-D TOKAMAK, article, November 1, 2002; United States. (digital.library.unt.edu/ark:/67531/metadc739494/: accessed August 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.