Estimating the Maximum Splat Diameter of a Solidifying Droplet

PDF Version Also Available for Download.

Description

We present a simple analytical model for the estimation of the maximum splat diameter of an impacting droplet on a subcooled target. This work is an extension of the isothermal model of Pasandideh-Fard et al. (1996). The model uses an energy conservation argument, applied between the initial and final drop configurations, to approximately capture the dynamics of spreading. The effects of viscous dissipation, surface tension, and contact angle are taken into account. Tests against limited experimental data at high Reynolds and Weber numbers indicate that an accuracy of the order of 5% is achieved with no adjustable parameters required. Agreement ... continued below

Physical Description

754 Kilobytes pages

Creation Information

Hadjiconstantinou, N.G. March 31, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We present a simple analytical model for the estimation of the maximum splat diameter of an impacting droplet on a subcooled target. This work is an extension of the isothermal model of Pasandideh-Fard et al. (1996). The model uses an energy conservation argument, applied between the initial and final drop configurations, to approximately capture the dynamics of spreading. The effects of viscous dissipation, surface tension, and contact angle are taken into account. Tests against limited experimental data at high Reynolds and Weber numbers indicate that an accuracy of the order of 5% is achieved with no adjustable parameters required. Agreement with experimental data in the limit We {yields} {infinity} is also very good. We additionally propose a simple model for the estimation of the thickness of the freezing layer developed at the droplet-substrate contact during droplet spreading. This model accounts for the effect of thermal contact resistance and its predictions compare favorably with experimental data.

Physical Description

754 Kilobytes pages

Source

  • 1999 International Mechanical Engineering Congress and Exposition, Nashville, TN (US), 11/14/1999--11/19/1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-JC-133712
  • Grant Number: W-7405-Eng-48
  • Office of Scientific & Technical Information Report Number: 792296
  • Archival Resource Key: ark:/67531/metadc739489

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 31, 1999

Added to The UNT Digital Library

  • Oct. 19, 2015, 7:39 p.m.

Description Last Updated

  • May 6, 2016, 3:18 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 3
Total Uses: 6

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Hadjiconstantinou, N.G. Estimating the Maximum Splat Diameter of a Solidifying Droplet, article, March 31, 1999; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc739489/: accessed October 17, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.